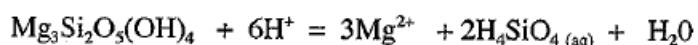


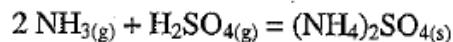
ENV-413: Thermodynamics of the Earth systems


Exercise session for Lecture 7

1. Calcite (CaCO_3) is in equilibrium with water in which the carbonate ion activity is 10^{-5} . What is the activity of calcium ions Ca^{2+} in the water? K_{sp} of calcite is $10^{-8.3}$.

2. Using the thermodynamic data sheets calculate the solubility product of brucite, Mg(OH)_2 at 25°C, 1 bar. What would be the activity of divalent magnesium Mg^{2+} in a solution in equilibrium with brucite that had an activity of $\text{OH}^- = 10^{-9}$.

3. Asbestos minerals are considered to be a health hazard. The most common type of asbestos is chrysotile, and this mineral comprises about 95% of the asbestos in the US. Small asbestos fibers can be taken into the lung, where they can damage its lining. This problem deals with the solubility of asbestos in the lung.


The dissolution reaction for chrysotile can be written:

a) Calculate the equilibrium constant for this reaction at $T=37$, the average temperature of the human body. K_{eq} at $25\text{ C} = 7.11 \times 10^{-33}$.

b) For fluid in the lung tissues $\text{pH} = 4$ and activity of $\text{Mg}^{2+} = 8.7 \times 10^{-4}$, and activity of $\text{H}_4\text{SiO}_4 = 1.5 \times 10^{-6}$. Are the lung fluids under or oversaturated with respect to chrysotile?

3. 1 mol of $\text{NH}_3\text{(g)}$ is placed in a container with 1 mol of $\text{H}_2\text{SO}_4\text{(g)}$ to form $(\text{NH}_4)_2\text{SO}_4\text{(s)}$, according to the following reaction:

Calculate the amount of NH_3 , H_2SO_4 and $(\text{NH}_4)_2\text{SO}_4$ you have at equilibrium. The equilibrium constant $K_{\text{eq}} = 1.406 \times 10^{-10}$. You might need to consult an equation solver to obtain you solution (e.g., <http://home.sc.rr.com/nbhsa/freeonlinealgebraicequationsolver.htm>).

Name and formula	Formula Weight	Entropy	Holar	$\Delta H^\circ_{f,298}$	$\Delta G^\circ_{f,298}$	$\log K_f$	References
	g	S°_{298} J/°C/K	Volume cm ³	J/mol	J/mol		

ELEMENTS		ELEMENTS		ELEMENTS		ELEMENTS	
SILVER (REFERENCE STATE)	107.865	0.251	10.272	0	0	0.107	107
Ag	107.865	0.002					
Ag ⁺ AQUEOUS ION	107.865	72.38	105.550	770777	-13.504	35	
STD. STATE, $n = 1$	0.40		85	100	0.019		
ALUMINUM (REFERENCE STATE)	26.982	28.35	9.999	0	0	0.107	107
Al	26.982	0.08	0.001				
Al ³⁺ AQUEOUS ION	26.982	308.00	-531060	-689406	65.761	94	
STD. STATE, $n = 1$	15.00		4000	1400	0.245		
ARGON (REFERENCE STATE)	39.968	154.84	24789.2	0	0	0.107	107
Ar (IDEAL GAS)	0.02	3.4					
BORON (REFERENCE STATE)	10.810	5.90	4.386	0	0	0.107	107
B	0.08	0.007					
BARIUM (REFERENCE STATE)	74.922	35.69	12.963	0	0	0.107	107
As	0.84	0.015					
GOLD (REFERENCE STATE)	196.966	47.49	10.215	0	0	0.107	107
Au	0.21	0.002					
Ba ²⁺ AQUEOUS ION	137.360	9.64	-537640	-560740	98.240	214	
STD. STATE, $n = 1$	0.85		120	120	0.021		
BERYLLIUM (REFERENCE STATE)	9.012	9.54	4.980	0	0	0.107	107
Be	0.08	0.002					
Be ²⁺ AQUEOUS ION	9.012	130.04	-383000	-379700	66.522	214	
STD. STATE, $n = 1$	0.85		850	850	0.149		
BISMUTH (REFERENCE STATE)	208.980	56.79	21.309	0	0	0.107	76
Bi	0.42	0.011					
Bi ³⁺ AQUEOUS ION	208.980		82800	-14.506	262		
STD. STATE, $n = 1$			850	0.149			
BROMINE (REFERENCE STATE)	159.808	152.32	54.58	0	0	0.107	107
Br ₂ (LIQUID)	0.04	0.20					
BROMINE (IDEAL GAS)	159.808	245.46	24789.2	309.10	-0.560	35	
Br ₂	0.05	3.4	200	300	0.053		
Sr ²⁺ AQUEOUS ION	79.904	82.88	-121500	-104040	18.222	35	
STD. STATE, $n = 1$	0.20		170	170	0.030		
CARBON (REFERENCE STATE)	12.011	5.74	5.298	0	0	0.107	107
C	0.01	0.001					
DIAMOND	12.011	2.38	3.417	1895	2900	-0.508	107
C	0.01	0.001	42	64	0.015		
CALCIUM (REFERENCE STATE)	40.080	91.43	26.19	0	0	0.107	107
Ca	0.12	0.04					
Ca ²⁺ AQUEOUS ION	40.080	53.10	-552830	-553540	96.978	214	
STD. STATE, $n = 1$	2.00		1200	1200	0.021		
CERIUM (REFERENCE STATE)	112.400	51.80	13.005	0	0	0.107	107
Cd	0.17	0.003					
Cd ²⁺ AQUEOUS ION	112.400	23.20	-75940	-77580	13.592	262	
STD. STATE, $n = 1$	5.00		120	120	0.021		
Ce ³⁺⁺⁺ AQUEOUS ION	140.120	69.46	20.77	0	0	0.107	107
STD. STATE, $n = 1$	8.37	0.02					
CHLORINE (REFERENCE STATE)	70.906	223.08	24789.2	0	0	0.107	107
Cl ₂ (IDEAL GAS)	0.04	3.4					
Cl ⁻ AQUEOUS ION	35.453	56.73	-167680	-131270	22.599	35	
STD. STATE, $n = 1$	0.16		68	110	0.019		
CEMBRUM (REFERENCE STATE)	140.120	301.50	-5577200	-503600	88.264	262	
Hg	5.00						
HELIUM (REFERENCE STATE)	4.003	126.15	24789.2	0	0	0.107	107
He (IDEAL GAS)	0.01	3.4					
HYDROGEN (REFERENCE STATE)	200.590	43.56	13.479	0	0	0.107	107
H ₂ (IDEAL GAS)	0.00	3.4					
HAFNIOUM (REFERENCE STATE)	178.490	0.21	0.010				
He ⁺ AQUEOUS ION	1.008						
HELIUM (REFERENCE STATE)	200.590	75.90	14.822	0	0	0.107	107
Hg (LIQUID)	0.08	0.002					
Hg ²⁺ AQUEOUS ION	200.590	-32.60	171000	164400	-28.802	263	
STD. STATE, $n = 1$	0.85						
Hg ²⁺ AQUEOUS ION	401.180	88.56	172060	155600	-26.510	263	
STD. STATE, $n = 1$	0.05						

Name and formula	Formula weight	Entropy	Molar volume	Heat of	Heat of	log K_f	References
	g	S_{298}	V_{298}	ΔH_f^0	ΔH_f^0	$\log K_f$	
		J/mole K	cm^3	J/mole	J/mole K	ΔH_f^0	ΔH_f^0
ELEMENTS							
HOLMIUM (REFERENCE STATE)	165.930	75.02	18.74	0	0	0.107	107
Ho		1.67	0.01				
IODINE (REFERENCE STATE)	253.809	116.15	51.29	0	0	0.107	107
I ₂		0.08	0.06				
IRON, Fe	52.009	260.68	24779.2	62420	19329	-3.386	32 107
I ₂ (IDEAL GAS)		0.06	3.4	80	80	0.001	
I ⁻				-56900	-51915	9.086	35 35
STD. STATE, $\alpha = 1$	126.905	106.70	0.20	860	860	0.151	
INDIUM (REFERENCE STATE)	114.820	57.84	15.753	0	0	0.107	107
In		0.84	0.003				
IRIDIUM (REFERENCE STATE)	192.220	35.48	8.519	0	0	0.107	107
Ir		0.17	0.005				
POTASSIUM (REFERENCE STATE)	39.098	64.68	45.36	0	0	0.107	107
K ⁺		0.20	0.09				
STD. STATE, $\alpha = 1$	39.098	101.04	0.25	-262170	-282490	49.492	35 35
KRYPTON (REFERENCE STATE)	83.800	164.08	24789.2	100	120	0.021	
Kr		0.02	0.017				
LANTHANUM (REFERENCE STATE)	138.906	56.90	22.47	0	0	0.107	107
La		2.51	0.01				
LITHIUM (REFERENCE STATE)	6.940	29.12	13.017	0	0	0.107	107
Li		0.02	0.007				
Li ⁺				-276455	-292620	51.267	35 35
STD. STATE, $\alpha = 1$	6.901	11.30	0.35	90	110	0.019	
LUTETIUM (REFERENCE STATE)	174.370	50.96	17.77	0	0	0.107	107
Lu		0.84	0.01				
MAGNESIUM (REFERENCE STATE)	24.305	32.68	13.996	0	0	0.107	107
Mg		0.13	0.007				
Mg ²⁺				-465850	-454860	79.679	214 214
STD. STATE, $\alpha = 1$	24.305	148.00	6.20	840	1610	0.149	
MANGANESE (REFERENCE STATE)	54.930	32.01	7.354	0	0	0.107	107
Mn		0.08	0.007				
Mn ²⁺				-220760	-228000	39.945	263 263
STD. STATE, $\alpha = 1$	54.930	73.00	0.55	120	850	0.119	
MOLYBDENUM (REFERENCE STATE)	95.940	28.66	9.387	0	0	0.107	107
Mo		0.21	0.005				
NITROGEN (REFERENCE STATE)	28.013	191.61	24789.2	0	0	0.107	107
N ₂ (IDEAL GAS)		0.02	3.4				
SODIUM (REFERENCE STATE)	22.990	51.30	21.612	0	0	0.107	107
Na		0.02	0.010				
Na ⁺				-240300	-261900	45.884	35 35
STD. STATE, $\alpha = 1$	22.990	58.41	0.20	65	85	0.015	
NICKEL (REFERENCE STATE)	92.906	36.40	10.928	0	0	0.107	107
Ni		0.42	0.005				
NONO (REFERENCE STATE)	146.240	71.09	20.57	0	0	0.107	107
No		4.18	0.01				
NONO (REFERENCE STATE)	26.179	146.32	24789.2	0	0	0.107	107
No		0.02	3.4				
NICKEL (REFERENCE STATE)	58.700	29.87	6.588	0	0	0.107	107
Ni		0.06	0.003				
Ni ²⁺				-54600	-45600	7.999	263 263
STD. STATE, $\alpha = 1$	58.700	129.00	0.85	850	850	0.119	
OXGEN (REFERENCE STATE)	31.999	205.15	24789.2	0	0	0.35	107
O ₂		0.04	3.4				
OSMOTON (REFERENCE STATE)	190.200	32.44	9.423	0	0	0.107	107
Os		0.06	0.005				
PHOSPHORUS (REFERENCE STATE)	30.974	22.85	7.7.2	0	0	0.107	107
P		0.08	0.003				

PROPERTIES AT 298.15 K.

Name and formula

Formula Entropy $\Delta H_f^0, 298$ $\Delta C_p^0, 298$ Log K_f References
weight g S_{298} J/mol $J/mol \cdot K$ C_p^0 A_f^0 A_f^0 C_p^0

SULFIDES, ARSENIDES, TELLURIDES, SULFIDES, AND SULFOSALTS

PROPERTIES AT 298.15 K									
Name and formula	Formula weight	Entropy S_{298}	Volume J/mol	Heat capacity C_p^0	Molar volume J/mol	Standard enthalpy of formation $A_f^0, 298$	Standard free energy of formation $A_f^0, 298$	Log K_f	References
OXIDES AND HYDROXIDES									
CERIUM MONOXIDE									
CERIUM MONOXIDE	Ce_2O	101.962	50.92	25.575	-1675700	-1582220	277.201	50.35285	-308360
ALUMINUM OXIDE (GAMMA)	Al_2O_3	101.962	59.83	0.10	0.007	1300	1320	0.331	66.159
ALUMINUM OXIDE	Al_2O_3	101.962	59.83	6.28	-165517	-1562702	273.780	32.32	12.22
BORONITE	BeO	59.989	48.45	19.535	-992056	-918400	160.900	120.94	115
ALUMINUM	$Al(OH)_3$	107.841	51.118	0.21	0.026	2110	2030	0.366	216
DISPORSE	$Al(OH)_3$	107.841	51.118	0.13	0.069	-1000585	-922000	161.520	120.94
GIBBSITE	$Al(OH)_3$	107.841	51.118	0.17	0.026	5000	5080	0.513	135.216
ANPSORLINE	As_2O_3	197.841	51.118	0.14	0.015	-1283128	-1154889	202.333	95.93
CLAUDETITE	As_2O_3	197.841	51.118	0.13	0.069	-656370	-575964	100.907	29.262
HERCYNITE	Fe_2O_3	197.841	51.118	0.13	0.03	1674	1883	0.330	8.50
HERCYNITE	Fe_2O_3	197.841	51.118	0.13	0.03	1715	1046	0.183	48.29
BORIC OXIDE	B_2O_3	69.618	53.97	27.22	-1273500	-1193225	208.242	35.247	0.03
BALMUS OXIDE	BaO	153.339	72.07	0.06	1400	1715	0.300	262	12.04
BROMELITE	BeO	25.012	13.77	25.59	0.01	-549100	-526394	91.171	33.33
BERYLLIUM OXIDE (BERTA)	BeO	25.012	16.54	0.04	0.03	2500	2500	0.438	26.1
BISMITE	Bi_2O_3	465.959	151.46	49.73	-601785	-573239	100.438	32.32	33.33
CARBON MONOXIDE (BETA)	CO	28.010	197.67	0.06	0.03	-609400	-560076	101.626	215.32
CARBON DIOXIDE (IDAL GAS)	CO_2	44.010	213.79	247.89	2.2	-393510	-393475	69.093	215.247
CO_3^{2-} AQUEOUS ION	CaO	60.009	-56.90	-677140	-527900	92.486	262.262	161	12.20
CO_3^{2-} AQUEOUS ION	CaO	61.017	91.20	0.03	3.4	-110530	-1137171	24.032	215.247
CO_3^{2-} UN-IONIZED	$Ca(OH)_2$	74.095	83.39	0.85	120	-69190	-586850	102.814	262.262
CO_3^{2-} UN-IONIZED	$Ca(OH)_2$	62.025	187.00	0.42	0.016	1255	1164	0.256	115
MONTEPOREITE	CaO	56.079	38.21	16.764	0.005	120	120	0.021	26.2
CELIANITE	CaO	172.119	62.30	23.653	-696085	-698008	157.338	32.32	32
CERIUM SESQUIOXIDE (HEXAGONAL, α)	Ce_2O_3	328.238	150.62	47.75	-179200	-1707900	209.225	113.235	202
CERIUM SESQUIOXIDE (HEXAGONAL, β)	Ce_2O_3	328.238	14.18	0.05	8400	8400	1.472	105	12.22
CORALLOUS OXIDE	CoO	74.933	52.97	11.64	-237980	-214194	37.526	120.263	129
ESKOLITE	Cr_2O_3	151.990	81.17	29.09	0.032	-134700	-1053056	184.452	33.33
MONTHORITE	K_2O	216.589	58.9	0.02	1255	1297	0.237	114.190	113.119
MONTHORITE	K_2O	216.589	58.9	0.02	1255	1297	0.237	114.190	113.119
POTASSIUM SUPEROXIDE	KO_2	71.097	122.50	32.86	-285512	-205856	92.150	32.32	32
POTASSIUM HYDROXIDE	KOH	56.105	78.91	0.84	0.02	424676	-378392	66.388	32.32
POTASSIUM HYDROXIDE	KOH	56.105	78.91	0.84	0.02	424676	-378392	66.388	32.32

S ΔG_f° CP

PROPERTIES AT 298.15 K

Formula	Atomic weight	Molar weight	Molar volume	S ₂₉₈	S ₂₉₈	S ₂₉₈	S ₂₉₈
	g	g	cm ³	J/K ²	J/K ²	J/K ²	J/K ²
OXIDES AND HYDROXIDES							
223.199	68.70	23.15					
	0.21	0.03					
239.199	71.80	25.01					
	0.42	0.01					
6866.598	211.96	76.81					
	6.69	0.09					
3299.814	158.57	66.53					
	8.20	0.05					
170.235	79.91	24.6					
	9.20	0.2					
218.206	47.82	18.80					
	0.05	0.01					
2239.205	69.24	31.78					
	0.09	0.01					
984.410	207.30	77.95					
	0.40	0.09					
64.059	248.22	24789.2					
	0.06	3.4					
80.050	256.76	24789.2					
	0.84	3.4					
86.058	-29.00						
	4.20						
96.058	26.06						
	0.85						
291.496	123.01	50.01					
	2.51	0.05					
137.910	76.99	35.91					
	4.20	0.01					
44.085	211.57	24789.2					
	0.84	3.4					
60.085	43.46	22.588					
	0.20	0.001					
96.115	180.00						
	4.20						
60.085	43.40	25.739					
	0.13	0.033					
60.085	42.93	26.53					
	0.42	0.20					
60.085	40.38	20.641					
	0.21	0.10					
60.085	27.78	14.014					
	0.42	0.009					
60.085	47.00	27.27					
	0.21	0.10					
1348.798	151.04	45.04					
	8.20	0.02					
348.798	49.19						
	0.01						
150.689	52.30	21.55					
	1.25	0.03					
103.619	55.42	20.686					
	0.42	0.005					
141.893	193.13	53.17					
	1.26	0.05					

Name and formula	Formula weight	Entropy of dissolution	dollar volume	ΔH_{298}^0	ΔG_{298}^0	$\log K_f$	References
	g	J/mol	cm ³	J/mol	J/mol	S	A _H A _G A _P
HALIDES							
SYNTITE KCl	79.561	82.59	37.524	-436670	-408554	71.577 215 247	
CHLOROMAGNETITE MgCl ₂	95.211	89.62	40.81	-641320	-591785	103.679 120 214 169	
SCACCHETTE MnCl ₂	125.894	178.24	42.17	-461290	-440498	77.172 34 214 169	
SALMOMONIAC NH ₄ Cl	53.491	95.02	35.06	-315190	-203776	35.701 215 247	
HALITE NaCl	58.443	72.12	27.015	-411260	-384212	67.313 215 247	
NICKEL CHLORIDE NiCl ₂	129.606	97.66	36.7	-305330	-259030	45.381 263 40	
CORUNNITE PbCl ₂	275.106	135.98	47.09	-359400	-314033	55.018 120 247 115	
TITANIUM TRICHLORIDE TiCl ₃	154.259	139.75	57.3	-721780	-654507	114.667 247 247 141	
URANIUM TRICHLORIDE UCl ₃	344.388	150.95	62.04	-891190	-623830	144.320 70 8 70	
URANIUM TETRACHLORIDE UCl ₄	379.841	196.50	77.6	-1018330	-928850	162.731 70 8 70	
VANADIUM DICHLORIDE VC ₂	121.847	92.07	40.9	-451870	-405681	71.074 120 264 125	
VANADIUM TRICHLORIDE VCl ₃	157.300	130.86	50.43	-560740	-511399	89.595 120 264 125	
ALUMINUM TRIFLUORIDE AlF ₃	83.977	66.48	26.15	-151040	-1431076	250.228 247 51	
PERDORITE CaF ₂	78.077	68.87	24.582	-1229260	-1176320	206.192 120 215 175	
HYDROGEN FLUORIDE HF (IDAL GAS)	20.006	171.78	24.789	-273300	-275400	44.320 35 35 247	
SELENITE MgF ₂	62.302	52.25	19.61	-1124200	-1071644	107.647 247 215 175	
VILLIANITE Na ₂ AlF ₆	41.988	51.30	14.984	-576550	-546319	95.713 215 415 181	
CRYOLITE Na ₃ AlF ₆	209.942	28.45	70.81	-330954	-3144915	550.978 247 247 181	
URANIUM TETRAFLUORIDE UF ₄	314.023	151.67	46.98	-183290	-1762800	306.937 70 23 70	
IODARGYRITE AgI	234.772	115.48	41.301	-61840	-66254	11.607 120 263 115	
COCOINITE RgI ₂	454.399	181.33	71.84	-105637	-102203	17.906 263 261 115	
CARBONATES AND NITRATES							
SILVERITE BaCO ₃	197.349	112.13	45.81	-1210850	-1132210	198.359 120 4 155	
ABAGONITE CaCO ₃	100.089	87.99	34.15	-1207430	-1122793	197.586 263 214 115	
CALCITE CaCO ₃	100.089	91.71	36.93	-1203730	-1122842	197.769 243 214 115	
VATERITE CaCO ₃	100.089	0.20	0.05	-1423	-1454	0.256	
MONOHYDRIC CALCIITE CaCO ₃ ·H ₂ O	184.463	156.18	0.4	-1170	-1130	0.198	
DOLOMITE CaMg(CO ₃) ₂	184.463	0.29	0.03	-2226480	-2161672	378.710 244 225 151	

Name and formula	Formula weight	Entropy of dissolution	dollar volume	ΔH_{298}^0	ΔG_{298}^0	$\log K_f$	References
	g	J/mol	cm ³	J/mol	J/mol	S	A _H A _G A _P
CARBONATES AND NITRATES							
HEMIMORPHITE Ca ₂ (CO ₃) ₂	353.032	299.53	122.58	0.10	-4529600	-4203925	736.426 91 92
GRAYITE CaCO ₃	172.409	92.47	34.3	0.02	-750610	-669440	117.284 120 262
MALACHITE Cu ₂ (CO ₃) ₂ (OH) ₂	221.176		54.96	-1033950			216
AZURITE Cu ₂ (OH) ₂ (CO ₃) ₂	344.671		0.08	-1632180			263
SIDERITE FeCO ₃	115.656	105.0	29.378	0.019	-736985	-666698	116.803 220 263
MAGNETITE Fe ₃ O ₄	84.314	65.09	28.018	0.013	-2092	-6367	0.367
HEUDELITE MgCO ₃ ·3H ₂ O	136.360	105.5	0.59	0.05	-1977260	-1723746	301.994 223 224
HYDROGARNET Mg ₂ SiO ₄ ·2H ₂ O	467.637	503.67	211.1	0.1	-6514860	-5864166	1027.362 223 224
DAWSONITE NaAlCO ₃ (OH) ₂	196.679	322.92	96.43	-2930810	-2568346	449.966 91 92	
CHROSITE Na ₂ (CO ₃) ₂ ·3H ₂ O	267.209	130.96	90.58	0.10	-659550	-625337	109.557 120 214
RIBDOCHROSITE Na ₂ CO ₃	114.947	100.0	31.073	0.014	-892270	-816067	142.968 220 220
STRONTIANITE SrCO ₃	147.629	97.07	39.01	0.06	-1213	-1381	0.242
DAWSONITE NaAlCO ₃ (OH) ₂	143.936	132.00	59.3	-1963970	-1785990	312.900 55 55	
SMITHSONITE ZnCO ₃	125.389	62.42	26.275	0.03	-2930	-2950	0.517
CHALCOSITE ZnCO ₃	261.350	211.80	80.58	0.06	-1172	-1158	0.271
METABORITE Ba ₂ SiO ₅	147.629	97.07	39.01	0.06	-121860	-1137640	199.311 120 4 155
CAUCHIUM NITRATE Ca(NO ₃) ₂	164.090	19.30	65.09	0.03	-1300	-1460	0.256
AMMONIA-NITRER NH ₄ NO ₃	80.043	151.08	46.49	0.03	-305560	-324226	69.123 120 215 115
SODA-NITRER NaNO ₃	84.995	116.52	37.6	0.02	-468020	-367153	64.324 120 215 115
STRONTIUM NITRER Sr(NO ₃) ₂	211.630	194.56	70.94	0.05	-978220	-779086	136.493 214 214 250
SULFATES AND BORATES							
ALUMINUM SULFATE Al ₂ (SO ₄) ₃	396.182	239.32	1.20		-3440880	-3098652	503.084 262 239
BARTITE BaSO ₄	233.398	132.21	52.1		-147390	-1362186	238.650 120 214 115
ABURDITE CaSO ₄	136.138	106.69	45.94	-1034110	-1321696	231.557 120 214 115	
GYPSUM CaSO ₄ ·2H ₂ O	172.166	194.14	74.69	0.22	-466468	-3797197	314.863 214 214
CHALCOCHALITE CaSO ₄	159.604	109.20	40.98	0.03	-771360	-662310	116.04 56 54
CHALCOCHALITE CaMg(CO ₃) ₂	159.604	0.60	0.05	0.03	1300	1460	0.245 271 263

Name and formula	Formula weight	Entropy	Molar volume	ΔH_f^0	ΔG_f^0	$\log K_f$	References
	g	J ^o /mol ^o	cm ³	J/mol	J/mol	J/mol	
ORTHO AND RING STRUCTURE SILICATES							

Name and formula	Formula weight	Entropy	Molar volume	ΔH_f^0	ΔG_f^0	$\log K_f$	References	
	g	J ^o /mol ^o	cm ³	J/mol	J/mol	J/mol		
ORTHO AND RING STRUCTURE SILICATES								
FRAMWORK STRUCTURE SILICATES								
POINSETITE	140.694	95.19	43.79	-2170370	-2051325	359.385	120 93 190	
Pyrope	403.130	90.84	0.03	1325	1345	0.236	128	
$Mg_{2.4}Si_4O_10$	10.90	0.05	6000	-5932412	-1039.341	285 31	252	
CORONITE	504.957	407.2	233.22	-9161524	-8651112	155.645	273 180 206	
$Mg_{2.4}Si_4O_10$	3.8	0.13	5850	5900	1.025	1.025	1.025	
Tephroite	201.960	163.2	48.61	-1778070	-1629695	285.517	120 93 160	
$Mg_{2.4}Si_4O_10$	4.2	0.07	3180	3430	0.601	111	111	
ILLITE	222.844	131.30	52.42	-1616530	-152236	266.813	120 126	
Zircon	163.304	84.03	39.26	-2033400	-1918990	336.183	120 264 115	
Zircon	1.25	0.07	1000	1040	0.182	234	234	
CHAIN AND BAND STRUCTURE SILICATES								
Wollastonite	116.164	92.01	39.93	-1635220	-1549903	271.518	120 254 240	
Casio ₃	0.84	0.10	1435	1455	0.255	19	19	
2SUDOMULLASTORITE	116.164	87.45	40.08	-1628650	-1549895	270.669	120 116 115	
Casio ₃	0.84	0.14	2594	2636	0.462	115	115	
Ca-Al pyroxene	218.126	156.00	63.5	-3725580	-3039770	543.770	88 285	
Dioptase	216.553	143.09	66.09	-3210760	-3036550	531.980	120 148 115	
$Ca_2Si_3O_10$	0.68	0.10	9120	9160	1.605	178	178	
ALPHA SPODUMENE	186.090	129.30	58.37	-3035300	-2890203	504.602	211 93 211	
BETA SPODUMENE	186.090	154.40	0.60	0.02	2790	-2800	0.490	15
$MgSi_2O_5$	78.25	1.20	0.04	-3025300	-2859487	500.972	211 93 211	
ROUCHETITE	126.006	103.80	53.63	-2123300	-2009174	352.200	271 93 211	
$MgSi_2O_5$	0.80	0.05	1980	1990	0.348	15	15	
CLINOBESTMANNITE	100.389	67.86	31.97	-1547750	-1460893	255.592	120 93 115	
$MgSi_2O_5$	0.42	0.05	1215	1225	0.215	254	254	
RHOONITE	131.022	102.25	35.16	-1319350	-1243081	217.784	285 93 115	
$MgSi_2O_5$	2.1	0.02	1310	1400	0.254	121 241	241	
JANETTE	202.190	133.47	60.4	-3029400	-2850834	499.456	120 97 115	
$MgSi_2O_5$	1.25	0.1	4180	4230	0.741	149	149	
TERHOLITE	812.374	548.90	272.92	-12356080	-11622910	2037.170	228 270 151	
$Ca_2Si_5O_10(OH)_2$	1.25	0.73	17320	17360	3.041	17320	17360	
FRAMWORK STRUCTURE SILICATES								
ANORTHITE	276.211	199.30	100.79	-4229100	-4033216	701.371	227 286 152	
$CaAl_2Si_2O_8$	0.30	0.05	3125	3145	0.351	257 93 56		
HEXAGONAL ANORTHITE	278.211	214.80	99.85	-6222515	-4031420	701.031	136 93	
$CaAl_2Si_2O_8$	1.30	0.79	3125	3275	0.574	257	257	
CaAl ₂ Si ₂ O ₈ GLASS	278.211	237.30	103.0	-417300	-3942556	690.777	227 286 152	
$CaAl_2Si_2O_8$	2.50	0.15	3300	3320	0.581	93 56		
LEONHARDITE	922.867	922.2	404.4	-1426460	-1397115	2312.078	136 93	
$Ca_2Al_3Si_2O_8 \cdot 7H_2O$	10.9	2.0	9635	10170	1.782	1.782		
HYDROCLINE	276.333	216.70	108.72	-3967690	-3742330	655.644	187 93 152	
$KAlSi_3O_8$	0.41	0.10	3370	3400	0.596	123 269		
HIGH SANTININE	276.333	232.90	109.05	-395560	-3739776	655.196	187 93 90	
$KAlSi_3O_8$	1.26	0.10	3370	3400	0.596	187 93 90		
KALIOPHILLINE	158.168	133.26	59.89	-212920	-2059735	351.440	120 93 201	
$KAlSi_3O_8$	1.25	0.05	1435	1450	0.254	15 15		
SHEET STRUCTURE SILICATES								
ANALCITE	220.155	234.13	97.49	-309639	-3091530	540.661	120 9	
$NaAlSi_3O_8 \cdot H_2O$	0.41	0.11	3598	3682	0.645	136 201		
DEHYDRATED ANALCITE	202.140	175.40	1.25	-202210	-1977498	346.449	120 93 115	
$NaAlSi_3O_8$	1.70	-	-	-2110290	-2110290	540.661	93 229	
SHEET STRUCTURE SILICATES								
DICKITE	258.162	197.07	99.3	-4118840	-3796305	665.100	135 93	
$Al_2Si_2O_5(OH)_4$	0.25	0.07	3766	3807	0.667	16 16		
KOHLENSTEIN	258.162	203.05	99.52	-4120114	-379864	665.636	135 93	
$Al_2Si_2O_5(OH)_4$	1.25	0.26	3875	4017	0.704	143		
HALLITE	258.162	203.00	99.52	-4101890	-3780713	662.368	135 93	
$Al_2Si_2O_5(OH)_4$	1.30	0.18	2330	3010	0.557	16 16		
MUSCOVITE	398.311	334.6	140.71	-5976740	-5606711	981.219	226 93 152	
$KAl_2AlSi_3O_10(OH)_2$	1.0	0.18	3225	3290	0.576	277 12 199		
PHLOGOPITE	477.262	319.66	149.91	-3615600	-3532880	6053067	1060.477 118 93 118	
$KMg_2AlSi_3O_10(OH)_2$	4.18	0.36	3660	3860	0.656	257 118		
FLUORPHLOGOPITE	421.248	336.30	146.37	-6352880	-6352880	6352880	6352880	
$KAl_2AlSi_3O_10(OH)_2$	2.10	0.18	3550	3550	0.654	139		
ILLITE	1553.675	1104.20	-	-	-	285	-	
$(Al_7Si_5)(Si_{11}Al_2)O_10(OH)_2$	-	-	-	-	-	-	-	
TALC	379.268	260.83	136.25	-5915800	-5536048	969.897	228 93 151	
$Mg_3Si_2O_5(OH)_2$	0.63	0.26	4330	4350	0.762	11 11		
PIROPHILLITE	360.317	239.90	127.92	-5639800	-5255884	922.567	226 286 152	
$Al_2Si_2O_5(OH)_2$	0.40	0.29	3550	3560	0.654	139		
CHRYSOTILE	277.113	221.30	108.5	-4361660	-4034024	706.777	128 93 128	
$Mg_3Si_2O_5(OH)_2$	0.86	0.6	3480	3500	0.613	128		