Aerosol chemical analysis
ENV-409



Complementary monitoring strategies
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Figure from Lenschow et al., Atmos. Environ., 2001

Satellite observation
(intermittent, clear-sky coverage)

Low-cost sensors
(high spatial coverage, low data quality)

Reference monitors
(high data quality,
“chemical fingerprint” of sources)



Ground-based aerosol
measurements

Advanced scientific instruments

* High chemical resolution

» Deploy in short, intensive campaigns
* Expensive

Low-cost sensors Regulatory monitors

- High spatial (and time) resolution * Reliable, standardized
« Personalized information (“citizen science”) « Accurate |

» No chemical information, low accuracy * Cost-effective

« Chemical speciation



Estimated PM '2 5 concentratlons

Need for cost-effective “» ﬁ,,
monitoring of air pollution
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Atmospheric aerosols

Scanning electron microscopy images
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Aerosol sources

Natural

Forest fires

Traffic / Transport Domestic activities Agriculture

Anthropogenic

(slide from Julia Schmale)



High variation in aerosol composition
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Figure 3 | Chemical complexity of organics as a function of oxidation state and carbon number. Points are coloured by the logarithm (base 10) of the
number of possible compounds at a given O3 and n, assuming an unbranched, acyclic carbon skeleton, and the addition of carbonyl, alcohol and acid
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Chemical measurement technology tradeoffs

Diverse range of molecular classes, size, polarity in
atmospheric particles

No single measurement technique for measurement of all

molecules. Tradeoffs:

offline / online

time resolution

chemical resolution (number of species or classes)
completelness

guantitative / qualitative

Separation
» physical / chemical
« algorithmic

scalability — labor and cost
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Conventional chemical speciation methods

Required for compliance monitoring

Gravimetry X-ray fluorescence
(Mass) (Metals)

W lon chromatography
ater . (Inorganic salts)
extraction

Sample collection Transport and storage Pretreatment

Thermal-optical analysis
(Organic and elemental carbon)

[ % :>Q

Vaporlzatlon




NABEL Network

Inductively coupled plasma mass spectrometry
(Metals)

Acid digestion

Single quartz filter

Gravimetry lon chromatography
(Mass) Water extractoin  (Inorganic salts)

Thermal-optical analysis

% (Organic and elemental carbon)

Vaporization




Thermal optical methods

* Thermal Optical Reflectance (TOR)
and Thermal Optical Transmission 075
(TOT)

* Detector (flame Ionization detector or E
non-dispersive IR) measures total g
carbon (TC) :

« TC is split into organic carbon (OC) £

and elemental carbon (EC) via evolved
gas analysis

« Organic matter mass can be
~1.4-2.5 times OC

LowT Protocol (Sample 02/14/03, medium loading)
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X-Ray fluorescence

* Analysis of ~40 elements
* Most comprise a few percent of the total mass

Primary X-rays Secondary X-rays (Fluorescent X-rays)

\
| Ejected electron

https://www.horiba.com/int/scientific/technologies/energy-dispersive-x-ray-fluorescence-
ed-xrf/what-is-x-ray-fluorescence-xrf/



lon chromatograph

« Major water-soluble ions (inorganic salts, dust)
« Cations and anions require separate columns and mobile phases — both are not always analyzed
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Automation

Carbon analyzer lon monitors | Metals analyzer
(ICs not shown) & 2
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Metrohm
Magee Scientific URG Corporation Cooper Scientific



Scientific workhorses

Gas chromatography
» Preparation: extraction / derivatization / vaporization

« Molecular identification possible with mass spectrometer Zhang et al., Aerosol Sci. Tech., 2014
* 10-20% mass recovery

Sample ;

injector 600x10°; S E‘;tli'r:r"ggf: ”
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l 400+ Resolved peaks
O
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spectrometer 200+
Gas: Column: detector
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measurement of particle ingredients
Aerosol Mass Spectrometer (AMS)

on-line analysis of particulate composition Particle Beam Aerodynamic Particle
Generation Sizing Composmon
elements: C, H, O, N, Fe, Zn, Pb, Hg e spec"omete,\ 141\ 4
and PAHs 1 )
= e
« High time resolution —— Thermal
. . . Vaporization
* Inorganic + organics (typically not dust) / , &
- Collection efficiency (50-100%) oy iy

lonization

Molecular mass fragments
Particle Inlet (1 atm)

1. Aerosol particles (0.04-1um) are sampled into
a vacuum system and focused

2. A rotating beam chopper provides packages
of particles

3. Size separation with the time-of-flight (TOF)
technique
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Allan et al., Atmos. Chem. Phys., 2004

4. Detection of elements by quadrupole mass
spectrometry (or time of flight mass spectrometer)

Aerodyne and TSI
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