

Air pollution and climate change

ENV-409

Ozone chemistry (abridged version)

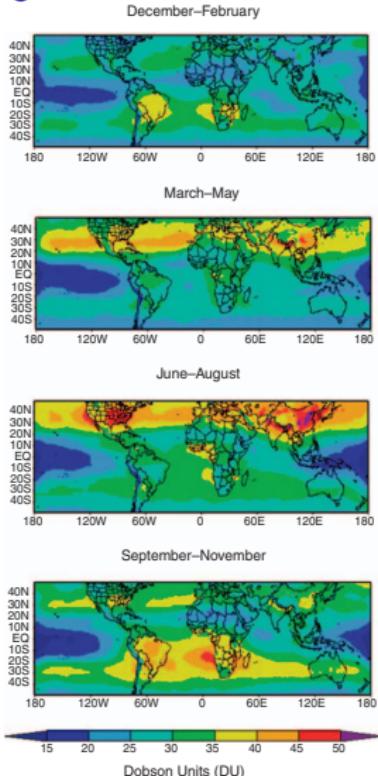
Overview

Chemical transformations:

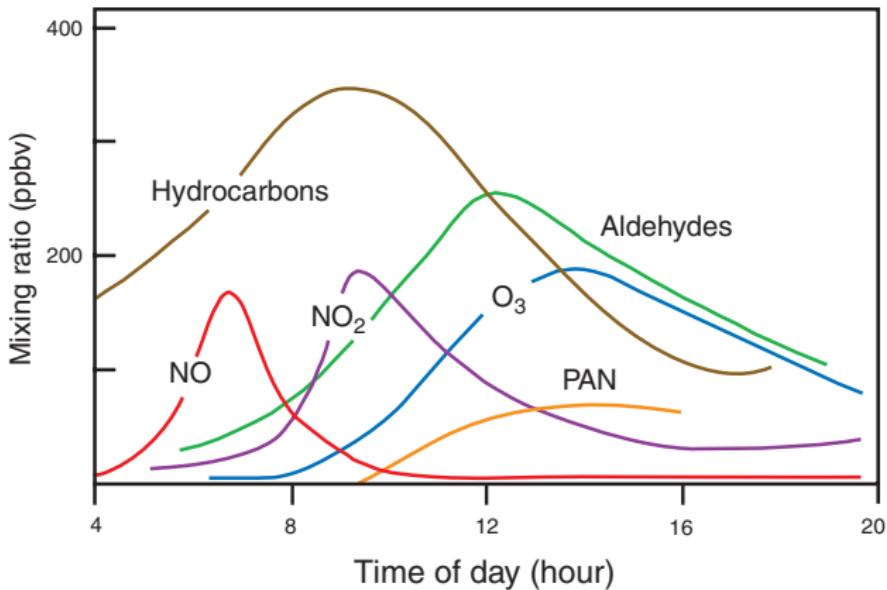
- ▶ convert harmful pollutants to innocuous forms
- ▶ convert harmful pollutants to other harmful pollutants (e.g., SO_2 , NO_2 converted to acids; CO converted to CO_2)
- ▶ produce harmful pollutants (e.g., O_3)

We will briefly review the *nonlinear* chemistry of O_3 as it pertains to interpretation of air pollution measurements.

Tropospheric O₃

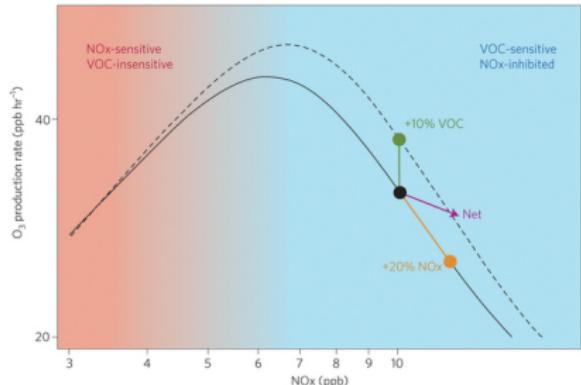

Atmospheric concentrations of tropospheric O₃ are monitored and regulated on account of its health effects.

source: US EPA


Concentrations dependence on

- ▶ Emissions/concentrations of precursor species
- ▶ Solar radiation
- ▶ Temperature

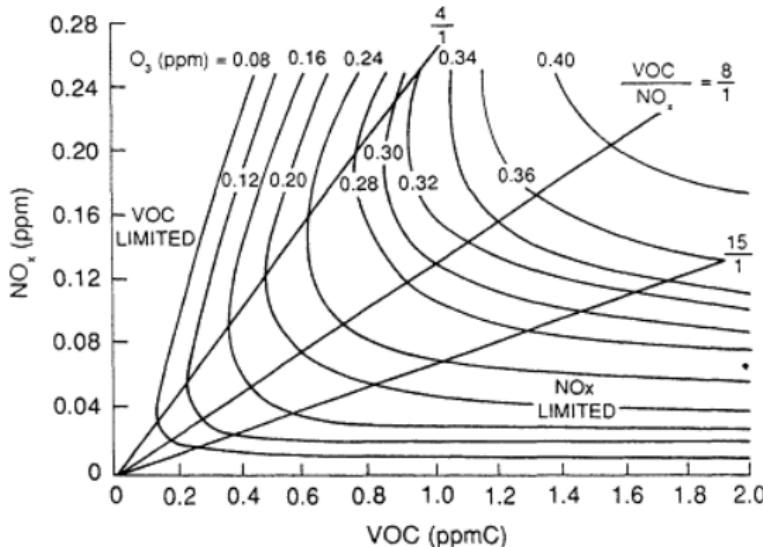
Wallace and Hobbs, 2006: Composite seasonal distribution of the atmospheric ozone column determined from satellite measurements from 1979 to 2000. [from *Atmos. Chem. Phys.*, 3, 895 (2003).]


Los Angeles smog

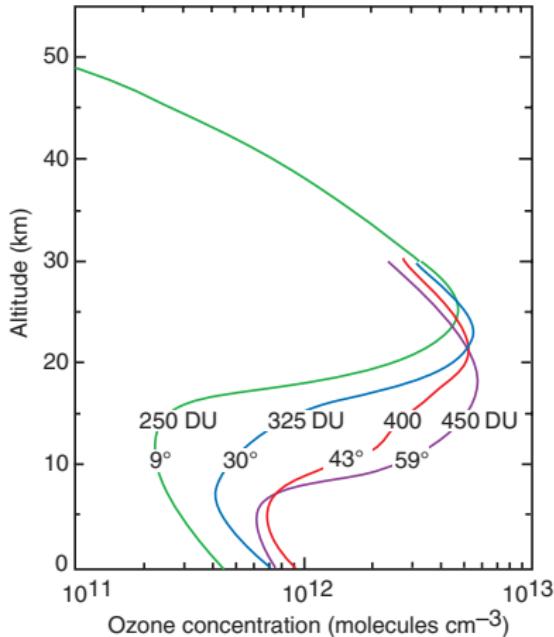
Wallace and Hobbs, 2006: Typical variations during the course of a day of some important pollutants in photochemical smogs in Los Angeles. [Adapted from P. A. Leighton, Photochemistry of Air Pollution, Academic Press, New York, 1961, p. 273, with permission of Elsevier.]

Nonlinear chemistry of ozone

- ▶ Presence of weekly cycle and higher concentrations of an ozone *weekend* effect, in which concentrations of O_3 increase due to the decrease in NO_x concentrations.
- ▶ Reductions in NO_x due to emission controls may increase average ozone concentrations.
- ▶ With sufficient reduction in NO_x , dO_3/dNO_x may become positive.



"Ozone production rates rise in line with NO_x concentrations up to a certain point, beyond which further additions of NO_x start to inhibit ozone formation (solid line). The addition of volatile organic compounds (dotted line) starts to stimulate it at about this point. In this example, the effects of a 10% and 20% increase in VOC and NO_x concentrations (green and orange lines, respectively) on ozone production rates (green and orange circles) are shown. The net effect is a small reduction in ozone production rates. Salvo and Geiger show that ozone levels fell in São Paulo following a switch from ethanol to gasoline use, and therefore suggest that ozone production in São Paulo lies on the part of the curve that is inhibited by NO_x but stimulated by the addition of VOCs. Values are illustrative only, as actual rates depend on time and location, mixtures of emitted VOCs and NO_x , solar radiation and other meteorological factors. [...]"

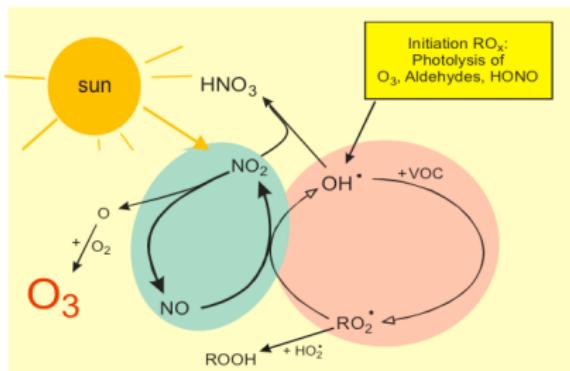

Madronich, *Nat. Geosci.*, 2014

Ozone isopleth

- ▶ Contour plot of maximum O_3 concentrations resulting from a set of initial VOC and NO_x concentrations.
 - ▶ Generated by contour plotting the predicted ozone maxima obtained from a large number of simulations with an atmospheric VOC/ NO_x chemical mechanism with varying initial concentrations of VOC and NO_x (all other variables held constant).
 - ▶ Highlights non-linear response to NO_x in the VOC-limited region. Understanding the O_3 response to NO_x concentrations in this region is a major objective of this lecture.

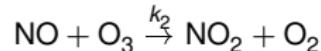
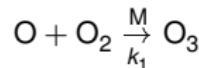
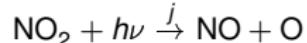
Atmospheric O₃

Approximately 90% of the O₃ in Earth's atmosphere is found in the stratosphere. The flux from the stratosphere to the troposphere accounts for less than $\sim 1/5$ of the tropospheric ozone budget.


Wallace and Hobbs, 2006

Tropospheric O₃ formation

Dependence on NO_x and VOC




Leighton cycle (production of O₃):

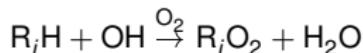
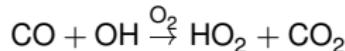
Ozone chemistry is complex and may be nonlinear, depending on relative concentrations of VOC and NO_x.

Prevot and Staehelin, ETHZ.

There are many pathways for transformation of NO \rightarrow NO₂. The Leighton relationship considers an atmosphere polluted with NO_x.

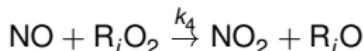
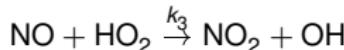
M is a chaperone molecule, N₂ or O₂. Note that this is a *null cycle*: no net O₃ is created.

However, the ratio of NO₂ to NO will determine the O₃ concentration according to the photostationary state relation:



$$\frac{d[\text{NO}_2]}{dt} = -j[\text{NO}_2] + k_2[\text{O}_3][\text{NO}] \approx 0$$

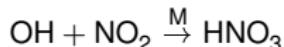
$$[\text{O}_3] = \frac{j[\text{NO}_2]}{k_2[\text{NO}]}$$

This relation is established within a few minutes.



Simplified chemistry

Oxidation of CO and Volatile organic compounds (VOCs) by OH radicals will produce hydroxy radicals (HO_2) and peroxy radicals (RO_2):

R_i is a hydrocarbon fragment


These peroxy radicals will convert NO to NO_2 by further oxidation:

VOC contributions can lead to deviation between the $[\text{NO}_2]/[\text{NO}]$ and $[\text{O}_3]$ otherwise observed under photostationary state conditions.

$$\frac{[\text{NO}_2]}{[\text{NO}]} = \frac{k_2[\text{O}_3]}{j} + \frac{1}{j} \left(k_3[\text{HO}_2] + \sum_i k_{4,i}[\text{R}_i\text{O}_2] \right)$$

At high concentrations of NO, reaction with OH forms HNO_3 (a sink for reactive nitrogen in the atmosphere, and a source of particulate matter) and removes NO_x from the system, reducing ozone production rates:

Useful metrics for analyzing data

Sum of oxidants $[O_x] = [O_3] + [NO_2]$ is a conserved quantity in the “NO titration” reaction:

If O_3 concentrations are “suppressed” locally by NO, O_x should not exhibit depressed trend.

Photostationary state ratio:

$$\begin{aligned}\phi &= \frac{j[NO_2]}{k_2[NO][O_3]} \\ &= 1 + \frac{1}{k_2[O_3]} \left(k_3[HO_2] + \sum_i k_{4,i}[R_iO_2] \right)\end{aligned}$$

Note that j is dependent on the radiation intensity.