

A brief intro to
machine learning

Devis TUIA

Sensing and
spatial
modeling for
earth
observation

So far in ENV-440...

- Image acquisition and formation
- Keypoint detection and matching
- Image orientation
- Creating orthos
- Extracting some features from elevation models

Now let's move into process **prediction**.

- We want to estimate a quantity of interest given some input data.
- In our case, the input data will be
 - the DEM
 - the variables of interest we extracted from it (see last course)
- We will consider methods from two families
 - Machine learning (this and next course)
 - Geostatistics (following courses by Alexis Berne)

Machine learning

What is ML for you?

Let's hear it from you!

- Let's stick to the basics: ML has been defined as "learning from data".
- And I am pretty sure you've done some so far.

You maybe did not know it
(but probably you did)

- Let's stick to the basics: ML has been defined as “learning from data”.
- Learning what?

All kinds of desirable outputs	Given some relevant variables (inputs)
- What price will my computer have in 3 years ?	<i>Color, brand, processor, RAM, ...</i>
- Will it rain tomorrow ?	<i>Temperature, pressure, 10years of rain measurements, ...</i>
- What animal is in this picture ?	<i>Pictures of animals, colors, ...</i>
- What is the shortest route to go to Chailly ?	<i>A street network, cell phone data, TCS/TL websites, ...</i>

- Let's stick to the basics: ML has been defined as “learning from data”.
- Learning what?

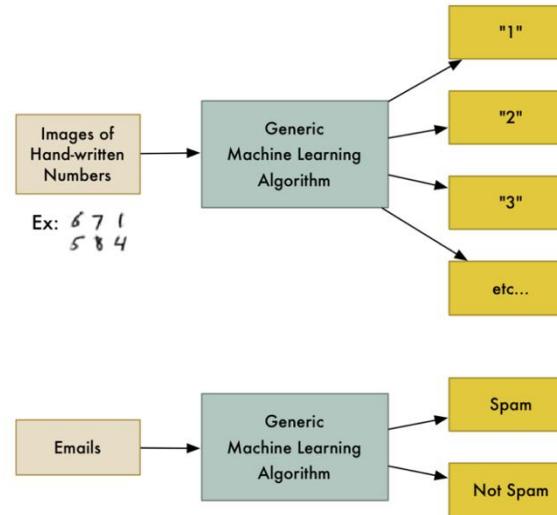
Our kinds of desirable outputs	Given some relevant variables (inputs)
<ul style="list-style-type: none">- What is the runoff of the river 'there'?- What is the chlorophyll in this plant?- Which portions of that region have been flooded ?- What was the bird doing during its flight ?- What is the content (tag) of this image ?	<i>YOU name them!</i>

- Let's stick to the basics: ML has been defined as "learning from data".
- **Learning how?**
- With generic algorithms
- We don't want to write specific code
- We want to feed data to the generic algorithm
- We leave the algorithm build its own logic linking inputs and the output

(... and then improve it with specific knowledge)

- Let's stick to the basics: ML has been defined as "learning from data".

- Learning how?**
- With generic algorithms



- Let's stick to the basics: ML has been defined as “learning from data”.
- **In what is it different to physical models?**

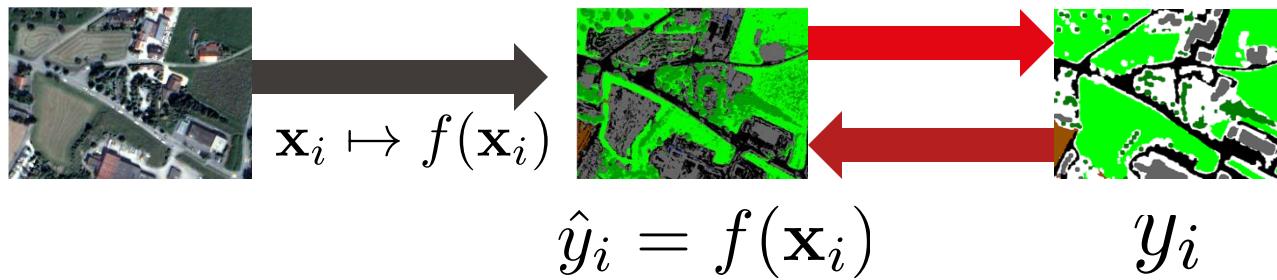
	Physical	Machine learning
Ground	Physics = 1 problem, 1 model	Learn from data = many problems, 1 model
Training	No need for training	Need to be trained
Comp.	Generally slow	Very fast
General	Depends strongly on boundary conditions	Cannot learn other things than those seen in training

So how does it work?

- ML algorithms have generally two phases
 - **training** phase: the model learns the input/output relations from a set of known data
 - inference (or testing phase): the trained model predicts unseen data using the knowledge gathered during training.

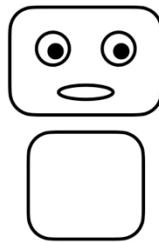
So how does it work?

- Machine learning: statistical models learning patterns from observational data



So how does it work?

- ML algorithms have generally two phases
 - **training phase**: the model learns the input/output relations from a set of known data
 - **inference** (or **testing** phase): the trained model predicts unseen data using the knowledge gathered during training.



Machine learning?

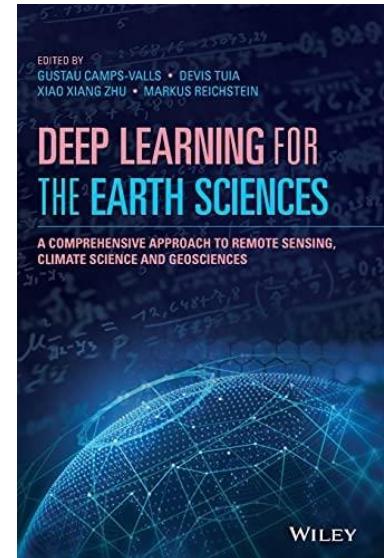
- Does it work all the time?
- No. it is not magic.
- It works if we have
 - the right inputs
 - the right learning machine
 - sufficient training data

Source xkcd

Why now : statistical and computational models are good enough...

- Machine learning has reached a certain maturity... and percolated in many fields of science.

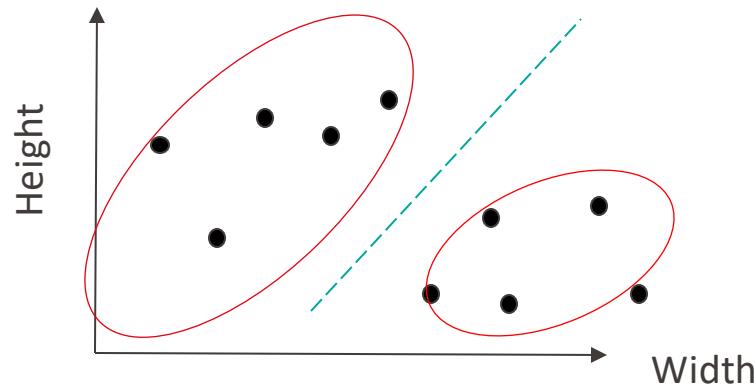
2015



A taxonomy of ML algorithms with selected examples

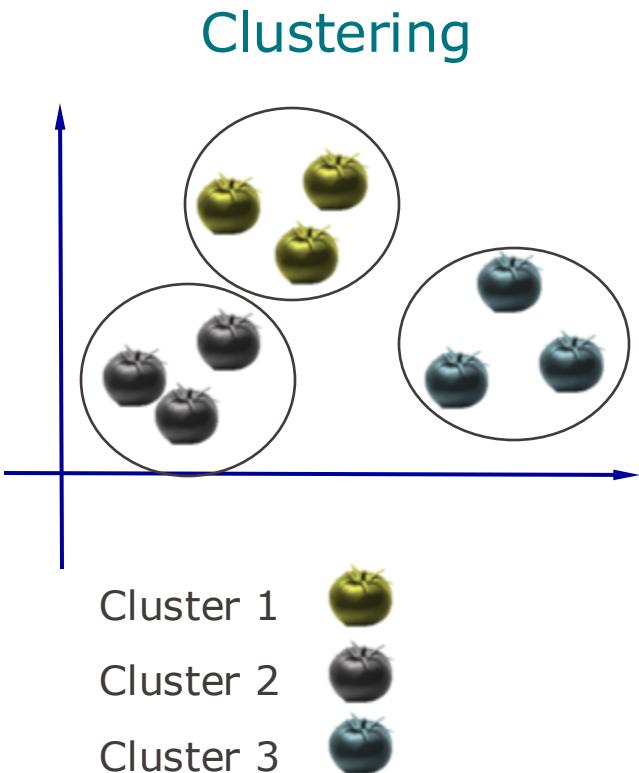
A taxonomy of machine learning methods

- Unsupervised learning
 - Clustering
 - Structure



- Unsupervised learning
 - Learning the relationship f between inputs X based on training data $\{(x_1), \dots (x_n)\}$
 - Input X is called predictor, independent variable, feature
 - There is no output to predict, you learn the structure of the data.
 - For example, when grouping data, one predicts a cluster
- A cluster is the ID of a group of data points that are similar to each other

A clustering example



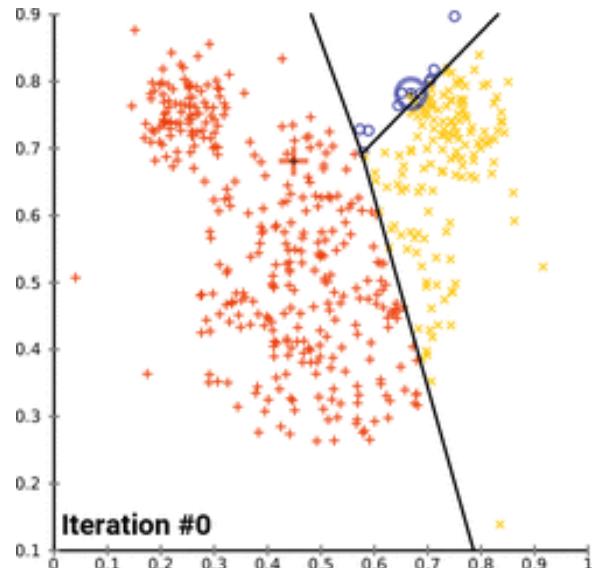
Example of unsupervised method: k-means

K-means is an iterative method

1. It starts with a guess of the cluster centers (often random)
2. Computes the assignment by minimizing variance of each cluster
3. Updates the centers as the means of the samples assigned to each center
4. Repeats 2.-3. until stability is reached.

Stability can be:

- a fixed number of iterations
- when the centroids do not move anymore



- Once we have a decent clustering result, where each cluster can be linked to a single class
- We proceed to a manual class assignation
 - Cluster 1 → Grass
 - Cluster 2 → water
 - Cluster 3 → Grass
 - Cluster 4 → Built
 - ...

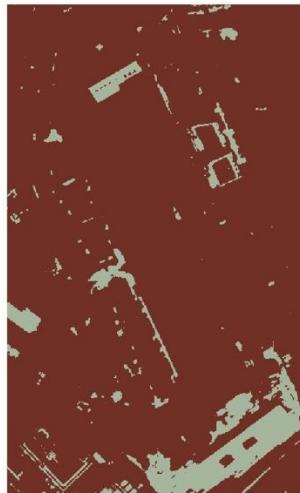
Note that **many clusters can be assigned to the same class!**

and it does happen!!!

Example on a very high resolution image

Quantization

(each pixel is colored by the average color of the members of the cluster it belongs to)



2 clusters

3 clusters

4 clusters

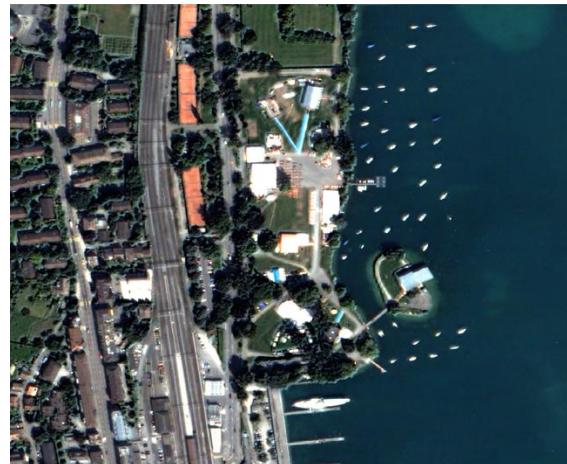
8 clusters

Original
image

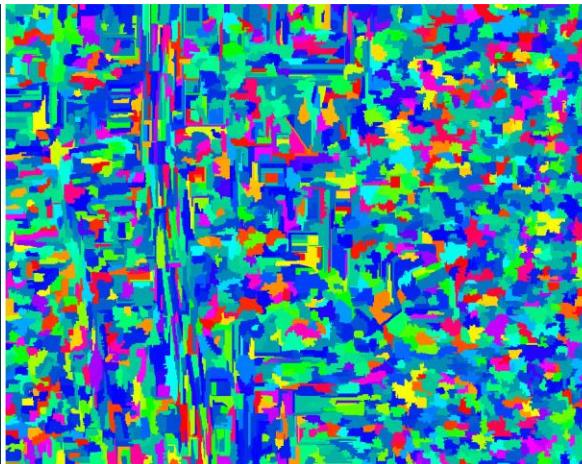
Example on a very high resolution image

Superpixelisation

(each pixel is grouped to neighbors according to their spectral similarity)



True image



Clustering result
500 clusters
(colors are cluster IDs)

VS

Semantic information

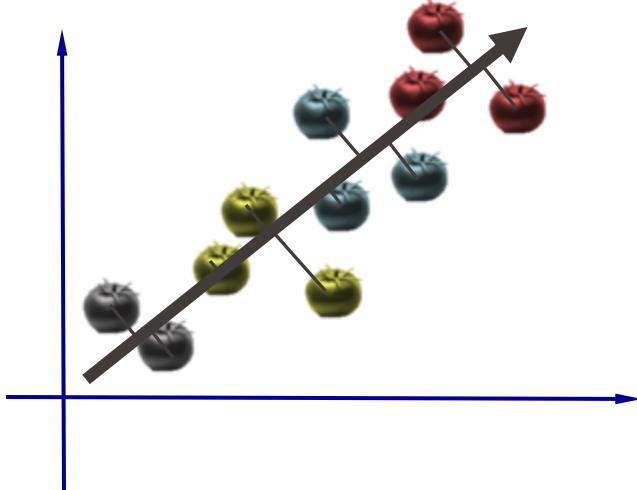
Unsupervised learning – dimensionality reduction

- Compress information based on data redundancy
- Without any prediction objective, you aim at removing un-necessary, redundant information
- Typically one aims at finding correlated variables and remove them
- A famous method is Principal Component Analysis (PCA)

A dimensionality-reduction example

From 2 correlated variables

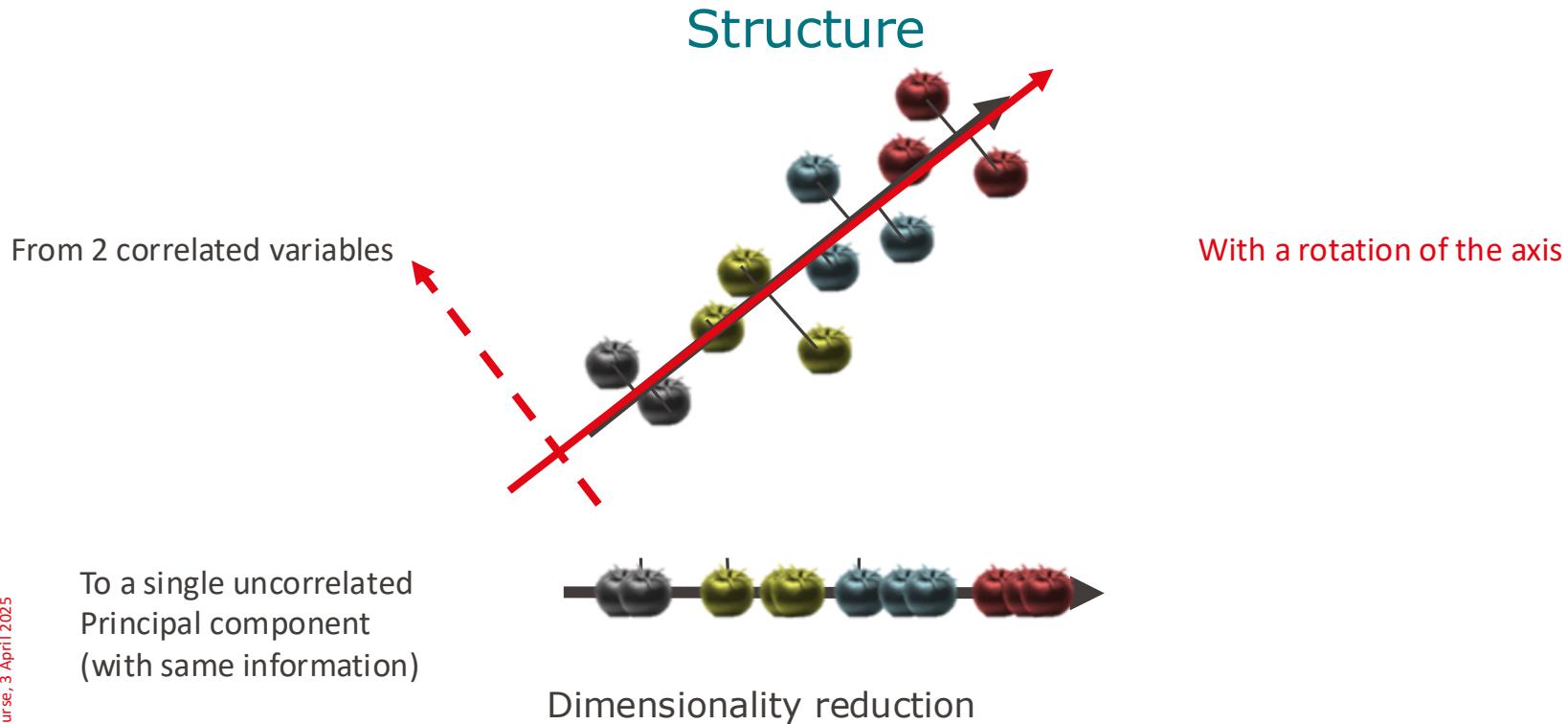
Structure



To a single uncorrelated one
(with same information)

Dimensionality reduction

A dimensionality-reduction example

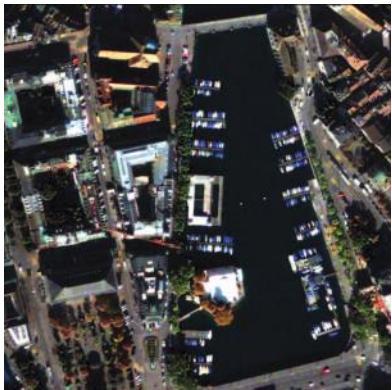
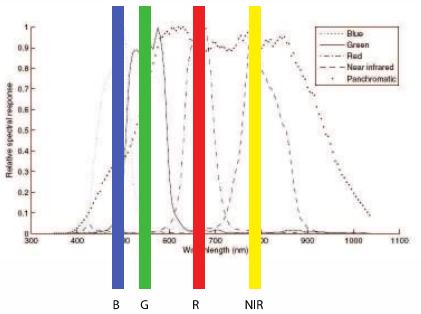


Example of PCA on satellite data: multi-resolution image fusion

Multispectral image
Low res
color

Panchromatic image
High res
BW

Example of PCA on satellite data



B G R NIR



Example of PCA on satellite data

PC1, the information correlated across all bands

PC2, information specific to single bands

PC3, very high frequencies

PC4, what's left

Projection matrix (from last course)

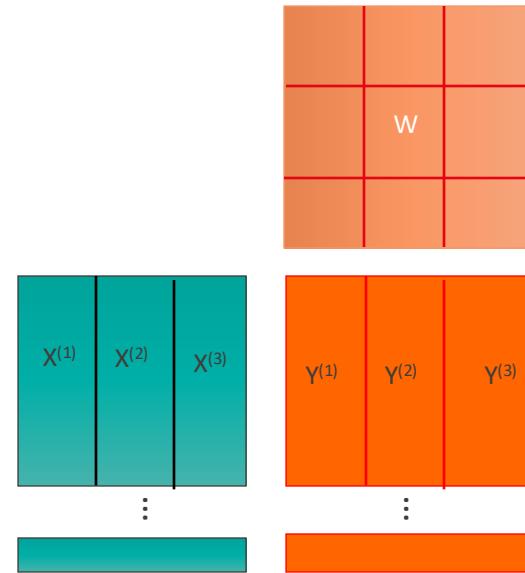
$$Y = XW$$

- W is a square matrix
- As many lines and columns as bands
- Ex: 3 bands

$$W = \begin{bmatrix} W(1,1) & W(1,2) & W(1,3) \\ W(2,1) & W(2,2) & W(2,3) \\ W(3,1) & W(3,2) & W(3,3) \end{bmatrix}$$

Multiplies band 2

Projects into
component 1

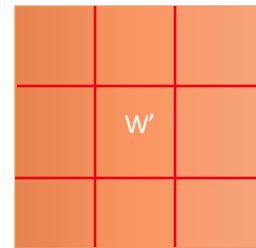
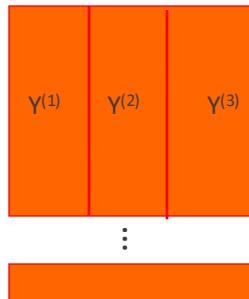
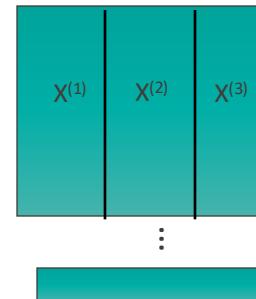


Projection matrix (from last course)

- W is an invertible matrix!
- Since it is orthogonal, $W^{-1} = W'$
- Given the principal components, we can go back to the original bands exactly.
- Now... what if we change the first PC a little bit?

$$Y = XW$$

$$X = YW^{-1} = YW'$$



Example of PCA on satellite data

PC1, the information correlated across all bands

PC2, information specific to single bands

PC3, very high frequencies

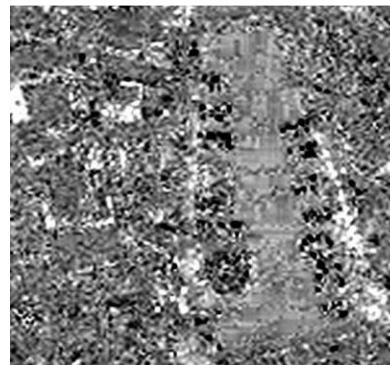
PC4, what's left

Example of PCA on satellite data

Replace with
High resolution
Grayscale band

PC2

PC3



PC4

Feature fusion

High res
BW

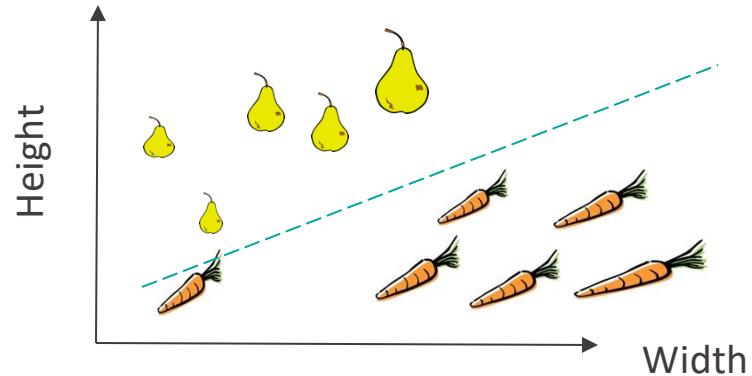
Low res
color

High res
color!

A taxonomy of machine learning methods

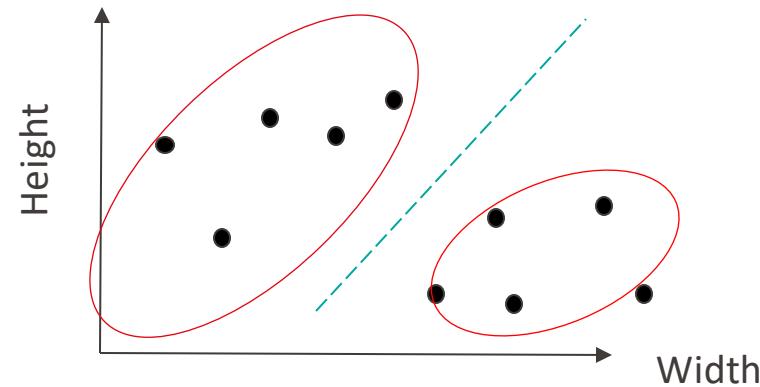
- **Supervised learning**

- Classification
- Regression



- **Unsupervised learning**

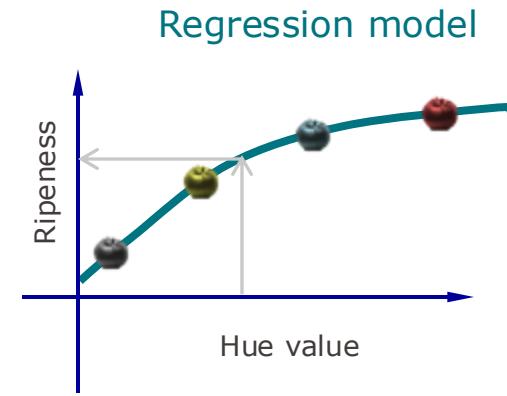
- Clustering
- Structure



- Supervised learning
 - Learning the relationship f between input X and output Y based on training data $\{(x_1, y_1), \dots (x_n, y_n)\}$
 - $Y = f(X)$
 - Input X is called predictor, independent variable, feature
 - Output Y is called response, dependent variable
- Two types of outputs: classification and regression

Regression: continuous variables

Ripeness: 6.2



Ripeness: 3.2

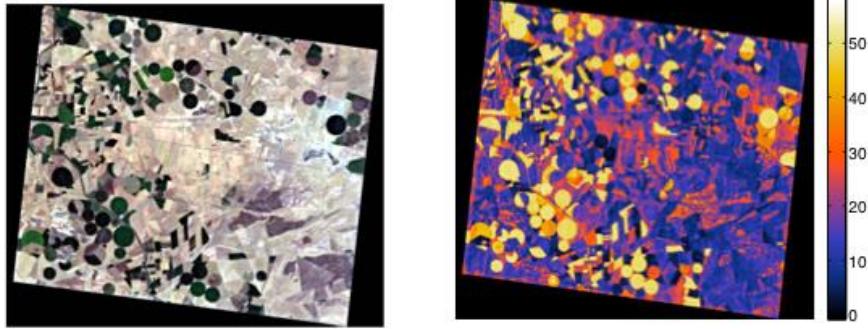
5.8

8.1

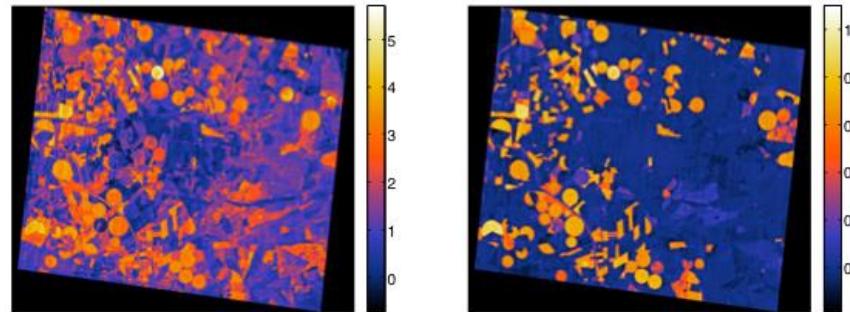
11.3

Regression with remote sensing data

More about regression
later in this course!



CHRI

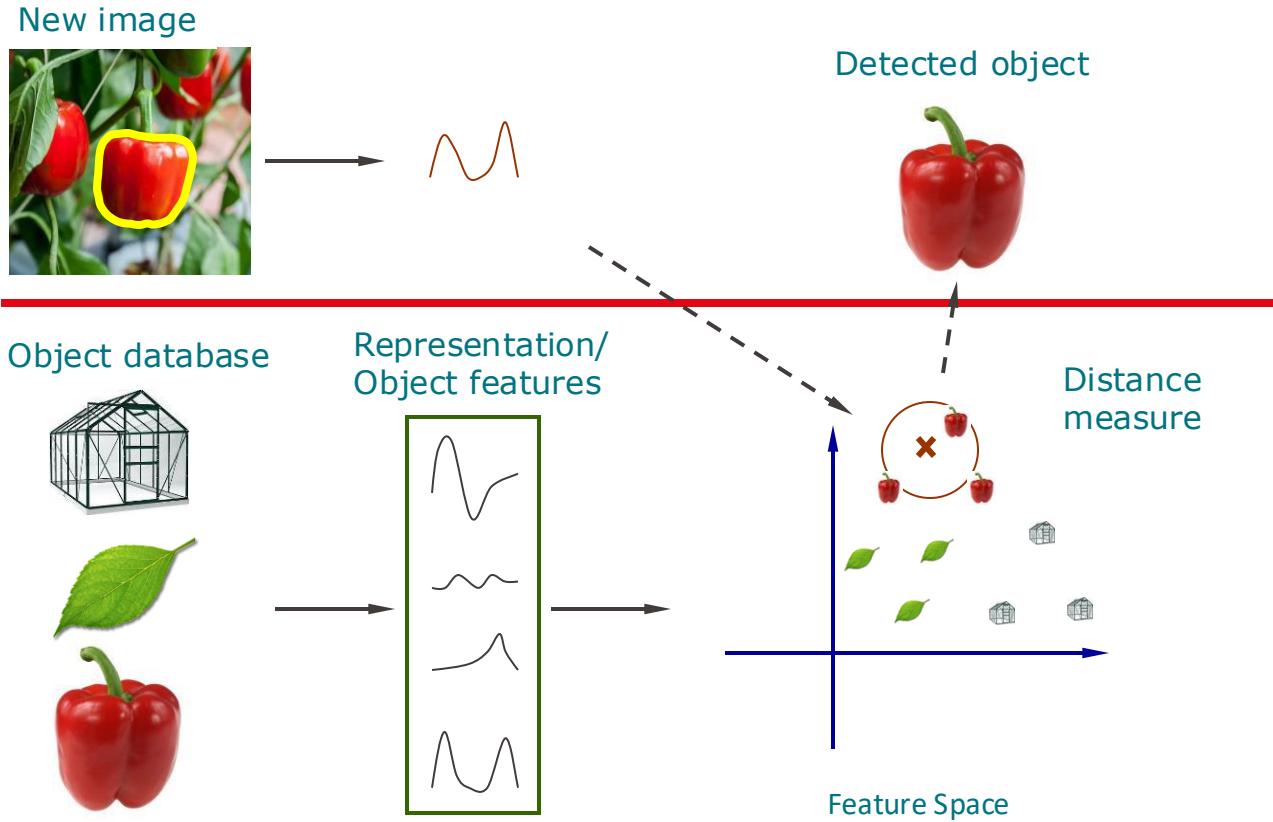


LAI

fCover

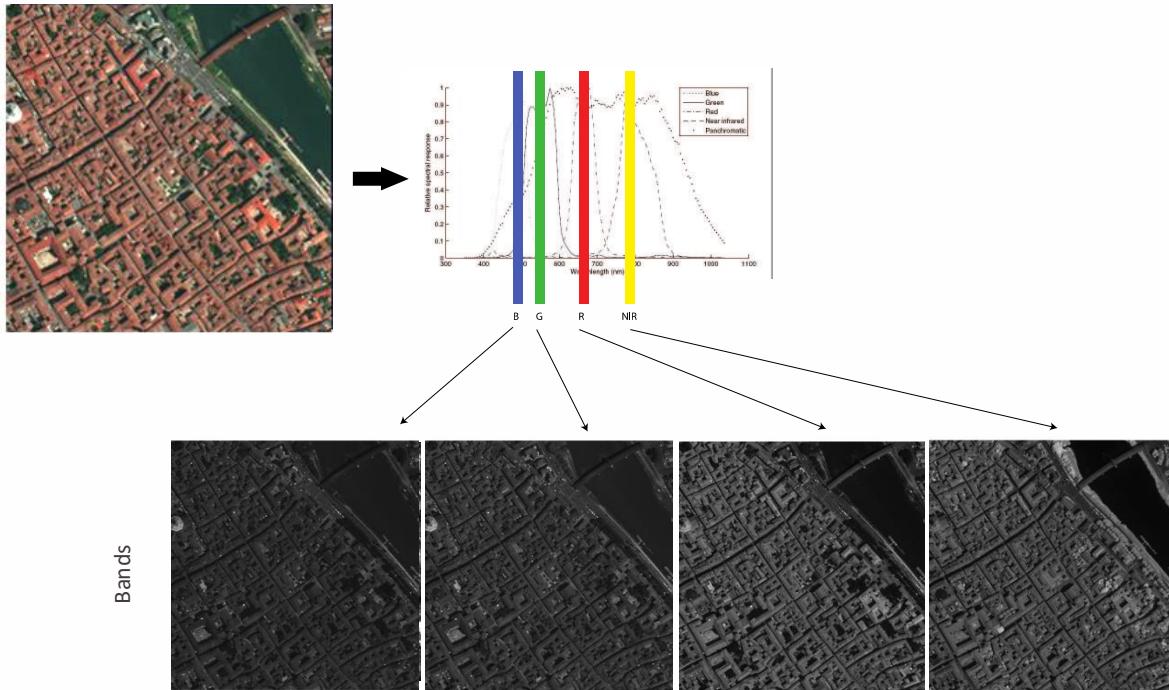
[Tuia et al., 2011, GRSI]

Classification: discrete (classes)



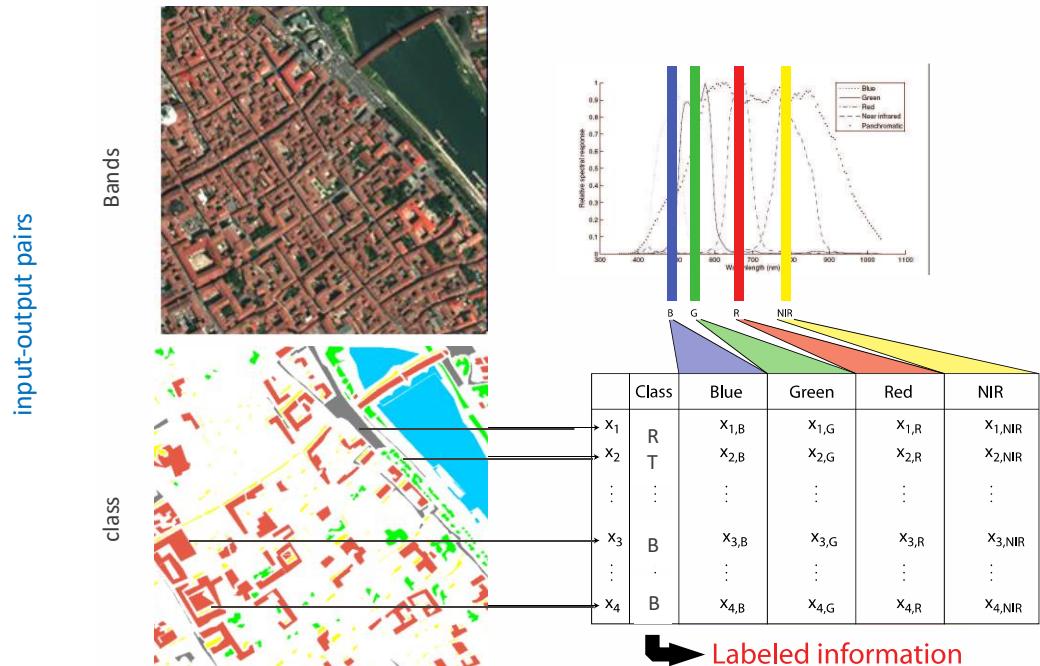
Classifying remote sensing data

1 – digital information



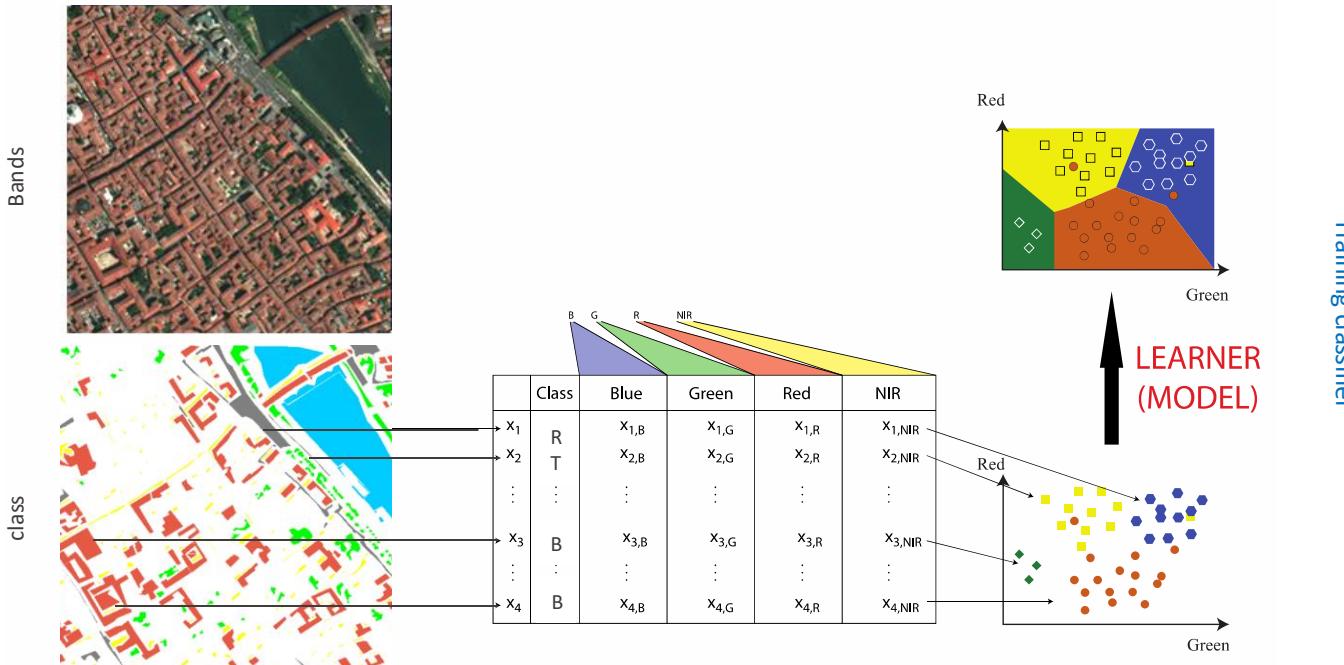
Classifying remote sensing data

2 – labeled examples



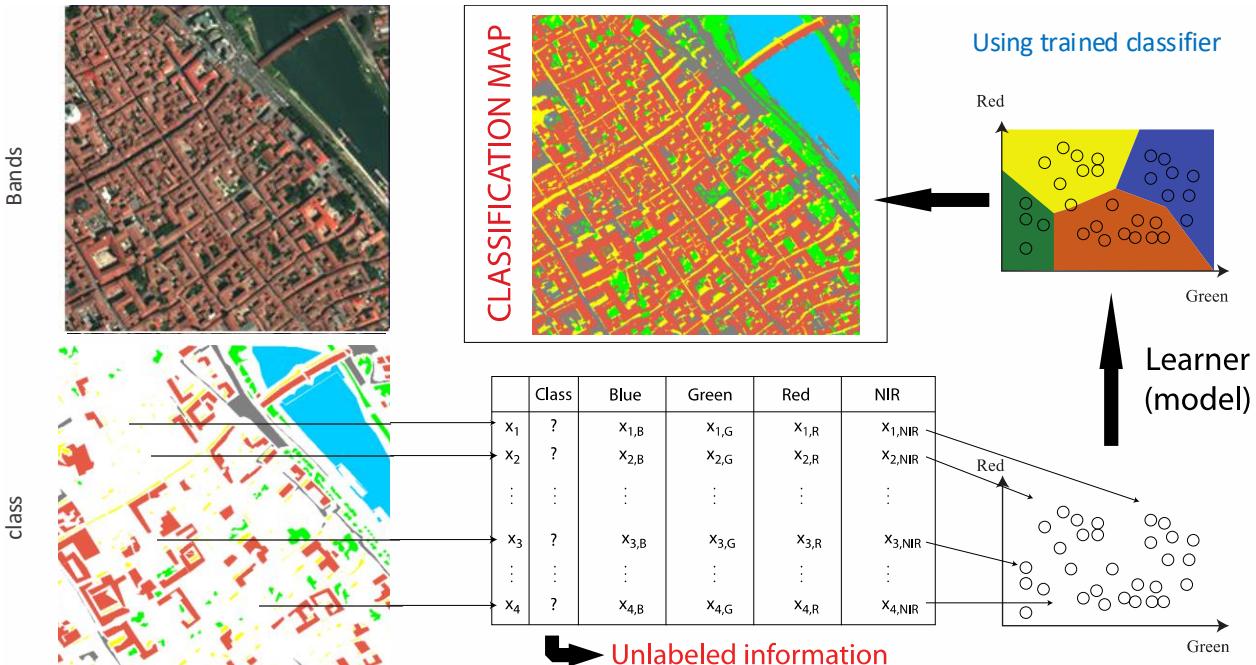
Classifying remote sensing data

3 – build the model



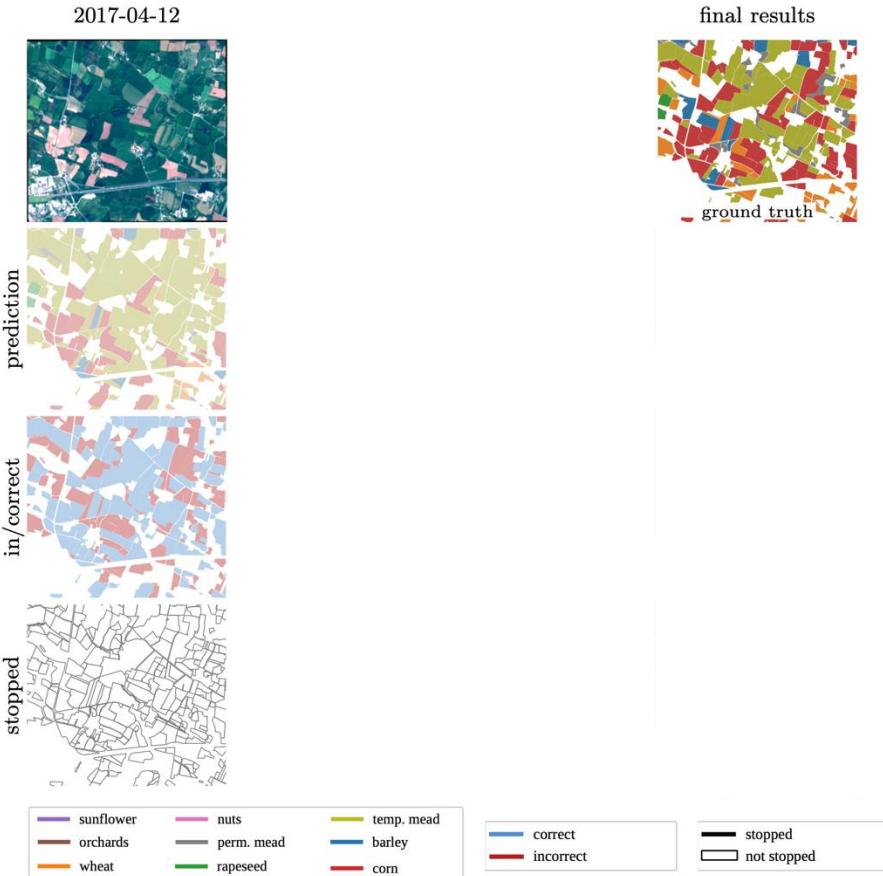
Classifying remote sensing data

4 – predict unseen data



- Here we predict the crop being cultivated using a time series of sat data.

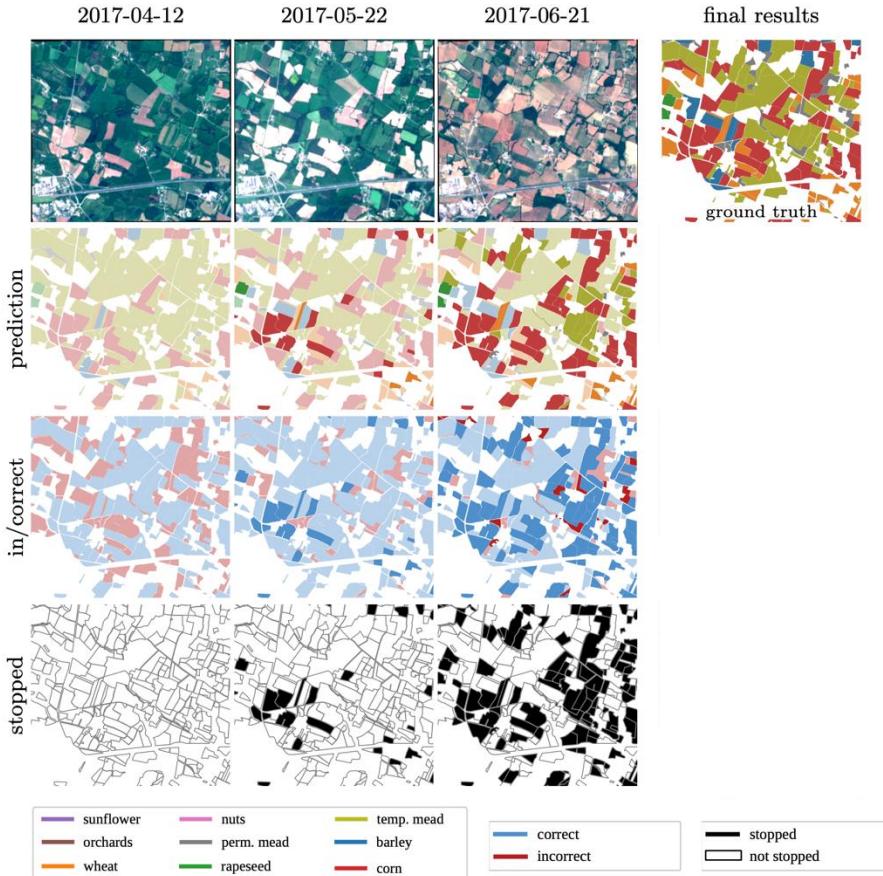
M. Russwurm, Courty C., R. Emonet, S. Lefèvre, D. Tuia, and R. Tavenard. ELECTS: End- to-end learned early classification of time series. *ISPRS J. Int. Soc. Photo. Remote Sens.*, 196:445–456, 2023.



Classifying satellite images

- Here we predict the crop being cultivated using a time series of sat data.
- The prediction get more accurate with more temporal information

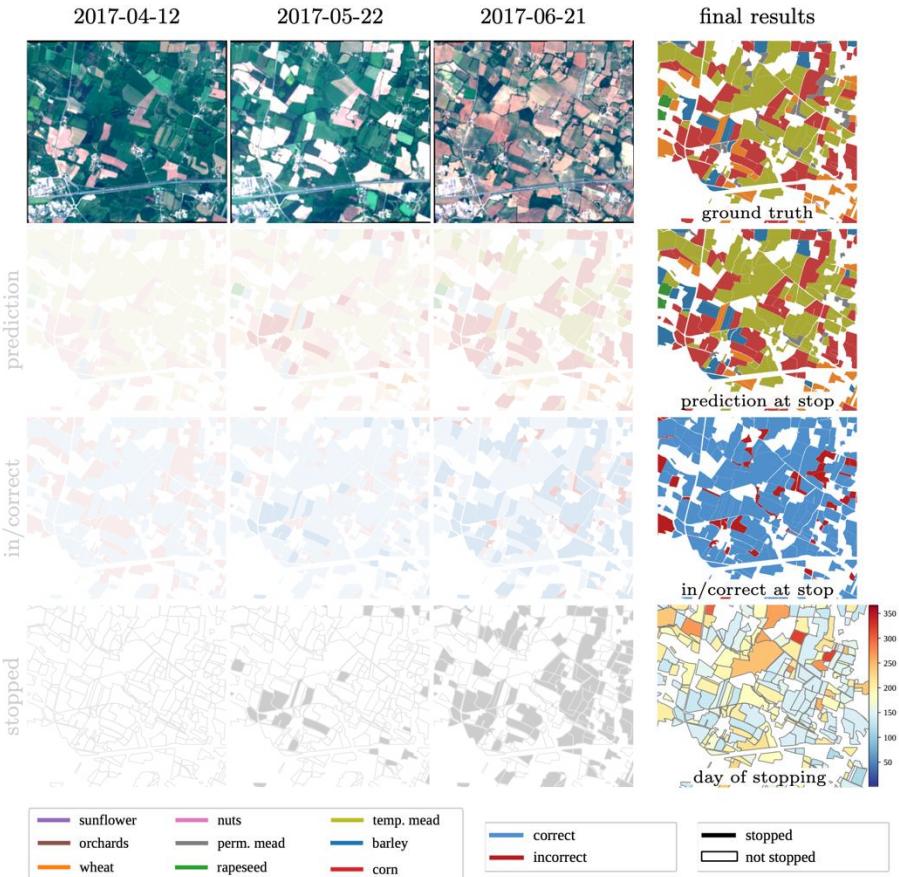
M. Russwurm, Courty C., R. Emonet, S. Lefèvre, D. Tuia, and R. Tavenard. ELECTS: End- to-end learned early classification of time series. *ISPRS J. Int. Soc. Photo. Remote Sens.*, 196:445–456, 2023.



Classifying satellite images

- Here we predict the crop being cultivated using a time series of sat data.
- The prediction get more accurate with more temporal information

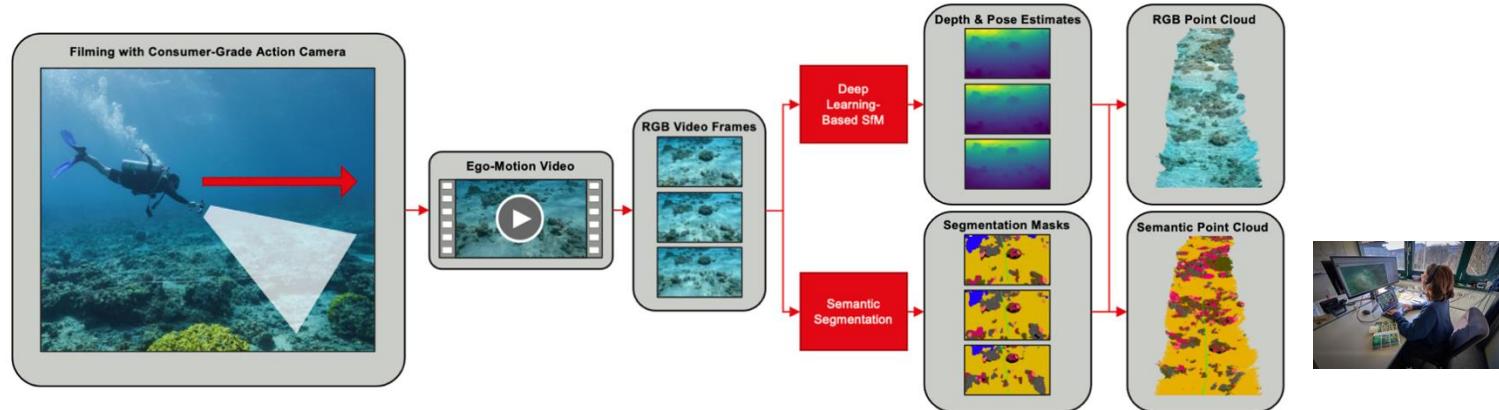
M. Russwurm, Courty C., R. Emonet, S. Lefèvre, D. Tuia, and R. Tavenard. ELECTS: End- to-end learned early classification of time series. *ISPRS J. Int. Soc. Photo. Remote Sens.*, 196:445–456, 2023.

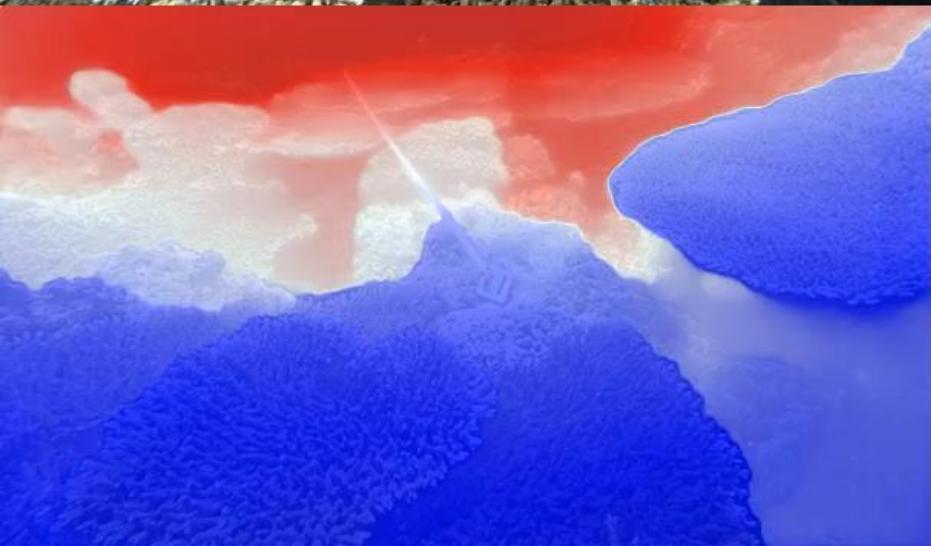
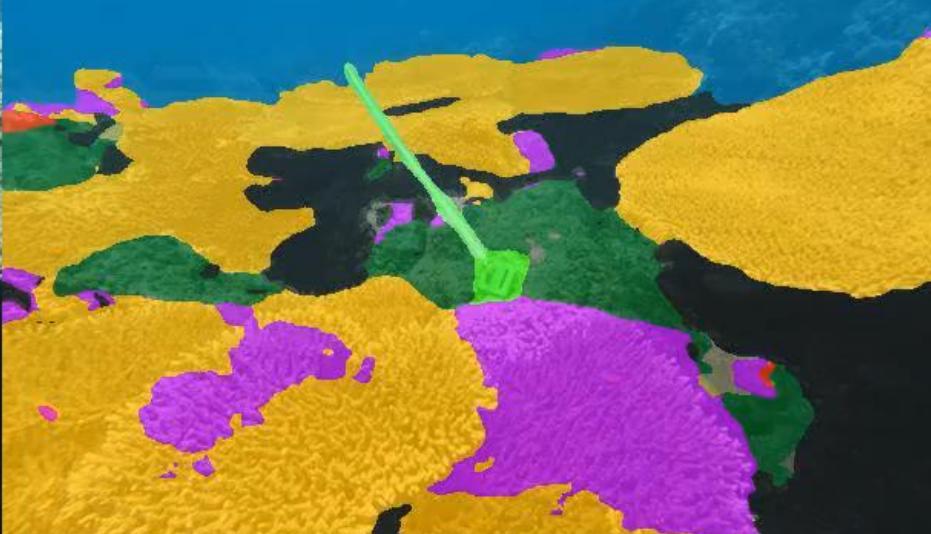


Classify other types of images.

- With custom-built, affordable imaging setup
- A model that works on videos, leveraging 2 tasks

- Once trained, 3D reconstructs a 100m transect in playing video time
- Tested in Isreal, Jordan and Djibouti in 2022





dark	rubble	other animal	transect tools	unknown hard substrate
fish	seagrass	massive alive	branching alive	algae covered substrate
sand	millepora	transect line	other coral dead	massive/meandering dead
human	background	branching dead	other coral alive	encrusting coral and cca
trash				

In the next course...

- We will consider regression problems
- In a regression problem, we estimate a process that is continuous, e.g.
 - **Temperature** (in °C)
 - Precipitations (in mm)
 - Chlorophyll concentrations
 - ...
- Discrete processes, or classification problems, will be covered in other courses (e.g. ENV-540, IPEO)