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“We forget that the water cycle and the life cycle are one’
1‘? ' & (Jacques Yves Costeau)



PFL Onthe use and types of models

» Mathematical models are key to guiding decision making

=  Always approximations and simplifications of real systems (models are not reality: this is perhaps
an obvious point, but it is regularly ignored)

=  Physically-based VS data-driven

=  Spatially distributed VS lumped

= Early physically based models were simple (mostly dictated by the limited computational
resources) VS nowadays (hundreds of terabytes of memory needed to run certain models)

=  Major limitations, nowadays, stem from the difficulty to obtain enough detailed data to
characterize all variables that are involved in the system (more than by computational resources)

» |ncreasing data availability -> does not necessarily make model development easier
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Getting the right answers for the right reasons:
Linking measurements, analyses, and models
to advance the science of hydrology

James W. Kirchner'
Received 15 June 2005; revised 12 December 2005; accepted 16 December 2005; published 18 March 2006.

[1] The science of hydrology is on the threshold of major advances, driven by new
hydrologic measurements, new methods for analyzing hydrologic data, and new
approaches to modeling hydrologic systems. Here [ suggest several promising directions
forward, mcluding (1) designing new data networks, field observations, and field
experiments, with explicit recognition of the spatial and temporal heterogeneity of
hydrologic processes, (2) replacing linear, additive “black box™ models with “gray box™
approaches that better capture the nonlinear and non-additive character of hydrologic
systems, (3) developing physically based governing equations for hydrologic behavior at
the catchment or hillslope scale, recognizing that they may look different from the
equations that describe the small-scale physics, (4) developing models that are minimally
parameterized and therefore stand some chance of failing the tests that they are subjected
to, and (5) developing ways to test models more comprehensively and incisively. [
argue that scientific progress will mostly be achieved through the collision of theory and
data, rather than through increasingly elaborate and parameter-rich models that may
succeed as mathematical marionettes, dancing to match the calibration data even if their
underlying premises are unrealistic. Thus advancing the science of hydrology will
require not only developing theories that get the right answers but also testing whether
they get the right answers for the right reasons.

Citation: Kirchner, J. W. (2006), Getting the right answers for the right reasons: Linking measurements, analyses, and models to

advance the science of hydrology, Water Resour. Res., 42, W03504, doi:10.1029/2005WR004362.

o

S. Bonetti



=PFL  On the use and types of models

More
complex
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"I remember my friend Johnny von
Neumann used to say, with four
parameters | can fit an elephant, and with
five | can make him wiggle his trunk.”

More data

E. Fermi (1953)
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Fig. 1. (a) Outline of an elephant. (b) Three snapshots of the wiggling trunk.

Mayer et al. (2010), Am. J. Phys. 78(6)
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essay turning points

A meeting with Enrico Fermi

How one intuitive physicist rescued a team from fruitless research.

Freeman Dyson

ne of the big tuming points
in my life was a meeting with
Enrico

ga
that was leading nowhere. | am erernally
grateful o him for destroying our

llusions and tefling us the bitter truth.
Fermi was one of the great physicists
of our time, outstanding both as a
theorist and as an experimenter. He
led the team that built the first nucear
i 3

scatiering of mesans by profons, an
experiment that gave the most direct

idence then available of the natuse of
the strong forces.

At that I was a young professor
of theoretical physics at Cornell Univer-
sity, responsible for  directing the
research of a small army of graduste
students and postdocs. | had put them

Crossed pathe A discussion with Enrico
Fermi above) mads Freeman Dyson
(right] chamge his career dirvtion.

toworkeale prroton sc
tering 5o that their thevretical calculations
could be compared with Fermi’s measure
ments. [n 1948 and 1919 we had made
similar calculations of atomic processes, using
the theory of quantum electrodynamics,and
found spectacular agreement between experi-
‘mentand theory. Quantumelectrodynamics
is the theory of clectrons and photons
interacting through electromagnetic forces.
Becanse the clectromagnetic forcesare weak,
we could calculate the atomic processes
precisely. By 1951, we had trinmphantly
finished the atomic calculations and were
Wooking for fresh fickds o conguer. We

ackage of our theoretical
graphs ko show to Fermi.
When | arrived in Fermis
office, | handed the graphs i
Fermi, but he hardly glanced
at them. He invited me to sit
down, and asked me in a
friendly way about the health
of my wife and our new-
bom baby son, now fifty
years old. Then he defivered
his verdict in a quiet, even voice. “There are
two ways of doing calculations in theoretical
physics” he said

dec
Iation 1o explore the strong nuclear forces.
We by calculating_meson-proton
scaftering, using a theory of the strong forces
known 25 psendoscalar meson theory. By the
spring of 1953, afier heroic efforts, we had

theoretical graphs of meson-proton
scattering.We joyfully observed that our
calculated mumbers agreed pretty well with
Fermi’s measured numbers. So | made
an appointment to meet with Fermi and
show him our results. Proudly, | rode the
Greyhound bus from Ithaca to Chicago with

ATURE|vOL

other way is 1o have a preci
consistent  mathematical formalism. You
have neither” | was slightly stuaned, but
ventured to ask him why he did not consider
the pseudoscalar meson theory to be a self-

physical picture, and the forces are
50 strong that pothing converges. To
reach your calculated results, you had
to introduce arbitrary cut-off proce
dares that are not based cither on solid
Physics or on solid mathematics™
Indesperation | asked Fer
he was not impressed by the agreement
between our calculated numbers and his
measured numbers. He replied., “How
muany arbitrary parameters did you use
for your calculations?” | thought for a
‘moment about our cut-off procedures
and said, "Four” He said, "I remember
my friend Johnny von Neamann used to
say, with four parameters [ can fit an
clephant, and with five | can make him
wiggle his trunk* With that, the conver
sation was over. | thanked Fermi for his
time and trouble, and sadly took the next
bus back to Hthaca to tel the bud news
tothestuudents. Because it was important
for the students te have their names on
a published papes, we did not abandon
our  calculations  immediately.  We
finished them and
wrote a long paper
that was duly pub-
ished in the Physi
cal Review with all
our names on it
Then we dispersed
10 find other ines of
work. | escaped to
Berkebey, California,
10 start # new career
in condensed-matter

hether

physics.
Lookingback ater
Gifty yas, we can
clearly see that Fermi
was right. The crucial
discovery that made
sense of the strong
forces was the quark
lesonsand protonsare
lithe bags of quarks. Before Murray Gell
Mann discovered quarks, no theory of th
strong forces could possibly have bee
adequate. Ferm knew nothing aboul quarks,
and died before they were discovered. But
somehow he knew that somethis

the 1950s. His physical intuition told him
that the pseudoscalar meson theory could
not be right. And sa it was Fermi's intuition,

consistent_mathematical formalism.  He
replicd, *Quantum ics is a
good theory because the forces are weak,
and when the formalism is ambiguons we
have aclear physical picture o guide us. With
the petdoscalar meson theory there is o

IASIARY 304 s e sondouture

@001 Nature Publishing Group.

and notany heory and
xperiment, that saved me and my siudents
from getting stuck ina blind alicy. ]
Freemar Ly it th st for A St
Bt Drivw, rivceto, New vy 08540, USA.
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A model should be:

- Reliable: it gives approximately correct predictions under most circumstances.

- Robust: whose results do not depend sensitively on the specification of quantities that are poorly known.

- Realistic: it includes sufficient processes, represented in adequate detail, to allow simulation of the
system’s response to a change in all of the external variables of interest.

S. Bonetti

Possession of one feature above does not by any means guarantee the rest.

©Cambridge University Press @ UNIVERSITY PRESS

“We will argue that the dominant paradigm in land-surface o .
modelling focusses too heavily on realism at the expense of The value of Minimalist

the other two R’s” (Prentice et al., 2015) (Or Reduced Order) Models

Although it seems reasonable to expect that a
model including a larger subset of processes that
are known to be important should be more realistic A\ @
than a simpler model, increases in reliability and

robustness by no means automatically follow.

=
s et

Prof. Porporato o
® ENV-411 | X — Model uncertainty POrato - Eco-hydrology




=PFL  Model uncertainty

= Based on different models (all consistent with observed data) predictions of future or hypothetical
scenarios can vary widely.

= Uncertainty of model results refers to the potential variability of the results due to different model
structure, input parameters, and forcing variables (Beven, 1993; Montanari, 2007)

» When models are employed to make forecasts or as a tool for decision-making processes, it is
important to quantify and, if possible, reduce the uncertainty of their results.

1. Three conventional steps to build a model:
A. Conceptual model
B. Mathematical model
C. Evaluating solutions (analytical, numerical)

2. Once the model is setup, a sensitivity analysis is performed to quantify the variations of its results due to
variations of its parameters

3. Parameter calibration and model validation
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ARTICLE

Verification, Validation, and Confirmation of
Numerical Models in the Earth Sciences

Naomi Oreskes,* Kristin Shrader-Frechette, Kenneth Belitz

Verification and validation of numerical models of natural systems is impossible. This is
because natural systems are never closed and because model results are always non-
unique. Models can be confirmed by the demonstration of agreement between observation
and prediction, but confirmation is inherently partial. Complete confirmation is logically
precluded by the fallacy of affirming the consequent and by incomplete access to natural
phenomena. Models can only be evaluated in relative terms, and their predictive value is
always open to question. The primary value of models is heuristic.

3. Parameter calibration and model validation

m ENV-411 | X — Model uncertainty

puter program may be verifiable (12).
Mathematical components are subject to
verification because they are part of closed
systems that include claims that are always
true as a function of the meanings assigned
to the specific symbols used to express them
(13). However, the models that use these
components are never closed systems. One
reason thev are never closed is that models
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Input data Better and repeated measurements,

. Measurements errors from sensors : . -
uncertainty postprocessing of data (cleaning, gap-filling)
Input dgta Spatial representativity of local observations + errors from Statistical techniques can be gsed o map
uncertainty : o most probable values and their uncertainty

regionalization
ranges
Climate data uncertainty (different emission scenarios,
Input data : . : . L

. climate model structural uncertainty, chaotic nature of Ensembles of climate projections

uncertainty .
climate processes)
Structural Conceptual model, mathematical model, numerical .

. : Multi-model ensembles
uncertainty solution
Paramgter Estimation of parameters Bayesian approaches, data assimilation
uncertainty
Output data Observed outputs (used for calibration/validation) can . .

. Statistical techniques
uncertainty have errors

» These uncertainties interact with (and add to) each other in complex manners

» Epistemic (due to lack of knowledge) vs. aleatoric (irreducible part of total uncertainty) uncertainty
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Types of model uncertainty
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FIGURE 2 To evaluate the uncertainty of a given conceptual or structural model, it is necessary to generate many sets of input
parameters that are coherent with the conceptual model. Then, the model is run many times to compute the probability distribution
function (pdf) of the results, which allows estimating their uncertainty. If the structural uncertainty is included, then many models must be
used to perform the same procedure employed for single models. The overall uncertainty can be evaluated from the ensemble pdf (Butts

et al., 2004; Georgakakos et al., 2004; Neuman, 2003)
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RESEARCH ARTICLE

10.1002/2013WR013725

Special Section:
Advancing Computational
Methods In Hydrology

Key Points:
« Seven hydrologic models were
intercomnared on standard

Model intercomparisons
QAGU PUBLICATIONS

Water Resources Research

Surface-subsurface model intercomparison: A first set of
benchmark results to diagnose integrated hydrology and
feedbacks

Reed M. Maxwell!, Mario Putti2, Steven Meyerhoff1, Jens-Olaf Delfs3#4, lan M. Ferguson:5,
Valeriy Ivanové, Jongho Kim$, Olaf Kolditz37, Stefan J. Kollet8, Mukesh Kumar?, Sonya Lopez!,

Jie Niu'9, Claudio Paniconi'!, Young-Jin Park'2, Mantha S. Phanikumar?, Chaopeng Shen13,
Edward A. Sudicky'?, and Mauro Sulis'*
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PRIMARY RESEARCH ARTICL

E

Rainfall manipulation experiments as simulated by terrestrial

Global Change Biology [R\A I W A%

biosphere models: Where do we stand?

Athanasios Paschalis*

9,10
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Anna Ukkola® | Sara Vicca®”
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Alan K. Knapp'® | KlausS. Larsen’ | Wei Li>®
Patrick Meir'®2% | Julia E. M. S. Nabel’ | Roma Ogaya®® | Anthony J. Parolari?! |
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| Serge Ramba

|24 |
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