

ENV-413: Thermodynamics of the Earth systems

Exercise session for Lecture 10

4. Consider a two-component system consistent of H_2O and NaCl . Write the Gibbs phase rule for this two-component system.

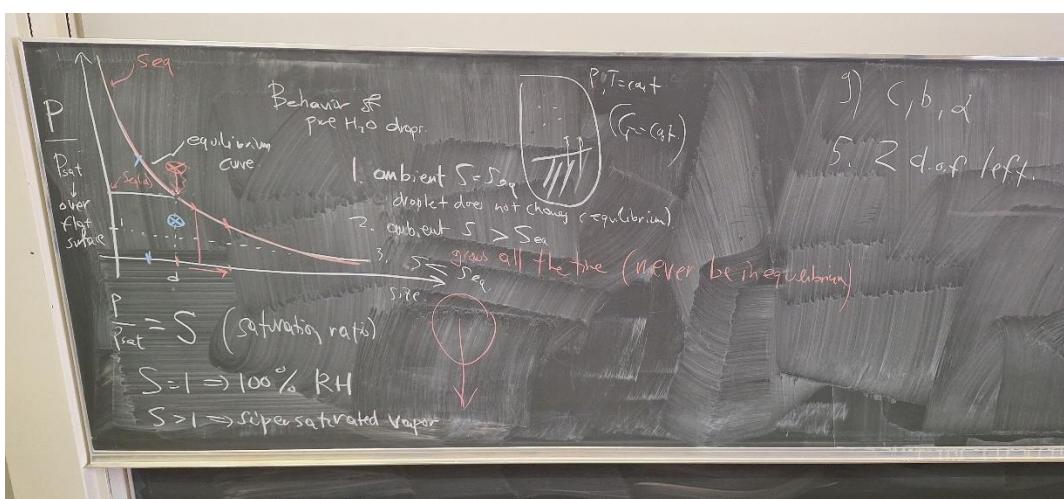
5. To conveniently represent the phase diagram on a graph, we can eliminate one degree of freedom if we examine the system only at constant pressure. For the two-component system at constant pressure, what is the maximum number of thermodynamic degrees of freedom for this system?

9. Matching:

_____	latent heat of fusion	a. 677 cal g^{-1}
_____	latent heat of vaporization	b. 597.3 cal g^{-1}
_____	latent heat of sublimation	c. 77.7 cal g^{-1}

10. During a phase change from liquid to vapor, state whether the following variables increase, decrease, or remain the same

Temperature _____


Pressure _____

Specific Volume _____

Entropy _____

Enthalpy _____

Gibbs energy _____

1. Nucleation of a pure phase of one component is referred to as
 a) homogeneous
 b) heterogeneous

2. Most of the nucleation processes in the atmosphere is:
 a) homogeneous nucleation
 b) heterogeneous nucleation

Surface tension work

3. Write an expression for surface tension work

$$dw = \sigma dA$$

4. What are the units for surface tension?

$$\text{energy/surface } (\text{J m}^{-2}) \text{ or } (\text{Nm}^{-1})$$

5a. The effect of surface tension on the internal energy of a droplet is (greater than, less than, the same) for a smaller drop.

As drop becomes larger \rightarrow surface tension effect on $u(\text{arg}) \downarrow$ smaller.

6a. How much work is required to break a 1 cm cube of water into drops with radius 10 μm ? (use surface tension 0.076 N m^{-1})

$$\Delta w = \sigma \Delta A \leftarrow \text{difference in droplet area before and after splitting.}$$

Surface area of 10 μm drop $4\pi r^2 = 4\pi (10 \times 10^{-6})^2 = 1.256 \times 10^3 \times 10^{-12} = 1.256 \times 10^{-9} \text{ m}^2$

$$\text{Surface area of cube } 1\text{ cm}^3 = 6 \times 1/\text{cm}^2 = 6 \times (10^{-2})^2 = 6 \times 10^{-4} \text{ m}^2$$

$$\text{Volume of } 10\mu\text{m drop} = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (10 \times 10^{-6})^3 = 4.18 \times 10^3 \times 10^{-18} = 4.18 \times 10^{-15} \text{ m}^3$$

$$\# \text{ of drops: } \frac{10^{-6} \text{ m}^3}{4.18 \times 10^{-15}} = 2.392 \times 10^8$$

$$dw = \sigma \Delta A \sim \boxed{\Delta w = \sigma \Delta A = 0.076 \times (2.392 \times 10^8 \times 1.256 \times 10^{-9} - 6 \times 10^{-4}) = 2.26 \times 10^{-3}}$$

16. Refer to Fig. 5.3, which is a graph of Kelvin's equation

$$r^* = \frac{2\sigma_h}{\rho_h R_v T \ln S} \quad (5.14a) \quad \text{See } \text{Fig}$$

a) Has a drop with radius $1 \times 10^{-3} \mu\text{m}$ and $S=1.5$ been activated (i.e. will it grow spontaneously)?

$$r^* = \frac{1.10 \times 10^{-9}}{0.4} = 2.75 \times 10^{-9} \text{ m} = 2.75 \times 10^{-3} \mu\text{m} \quad r < r^* \Rightarrow \text{no growth}$$

b) Has a drop with radius $1 \times 10^{-3} \mu\text{m}$ and $S=4$ been activated (i.e. will it grow spontaneously)?

$$r^* = \frac{1.10 \times 10^{-9}}{1.38} = 0.8 \times 10^{-9} \text{ m} = 0.8 \times 10^{-3} \mu\text{m} \quad r > r^* \Rightarrow \text{spontaneous growth}$$

17. The formation of pure water droplets requires a vapor pressure that is (less than, equal to, greater than) the saturation vapor pressure over a plane surface of pure water

18. If the relative humidity of the air is 100%, droplets of pure water will

a) evaporate b) grow further by condensation c) remain the same size

19. Are values of $S=1.5$ and $S=4$ observed in the atmosphere? What is a realistic maximum value of S that is observed in the atmosphere? No. realistic $S = 1.001 - 1.01$