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Material covered in Lecture 3

« Heat: heat capacity, basics of heat transfer mechanisms
* First law: internal energy, enthalpy, specific heats, heat capacity.
» Applications of first law to ideal gases



Internal Energy

The internal energy of a system of particles, U, is the sum of the kinetic
energy in the reference frame in which the center of mass is at rest and the
potential energy arising from the forces of the particles on each other.

system Difference between the total energy and the internal energy?
boundary.

U = kinetic + potential

“environment”

B The internal energy is a state function — it depends only on
P [ @ the values of macroparameters (the state of a system), not
. on the method of preparation of this state (the “path” in the

T / JA\\) \% macroparameter space is irrelevant).

In equilibrium [f(PV,T)=0]: U=U(V,T)

U depends on the kinetic energy of particles in a system and an average
inter-particle distance (~ V-1/3) — interactions.

For an ideal gas (no interactions) : U = U (T) - “pure” Kinetic



Internal Energy of an Ideal Gas

The internal energy of an ideal gas U = f Nk T
with f degrees of freedom: B

f = 3 (monatomic), 5 (diatomic), 6 (polyatomic)

(here we consider only trans.+rotat. degrees of freedom, and neglect
the vibrational ones that can be excited at very high temperatures)

How does the internal energy of air in this (not-air-tight) room change
with T if the external P = const?

U :i I\IinrookaT :|:Ninroom ::| =—PV
2

- does not change at all, an increase of the kinetic energy of individual
molecules with T is compensated by a decrease of their number.



Work and Heating ("Heat")

We are often interested in AU , not U. AU is due to:

@ Q - energy flow between a system and its
environment due to AT across a boundary and a finite  HeatinG
thermal conductivity of the boundary #

— heating (Q > 0) /cooling (Q <0)
(there is no such physical quantity as “heat”; to
emphasize this fact, it is better to use the term
“heating” rather than “heat”)

Gl

.

@ W - any other kind of energy transfer across
boundary - work

Work and Heating are both defined to describe energy transfer
across a system boundary.
Heating/cooling processes:

conduction: the energy transfer by molecular contact — fast-moving
molecules transfer energy to slow-moving molecules by collisions;

convection: by macroscopic motion of gas or liquid
radiation: by emission/absorption of electromagnetic radiation.



The First Law

The first law of thermodynamics: the internal energy of a system can be
changed by doing work on it or by heating/cooling it.

AU=Q+ W

conservation of energy.

Sign convention: we consider Q and W to be positive if energy
flows into the system.

P

For a cyclic process (U; = Us) = Q =-W. [
If, in addition, @ =0 then W =0 /\7

ST

An equivalent formulation:

Perpetual motion machines of the first type do not exist.




Quasi-Static Processes

Quasi-static (quasi-equilibrium) processes — sufficiently
slow processes, any intermediate state can be considered
as an equilibrium state (the macroparamers are well-
defined for all intermediate states).

Advantage: the state of a system that participates in a quasi-equilibrium
process can be described with the same (small) number of macro
parameters as for a system in equilibrium (e.g., for an ideal gas in quasi-
equilibrium processes, this could be T and P). By contrast, for non-
equilibrium processes (e.g. turbulent flow of gas), we need a huge number
of macro parameters.

Examples of quasi- For quasi-equilibrium processes, P, V, T are
equ”lbrlum processes well-defined — the “path” between two states
Is a continuous lines in the P, V, T space.

isochoric: V =const 5
isobaric: P = const [ (\O
isothermal: T =const >

adiabatic:. Q=0 1

© © © ¢




Work

The work done by an external force on a gas

A —the  enclosed within a cylinder fitted with a piston:
piston

area W = (PA) dx = P (Adx) = - PdV
—
force
‘A_X’ The sign: if the volume is decreased, W is positive (by
compressing gas, we increase its internal energy); if the
g T T volume is increased, W is negative (the gas decreases
/ N\ |its internal energy by doing some work on the
[ \ [ environment).
\ /
\ V,
N W, , == “P(T,V)dV
W = - PdV - applies to any 1
shape of system boundary dU = Q - PdV

The work is not necessarily associated with the volume changes — e.g.,
in the Joule’s experiments on determining the “mechanical equivalent of
heat”, the system (water) was heated by stirring.



W and Q are not State Functions

V, - we can bring the system from state 1 to
W1—2 = _Ll P(T ,V)dV state 2 along infinite # of paths, and for each
path P(T,V) will be different.

P
2
[ (7& Since the work done on a system depends not
> only on the initial and final states, but also on the
TSV iIntermediate states, itis not a state function.
-
AU=Q +W U is a state function, W -Isnot =
thus, Q is not a state function either.
PA
A _ _
P, [ > D Wnet _WAB "‘WCD - _Pz (Vz _Vl)_ Pl (V1 _Vz)
o i (P, RV, V,)<0
Py 77D e
| - the work is negative for the “clockwise” cycle; if

5 5 > the cyclic process were carried out in the reverse
V, V, V order (counterclockwise), the net work done on

PV diagram the gas would be positive.



Comment on State Functions

U, P, T, and V are the state functions, Q and W are not. Specifying an initial and final
states of a system does not fix the values of Q and W, we need to know the whole
process (the intermediate states). Analogy: in classical mechanics, if a force is not
conservative (e.g., friction), the initial and final positions do not determine the work, the
entire path must be specified.

In math terms, Q and W are not exact differentials of some functions
of macroparameters. To emphasize that W and Q are NOT the state
functions, we will use sometimes the curled symbols & (instead of d)
for their increments (6Q and dW).

V
du=TdS-PdV - an exact differential S
y | oz(Xuy1) dz=A (x,y)dx+A (x,y)dy -itis an exact differential if it is
T 2(%,.Y) the difference between the values of some (state) function
———o X2 Y2 z(x,y) at these points: dz=z(x+dx,y+dy)—z(x,y)
” oA (x,y) OA,(x,
X A necessary and sufficient condition for this: A‘(gy y) = Ay(gx y)
If this condition oz(x, y) oz(x,y) oz oz
X, y)=——" X,y)=—— dz=|—| dx+|— | d
s AGy)= T G y)= AEREIE

e.g., for anideal gas: d&Q=dU +PdV = NkB(g dT +\T7de - CrOsS d?rivati\lles
are not equa



Problem

Imagine that an ideal monatomic gas is taken from its initial state A to state
B by an isothermal process, from B to C by an isobaric process, and from
C back to its initial state A by an isochoric process. Fill in the signs of Q,

W, and AU for each step.

P’ A
10° Pa Step Q W AU
2
A—>B + -- 0
B—o>C . + -
1
C—o>A + 0 +




Quasistatic Processes in an Ideal Gas

o1 @ isochoric (V =const )
2 Wi, =0
N 3
I - PV=NKkgT, Q.,, =—Nk(T,-T,)>0 (=C,AT)
1T PV= NKgT, 2
| > (see the last slide)
Vi V dU = Q1_>2
. @ isobaric ( P =const)
P 2
W,_, =[PV, T)dV =—P(V,-V,)<0
— ]
1: | PV= NkgT, 5
T PV= NkgT, Q.= E (Tz _Tl) >0 (: CPAT)

Vi Va \
du = W1—>2 T Q1—>2



Isothermal Process in an Ideal Gas

P \\ @ isothermal (T =const):

W PV= NK.T

\ ; du =0

w7

v, Vv, v Wi,= jP(\/ T)dV_—NkTI———NkTI V_l

W . = NK.T Ini Qe =W
— B
f

W,>0if V,>V; (compression)
W< 0if V,<V; (expansion)



Adiabatic Process in an Ideal Gas

@ adiabatic (thermally isolated system) Q,,=0 dU=W_,

The amount of work needed to change the state of a thermally isolated system
depends only on the initial and final states and not on the intermediate states.

. W,_, :—IP(\/,T)dV
\ :

to calculate W,_, , we need to know P (V,T)
for an adiabatic process

T PV= NKgT,

1 PV=NkgT, U =£NkBT = du =£NdeT = —PdV
Va vy V (f — the#of © en” degrees of freedom )

PV =NK,T = POV VAP = Nk,T PV +VdP=—2pdv |+ PV

. . \ P
d—V(1+2j+d—P=o ‘ .[ 7/_1+g Adiabatic d_V+ d_P:0

Y
f exponent sV ;P

v
In(v] :In(ﬂj =| PV” =RV, =const




Adiabatic Process in an Ideal Gas
(cont.)

Pl PV7 =PRV,” =const

An adiabata is “steeper”’ than an isotherma:

T PV= Nk, T, in an adiabatic process, the work flowing
PV= NKkgT, out of the gas comes at the expense of its
> thermal energy = its temperature will
\ decrease.
V.
PV/ 1 2
W, = jP(v T)dV ——j LdV =—PV/ v
-y +1 v

=PV/ . ( ];:—1_ }1}
y—1 V2 V1

Y = 1+2/3~1.67 (monatomic), 1+2/5 =1.4 (diatomic), 1+2/6 ~1.33 (polyatomic)
(again, neglecting the vibrational degrees of freedom)

Prove W_, =%A(PV):%NkBAT =AU



Summary of quasi-static processes
of ideal gases

AU =U, -U,

I-Stati |deal
Quasi-Static AU 0 W deal gas
process law
@ isobaric AU:iNkBATZLPAV f+20v 1 _pav | Vi_Vr
(AP=0) 2 2 T T,

: : A
?A'\jog)‘or'c AU :%NKBAT :%(AP)V %(AP)V 0 =
— i f
' Vv
@ isothermal 0 W Nk T I PV =PV,
(AT=0) i
9 adiabatic |, :%NKBAT :%A(Pv) 0 AU RV =PV{

(Q=0)




Problem

Imagine that we rapidly compress a sample of air whose initial pressure is
10° Pa and temperature is 22°C (= 295 K) to a volume that is a quarter of
its original volume (e.g., pumping bike’s tire). What is its final temperature?

Rapid compression — approx. adiabatic, no time for the energy
exchange with the environment due to thermal conductivity

N

P1V1 =N kBTl
PV, =Nk;T, > P,
RV =RV/

y—1

BB P o (W)E
— B

VZJ/ VZy ' Tl V2 Tl

For adiabatic processes: T1 V17 1 T2 V27 1 const

also  P”'/T7” =const

y—1
T,=T, [\%J = 295K x 4% ~ 295K x1.74 ~514K
2
- poor approx. for a bike pump, works better for diesel engines



Non-equilibrium Adiabatic
Processes

Free expansion

s i i i e e DD DD y—1
e —
e = —
B L L L Y ) L[]

e A

> i — T — decreases (cooling

U~T = T-unchanged

2. Onthe otherhand, AU=Q+W=0
(agrees with experimental finding)

Contradiction — because approach
#1 cannot be justified — violent
expansion of gas is not a quasi-
static process. T must remain the
same.

V7= const - applies only to quasi-equilibrium processes



The Enthalpy

Isobaric processes (P = const):

dU=Q-PAV=Q-APV) = Q=AU +A(PV) Enthalpy, £
&
= H=U + PV - theenthalpy g Internal
= energy, U
The enthalpy is a state function, because U, P, E
. . . =1
and V are state functions. In isobaric processes, =
the energy received by a system by heating equals ¢
to the change in enthalpy. _ H
_ _ in both cases, Q E
isochoric: |Q=AU > does not
: . B depend on the
isobaric: Q=AH ] oath from 1 to 2. e —

Consequence: the energy released (absorbed) in chemical reactions at constant
volume (pressure) depends only on the initial and final states of a system.

The enthalpy of an ideal gas: H =U + PV = r Nk T + NkgT = (i+1JNkBT
(depends on T only) 2 2



Heat Capacity

The heat capacity of a system - the amount of energy Fe)
transfer due to heating required to produce a unit C=—

temperature rise in that system AT
T1
f, f, 13
C is NOT a state function (since Q is not a Ty+dT| ———---9-—— S
state function) — it depends on the path \;[/
between two states of a system = LT i

(isothermic — C =00, adiabatic— C=0)

C
The specific heat capacity C=—
m

v



nst e :(8_Uj the heat capacity at
ol )y | constant volume

C_éQ_dU+PdV

Enthalpy and internal energy

dT dT 2% op
\ C _(5Hj the heat capacity at
o=
Z P

oT constant pressure

C
/5
// To find Cp, and C,,, we need f (P,V,T)=0and U =U (V,T)

f
For an ideal gas U :iNkBT H :(—+1j Nk T
H//y 2 2
f f f
C, =—Nk, =—nR C., =| —+1|nR
o2 P 2 i (2 j
|
# of moles
Temperature, T For one mole of a C :ER C :§R
monatomic ideal gas: Vo .




Another Problem

During the ascent of a meteorological helium-gas filled balloon,
its volume increases from V, = 1 m3 to V; = 1.8 m3, and the
pressure inside the balloon decreases from 1 bar (=10°> N/m?) to
0.5 bar. Assume that the pressure changes linearly with volume
between V; and V;. ; |
(@) If the initial T is 300K, what is the final T? ' ' >
(b) How much work is done by the gas in the balloon? V, Vi V

(c) How much “heat” does the gas absorb, if any? 3
P(V)=-0.625bar/m®xV +1.625bar

P.V 3
(a) PV = Nk, T T PV T, =T ™Vt _ a0k O.5bar><1.8£n _ 270K
Nk, PV 1barx1m

Vs

Vi
(b) oWg, =—[P(V)dV - work done on a system &W,, = [P(v)dv - work done by a system
Vi vV,

Vi
MWy, =— Wy, | W, = jP(\/)dV = (O.5><0.8bar-m3 +O.5><O.4bar-m3)= 0.6bar-m® =6-10"J
V.

(c) AU =&+,
3 3 Tf 5 4 4
Q=AU — W, :ENkB(Tf T, )-W,, =5F%Vi ?—1 + Wy, =1.5-10°Ix(-0.1)+6-10*J=4.5-10*J



Worksheet timel

Download Worksheet 3 from the Moodle
page and work on it.



