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So far in ENV-440…

▪ Image acqusition and formation

▪ Keypoint detection and matching

▪ Image orientation

▪ Creating orthos

▪ Extracting some features from elevation models

Now let’s move into process prediction.
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Process prediction

▪ We want to estimate a quantity of interest given some input data.

▪ In our case, the input data will be 
• the DEM

• the variables of interest we extracted from it (see last course)

▪ We will consider methods from two families
• Machine learning (this and next course)

• Geostatistics (following courses by Alexis Berne)
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Machine learning

- What is ML for you?
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Let’s hear it from 
you!
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Machine learning?

▪ Let’s stick to the basics: ML has been defined as “learning from data”.

▪ And I am pretty sure you’ve done some so far.

You maybe did not know it

(but probably you did)
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Machine learning?

▪ Let’s stick to the basics: ML has been defined as “learning from data”.

▪ Learning what?
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All kinds of desirable outputs Given some relevant variables (inputs)

- What price will my computer have in 3 years ?

- Will it rain tomorrow ?

- What animal is in this picture ?

- What is the shortest route to go to Chailly ?

Color, brand, processor, RAM, …

Temperature, pressure, 10years of rain measurements, …

Pictures of animals, colors, …

A street network, cell phone data, TCS/TL websites, …



Machine learning?

▪ Let’s stick to the basics: ML has been defined as “learning from data”.

▪ Learning what?
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Our kinds of desirable outputs Given some relevant variables (inputs)

- What is the runoff of the river `there’?

- What is the chlorophyll in this plant?

- Which portions of that region have been 
flooded ?

- What was the bird doing during its flight ?

- What is the content (tag) of this image ?

YOU name them!



Machine learning?

▪ Let’s stick to the basics: ML has been defined as “learning from data”.

▪ Learning how?

▪ With generic algorithms

▪ We don’t want to write specific code

▪ We want to feed data to the generic algorithm

▪ We leave the algorithm build its own logic linking inputs and the output

(…. and then improve it with specific knowledge)
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Machine learning?

▪ Let’s stick to the basics: ML has been defined as “learning from data”.

▪ Learning how?

▪ With generic algorithms
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Source: https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471#.7x1l6rhtr 



Machine learning?

▪ Let’s stick to the basics: ML has been defined as “learning from data”.

▪ In what is it different to physical models?
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Physical Machine learning

Ground

Training

Comp.

General

Physics
= 1 problem, 1 model

No need for training

Generally slow

Depends strongly on boundary conditions

Learn from data
= many problems, 1 model

Need to be trained

Very fast

Cannot learn other things than those seen in 
training



So how does it work?

▪ ML algorihtms have generally two phases

• training phase: the model learng the input/output relations from a set of known 
data

• inference (or testing phase): the trained model predicts unseen data using the 
knowledge gathered during training.
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So how does it work?

▪ Machine learning: statistical models learning patterns from observational data
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So how does it work?

▪ ML algorihtms have generally two phases

• training phase: the model learng the input/output relations from a set of known 
data

• inference (or testing phase): the trained model predicts unseen data using the 
knowledge gathered during training.
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In a nutshell
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Animation by B. Kellenberger, 2021 © EPFL ECEO



Machine learning?

▪ Does it work all the time?

▪ No. it is not magic.

▪ It works if we have 

▪ the right inputs

▪ the right learning machine

▪ sufficient training data
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Why now : statistical and computational 
models are good enough...
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A taxonomy of ML 
algorithms with 
selected examples
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A taxonomy of machine 
learning methods

Supervised learning
Classification

Regression

▪ Unsupervised learning
• Clustering

• Structure

19
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Unsupervised learning - clustering

▪ Unsupervised learning
• Learning the relationship 𝑓 between inputs X based on training data { 𝑥1 , … 𝑥𝑛 }

• Input X is called predictor, independent variable, feature

• There is no output to predict, you learn the structure of the data. 

• For example, when grouping data, one predicts a cluster 

▪ A cluster is the ID of a group of data points that are similar to each other
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A clustering example
21

Cluster 1

Cluster 2

Cluster 3

Clustering
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Example of unsupervised 
method: k-means
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K-means is an iterative method
1. It starts with a guess of the cluster centers (often 

random)
2. Computes the assignment by minimizing variance of 

each cluster
3. Updates the centers as the means of the samples 

assigned to each center
4. Repeats 2.-3. until stability is reached.

Stability can be:     
- a fixed number of iterations
- when the centroids do not move anymore



Clusters to classes

• Once we have a decent clustering result, where each cluster can be linked to a 
single class

• We proceed to a manual class assignation

▪ Cluster 1 → Grass

▪ Cluster 2 → water

▪ Cluster 3 → Grass

▪ Cluster 4 → Built

▪ …

Note that many clusters can be assigned to the same class! 

and it does happen!!!
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Example on a very high resolution image
Quantization
(each pixel is colored by the average color of the members of the cluster it belongs to)
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2 clusters 3 clusters 4 clusters 8 clusters Original 
image



Example on a very high resolution image
Superpixelisation
(each pixel is grouped to neighbors according to their spectral similarity)
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Semantic information
Clustering result
500 clusters
(colors are cluster IDs)

True image

VS



Unsupervised learning – dimensionality 
reduction

▪ Compress information based on data redundancy

▪ Without any prediction objective, you aim at removing un-necessary, 
redundant information

▪ Typically one aims at finding correlated variables and remove them

▪ A famous method is Principal Component Analysis (PCA)
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A dimensionality-reduction example
27

Structure

Dimensionality reduction

From 2 correlated variables

To a single uncorrelated one 
(with same information)
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A dimensionality-reduction example
28

Structure

Dimensionality reduction

From 2 correlated variables

To a single uncorrelated 
Principal component 
(with same information)

With a rotation of the axis
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Example of PCA on satellite data: 
multi-resolution image fusion

Multispectral image
Low res
color

Panchromatic image
High res
BW
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Example of PCA on satellite data
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Example of PCA on satellite data

PC1, the information
correlated across all bands PC2, information specific 

to single bands

PC3, very high frequencies PC4, what’s left
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Projection matrix 
(from last course)

▪ W is a square matrix

▪ As many lines and columns as bands

▪ Ex: 3 bands

W =

W (1,1) W (1, 2) W (1,3)

W (2,1) W (2, 2) W (2,3)

W (3,1) W (3, 2) W (3,3)

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Y = XW

Projects into 
component 1

Multiplies band 2

Y(2)Y(1)
X(1) X(2)

W

Y(3)X(3)

… …
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Projection matrix 
(from last course)

▪ W is an invertible matrix!

▪ Since it is orthogonal, W-1 = W’

▪ Given the principal components, 
we can go back to the original 
bands exactly.

▪ Now… what if we change the 
first PC a little bit?

Y = XW

Y(2)Y(1) X(1) X(2)

W’

Y(3) X(3)

……
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Example of PCA on satellite data

PC1, the information
correlated across all bands PC2, information specific 

to single bands

PC3, very high frequencies PC4, what’s left
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Example of PCA on satellite data

Replace with
High resolution
Grayscale band 

PC2

PC3
PC4
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Feature fusion
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Low res
color

High res
color!

High res
BW



A taxonomy of machine 
learning methods

▪ Supervised learning
• Classification

• Regression

▪ Unsupervised learning
• Clustering

• Structure

37
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Supervised learning

▪ Supervised learning
• Learning the relationship 𝑓 between input X and output Y based on training data 
{ 𝑥1, 𝑦1 , … 𝑥𝑛 , 𝑦𝑛 }

• Y = 𝑓 X

• Input X is called predictor, independent variable, feature

• Output Y is called response, dependent variable

▪ Two types of outputs: classification and regression
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Regression: continuous variables
39

Hue value
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Regression modelNew image

Ripeness: 6.2

3.2 5.8 8.1 11.3Ripeness:
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Regression with remote sensing data
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Classification: discrete (classes)
41

Feature Space

Object database Representation/
Object features

New image

Distance 
measure

Detected object
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Classifying remote sensing data 
1 – digital information
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Classifying remote sensing data 
2 – labeled examples
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Classifying remote sensing data 
3 – build the model

Training classifier
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Classifying remote sensing data
4 – predict unseen data

cl
as

s
B

an
ds

Using trained classifier
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Classifying satellite 
images

▪ Here we predict the crop 
being cultivated using a time 
series of sat data.
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M. Russwurm, Courty C., R. Emonet, S. 
Lefèvre, D. Tuia, and R. Tavenard. ELECTS: 
End- to-end learned early classification of 
time series. ISPRS J. Int. Soc. Photo. Remote 
Sens., 196:445–456, 2023. 



Classifying satellite 
images

▪ Here we predict the crop 
being cultivated using a time 
series of sat data.

▪ The prediction get more 
accurate with more 
temporal information
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M. Russwurm, Courty C., R. Emonet, S. 
Lefèvre, D. Tuia, and R. Tavenard. ELECTS: 
End- to-end learned early classification of 
time series. ISPRS J. Int. Soc. Photo. Remote 
Sens., 196:445–456, 2023. 



Classifying satellite 
images

▪ Here we predict the crop 
being cultivated using a time 
series of sat data.

▪ The prediction get more 
accurate with more 
temporal information
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M. Russwurm, Courty C., R. Emonet, S. 
Lefèvre, D. Tuia, and R. Tavenard. ELECTS: 
End- to-end learned early classification of 
time series. ISPRS J. Int. Soc. Photo. Remote 
Sens., 196:445–456, 2023. 



Classify other types of images.

▪ With custom-built, affordable 
imaging setup

▪ A model that works on 
videos, leveraging 2 tasks
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▪ Once trained, 3D reconstructs a 100m 
transect in playing video time 

▪ Tested in Isreal, Jordan and Djibouti in 2022

J. Sauder, G. Banc-Praudi, A. Meibom, and D. Tuia. Scalable semantic 3d mapping of coral reefs with deep learning. Methods in Ecology 
and Evolution, 2024. 



Mapping and monitoring coral reefs at scale



In the next course…

▪ We will consider regression problems

▪ In a regression problem, we estimate a process that is continuos, e.g.
• Temperature (in °C)

• Precipitations (in mm)

• Chlorohpyll concentrations

• …

▪ Discrete processes, or classification problems, will be covered in other courses 
(e.g. ENV-540, IPEO)
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