
Thermodynamics of Earth systems

Lecture 3:

The First Law of 
Thermodynamics



Material covered in Lecture 3
Conclusion of Part 1: Introduction

• Hydrostatic equation: application to ocean and hypothetical 

constant density atmosphere; solid earth

• Hypsometric equation (atmosphere)

In-class worksheets

Part 2: Framework

First Law of thermodynamics

• Basic concepts & processes

• Work; expansion work

• Heat: heat capacity, basics of heat transfer mechanisms

• First law: internal energy, enthalpy, specific heats, heat capacity.

• Applications of first law to ideal gases



Internal Energy

system
U = kinetic + potential

system 

boundary

“environment”

The internal energy of a system of particles, U, is the sum of the kinetic

energy in the reference frame in which the center of mass is at rest and the

potential energy arising from the forces of the particles on each other.

Difference between the total energy and the internal energy?

The internal energy is a state function – it depends only on

the values of macroparameters (the state of a system), not

on the method of preparation of this state (the “path” in the

macroparameter space is irrelevant).

U = U (V, T)In equilibrium [ f (P,V,T)=0 ] :

U  depends on the kinetic energy of particles in a system and an average 

inter-particle distance (~ V-1/3) – interactions.  
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For an ideal gas (no interactions) :   U = U (T) - “pure” kinetic



Internal Energy of an Ideal Gas

The internal energy of an ideal gas

with f degrees of freedom:
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f   3 (monatomic),  5  (diatomic),  6  (polyatomic)

How does the internal energy of air in this (not-air-tight) room change 

with T if the external P = const?
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(here we consider only trans.+rotat. degrees of freedom, and neglect 

the vibrational ones that can be excited at very high temperatures)

- does not change at all, an increase of the kinetic energy of individual 

molecules with T is compensated by a decrease of their number.



Work and Heating (“Heat”)
We are often interested in U , not U. U is due to:

Q - energy flow between a system and its

environment due to T across a boundary and a finite

thermal conductivity of the boundary

– heating (Q > 0) /cooling (Q < 0)

(there is no such physical quantity as “heat”; to

emphasize this fact, it is better to use the term

“heating” rather than “heat”)

W - any other kind of energy transfer across

boundary - work

Heating/cooling processes:

conduction: the energy transfer by molecular contact – fast-moving

molecules transfer energy to slow-moving molecules by collisions;

convection: by macroscopic motion of gas or liquid

radiation: by emission/absorption of electromagnetic radiation.

HEATING

WORK

Work and Heating are both defined to describe energy transfer

across a system boundary.



The First Law

For a cyclic process (Ui = Uf)  Q = - W.

If, in addition, Q = 0  then W = 0

The first law of thermodynamics: the internal energy of a system can be

changed by doing work on it or by heating/cooling it.

U = Q + W conservation of energy.

P

V 
T

An equivalent formulation:

Perpetual motion machines of the first type do not exist.

Sign convention: we consider Q and W to be positive if energy 

flows into the system.



Quasi-Static Processes
Quasi-static (quasi-equilibrium) processes – sufficiently

slow processes, any intermediate state can be considered

as an equilibrium state (the macroparamers are well-

defined for all intermediate states).

Examples of quasi-

equilibrium processes:

isochoric: V = const

isobaric: P = const

isothermal: T = const

adiabatic: Q = 0

For quasi-equilibrium processes, P, V, T are

well-defined – the “path” between two states

is a continuous lines in the P, V, T space.
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Advantage: the state of a system that participates in a quasi-equilibrium

process can be described with the same (small) number of macro

parameters as for a system in equilibrium (e.g., for an ideal gas in quasi-

equilibrium processes, this could be T and P). By contrast, for non-

equilibrium processes (e.g. turbulent flow of gas), we need a huge number

of macro parameters.



Work

The sign: if the volume is decreased, W is positive (by

compressing gas, we increase its internal energy); if the

volume is increased, W is negative (the gas decreases

its internal energy by doing some work on the

environment).
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The work done by an external force on a gas 

enclosed within a cylinder fitted with a piston:

W = (PA) dx = P (Adx) = - PdV

x

P

W = - PdV - applies to any 

shape of system boundary

The work is not necessarily associated with the volume changes – e.g.,

in the Joule’s experiments on determining the “mechanical equivalent of

heat”, the system (water) was heated by stirring.

dU = Q – PdV 

A – the 

piston 

area

force



W and Q are not State Functions
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- the work is negative for the “clockwise” cycle; if

the cyclic process were carried out in the reverse

order (counterclockwise), the net work done on

the gas would be positive.
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- we can bring the system from state 1 to

state 2 along infinite # of paths, and for each

path P(T,V) will be different.

U is a state function,  W - is not  

thus, Q is not a state function either.
U = Q + W

Since the work done on a system depends not

only on the initial and final states, but also on the

intermediate states, it is not a state function.
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the difference between the values of some (state) function 

z(x,y) at these points:

Comment on State Functions
U, P, T, and V are the state functions, Q and W are not. Specifying an initial and final

states of a system does not fix the values of Q and W, we need to know the whole

process (the intermediate states). Analogy: in classical mechanics, if a force is not

conservative (e.g., friction), the initial and final positions do not determine the work, the

entire path must be specified.
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A necessary and sufficient condition for this:

If this condition

holds:
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 - cross derivatives
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S- an exact differential

In math terms, Q and W are not exact differentials of some functions

of macroparameters. To emphasize that W and Q are NOT the state

functions, we will use sometimes the curled symbols  (instead of d)

for their increments (Q and W).



Problem

Imagine that an ideal monatomic gas is taken from its initial state A to state

B by an isothermal process, from B to C by an isobaric process, and from

C back to its initial state A by an isochoric process. Fill in the signs of Q,

W, and U for each step.

V, m3

P, 

105 Pa
A

B

C

Step Q W U

A → B

B → C

C → A

2
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1 2
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-- + --
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Quasistatic Processes in an Ideal Gas

isochoric ( V = const )

isobaric  (  P = const )
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(see the last slide)



Isothermal Process in an Ideal Gas
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Wi-f > 0 if Vi >Vf (compression) 

Wi-f < 0 if Vi <Vf (expansion)

isothermal ( T = const ) :
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Adiabatic Process in an Ideal Gas
adiabatic (thermally isolated system)

PdVdTNk
f

dUTNk
f

U BB −===
22

( f – the # of “unfrozen” degrees of freedom )

dTNkVdPPdVTNkPV BB =+= PVPdV
f

VdPPdV −=+
2

fP

dP

fV

dV 2
1,0

2
1 +==+








+  

constVPPV
P

P

V

V
==








=







 



11
1

1

lnln

The amount of work needed to change the state of a thermally isolated system 

depends only on the initial and final states and not on the intermediate states.
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to calculate W1-2 , we need to know P (V,T)

for an adiabatic process
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Adiabatic Process in an Ideal Gas 
(cont.)
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(again, neglecting the vibrational degrees of freedom)
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An adiabata is “steeper” than an isotherma:

in an adiabatic process, the work flowing

out of the gas comes at the expense of its

thermal energy  its temperature will

decrease.
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Summary of quasi-static processes 
of ideal gases

Quasi-Static 

process
U Q W

Ideal gas 

law

isobaric  

(P=0)

isochoric  

(V=0)
0

isothermal  

(T=0)
0

adiabatic  

(Q=0)
0
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Problem
Imagine that we rapidly compress a sample of air whose initial pressure is

105 Pa and temperature is 220C (= 295 K) to a volume that is a quarter of

its original volume (e.g., pumping bike’s tire). What is its final temperature?


2211

222

111

VPVP

TNkVP

TNkVP

B

B

=

=

=

1

2

1

2

1
2

1

11
21

2

11

2

11
2

T

T

V

V
T

T

VP
TNk

V

VP

V

VP
P B =








===

−

−











constVTVT ==
−− 1

22

1

11



KKK
V

V
TT 51474.12954295 4.0

1

2

1
12 =








=

−

For adiabatic processes:

Rapid compression – approx. adiabatic, no time for the energy 

exchange with the environment due to thermal conductivity

constTP =−  /1also

- poor approx. for a bike pump, works better for diesel engines



Non-equilibrium Adiabatic 
Processes

- applies only to quasi-equilibrium processes !!! constTV =−1

2. On the other hand, U = Q + W = 0

U  ~  T     T – unchanged 

(agrees with experimental finding)

Contradiction – because approach

#1 cannot be justified – violent

expansion of gas is not a quasi-

static process. T must remain the

same.

constTV =−1
1. V – increases

 T – decreases (cooling)

Free expansion



The Enthalpy
Isobaric processes (P = const):

dU = Q - PV = Q -(PV)    Q =  U  + (PV)

The enthalpy is a state function, because U, P,

and V are state functions. In isobaric processes,

the energy received by a system by heating equals

to the change in enthalpy.

Q =  H

isochoric:

isobaric:

in both cases, Q

does not

depend on the

path from 1 to 2.

Consequence: the energy released (absorbed) in chemical reactions at constant 

volume (pressure) depends only on the initial and final states of a system.

H  U  + PV   - the enthalpy

The enthalpy of an ideal gas:

(depends on T only) 
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Heat Capacity

T

Q
C



The heat capacity of a system - the amount of energy

transfer due to heating required to produce a unit

temperature rise in that system

C is NOT a state function (since Q is not a 

state function) – it depends on the path 

between two states of a system        

T

V

T1

T1+dT

i

f1 f2 f3

The specific heat capacity
m

C
c 

( isothermic  – C = ,  adiabatic – C = 0 )



CV and CP
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Another Problem
During the ascent of a meteorological helium-gas filled balloon,

its volume increases from Vi = 1 m3 to Vf = 1.8 m3, and the

pressure inside the balloon decreases from 1 bar (=105 N/m2) to

0.5 bar. Assume that the pressure changes linearly with volume

between Vi and Vf.

(a) If the initial T is 300K, what is the final T?

(b) How much work is done by the gas in the balloon?

(c) How much “heat” does the gas absorb, if any?
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Worksheet time!

Download Worksheet 3 from the Moodle 

page and work on it.


