



Extracting relevant  
features  
Devis TUIA

Sensing and  
spatial  
modeling for  
earth  
observation

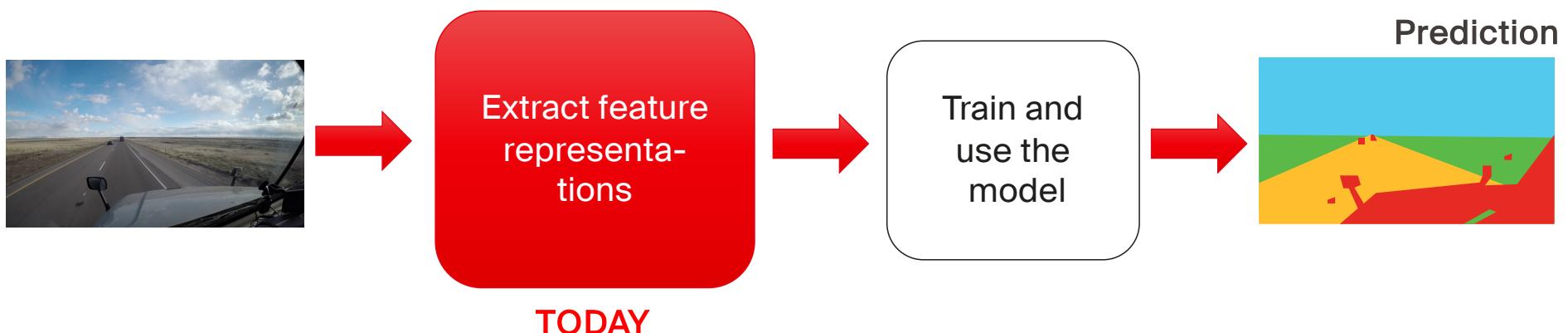
EPFL, spring semester  
2025

# We made it, we have a DEM!

- Now we have the input to predict environmental variables!
- Here we work with a DEM, but We could also use orthoimages, satellite images, etc. (but that's in another course ENV-540)

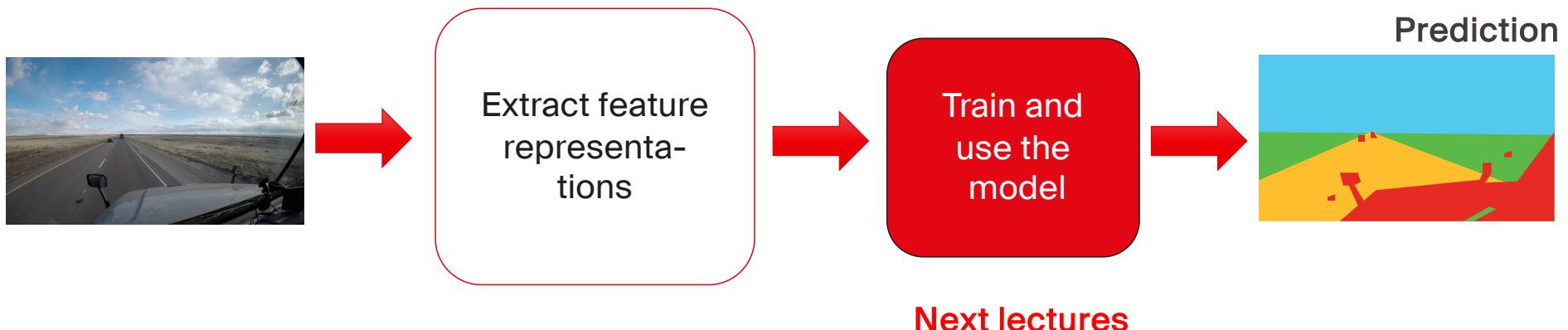
# We made it, we have a DEM!

- Now we have the input to predict environmental variables!
- We could also use orthoimages, satellite images, etc.
- The structure to follow would look like:



# We made it, we have a DEM!

- Now we have the input to predict environmental factors!
- We could also use orthoimages, satellite images, etc.
- The structure to follow would look like:



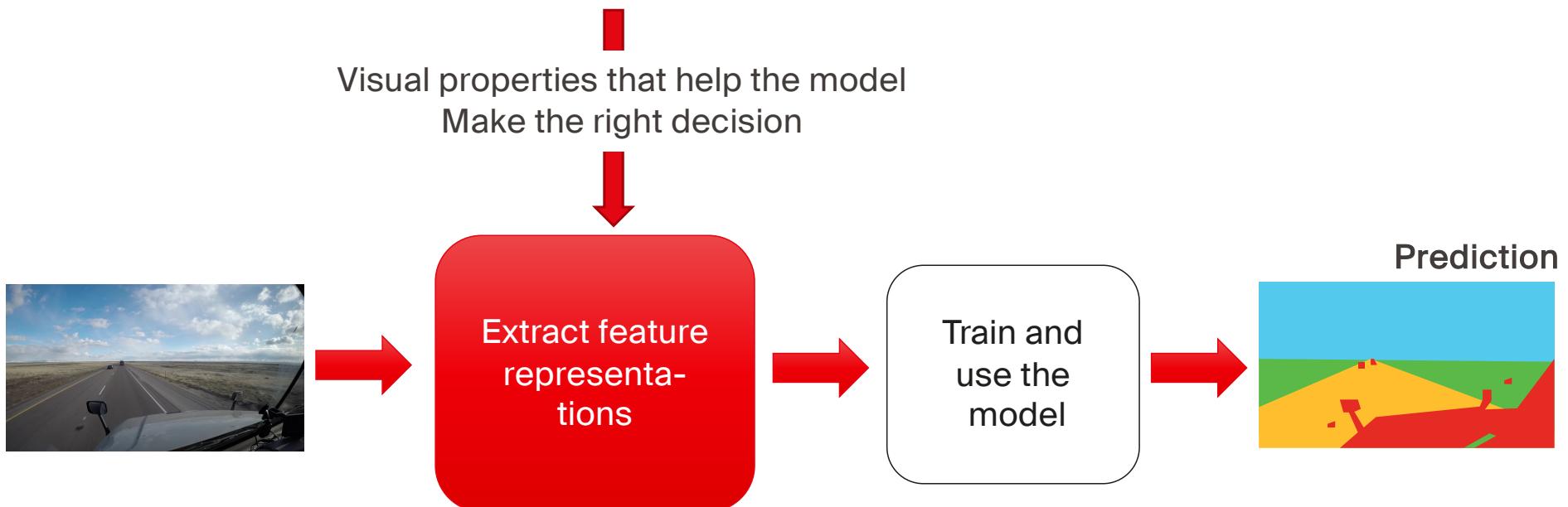
Next lectures

# Features

Why do we need features  
Good properties for features  
Types of features

# What are features?

- **Features:** new variables issued from the data that are more expressive to solve the problem

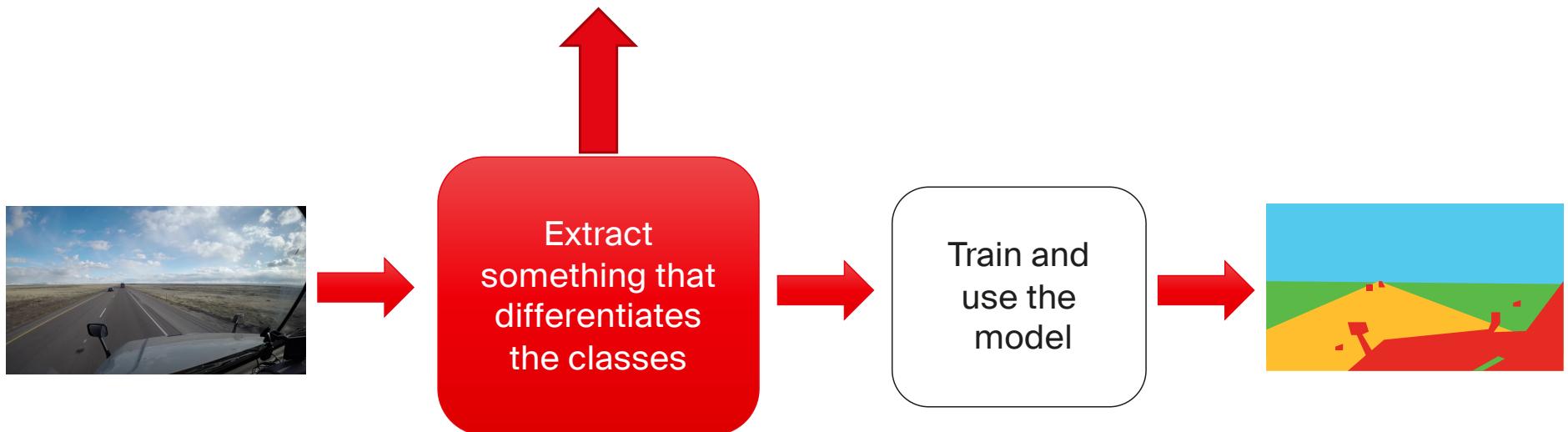


# “Features” sound like the descriptors of week 2...

- We can use the two terms interchangeably.
- For clarity, here I will use features for descriptors that are dense (= values for every pixel)
- This is in contrast to descriptors as those seen in the keypoints course (e.g. SIFT), where the description was computed only at the keypoint location

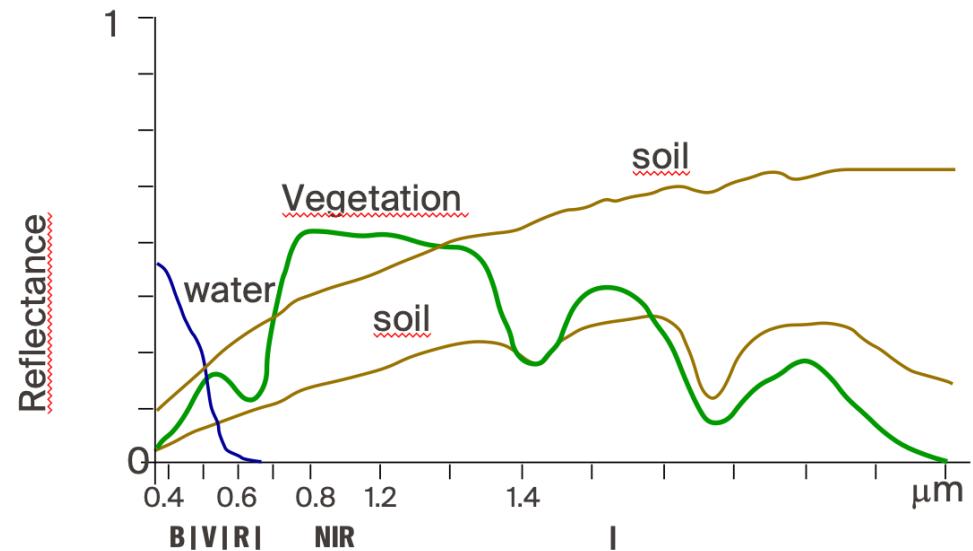
# Examples of features

- Vegetation → features related to reflectivity of vegetation → vegetation indices from NIR bands
- Urban → features relative to the shape of objects → spatial context in visible bands
- Clouds → features relative to thermal reflectivity → TIR bands



# “Good” vs “bad” features

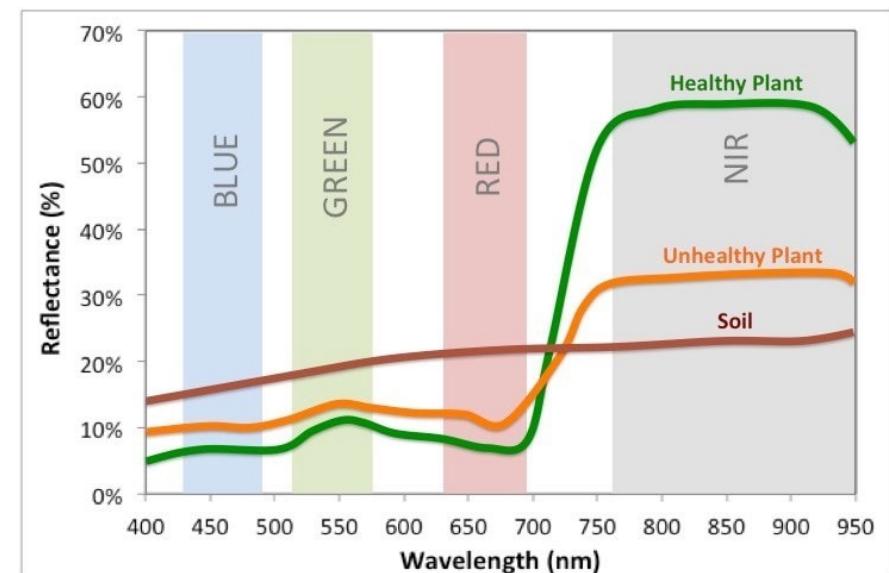
- In spectral images (as those we use in remote sensing) each surface is characterised by a **spectral signature**
- A sensor samples the true (continuous) signature according to its resolution
- E.g. 3 bands = 3 values.



# “Good” vs “bad” features

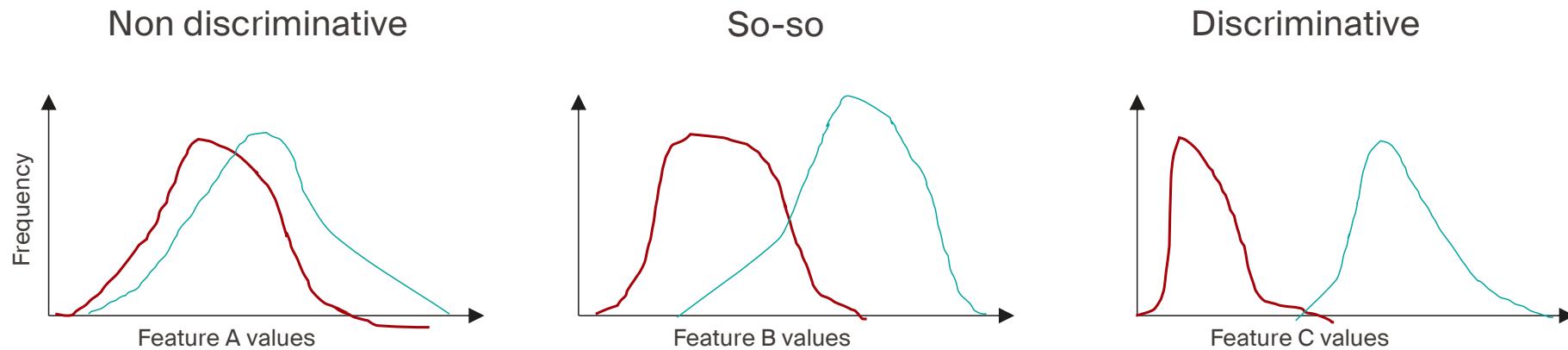
- In the same way, we can extract features that tailored to the problem at hand.
- A classical example is the NDVI
- By comparing infrared to red light, can highlight healthy vegetated surfaces
- So
  - it's a **good** feature to detect vegetation
  - It's a **bad** feature to detect cars

$$NDVI = \frac{x_i^{(NIR)} - x_i^{(R)}}{x_i^{(NIR)} + x_i^{(R)}}$$



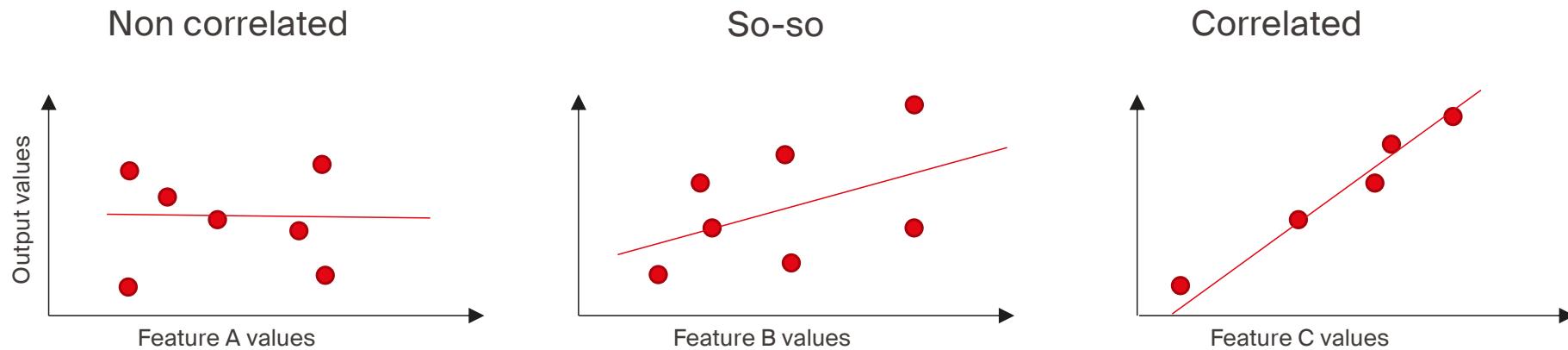
# Classification: the aim is being discriminative

- Good features separate examples of a class from examples of the other
- Below: the histogram of three features for two classes (in red and green)



# Regression: the aim is being correlated to the output

- Good features can lead to good fits in regression problems
- Below the scatterplots of three features for predicting a continuous output value
- A good feature correlates with the variable being predicted (output)



# How many types of features are around?

- As many as you can imagine.
- They all are signal modifications, channels combinations, etc.
- In neural networks, you learn them from data (so no feature engineering) → Join **ENV-540** if you want to know more.

# A (very rough) taxonomy of features

- Spectral: band combinations at different wavelenghts (not covered today, see **ENV-140/540**).
- Spatial: accounting for the spatial context around the pixel you are looking at
  - Based on convolution windows (e.g. low/high pass filters).
  - Extracted using some machine learning pipeline (e.g. BoVW, **ENV540**).
- In the next part we focus on spatial features, based on convolutions, to be extracted from the DEM.

# Convolution-based features

Low- and high-pass filters (a reminder)

Sobel filters

# Why spatial filters?

- Spatial filters tell us about image context and improve discrimination

# Why spatial filters?

- Spatial filters tell us about image context and improve discrimination

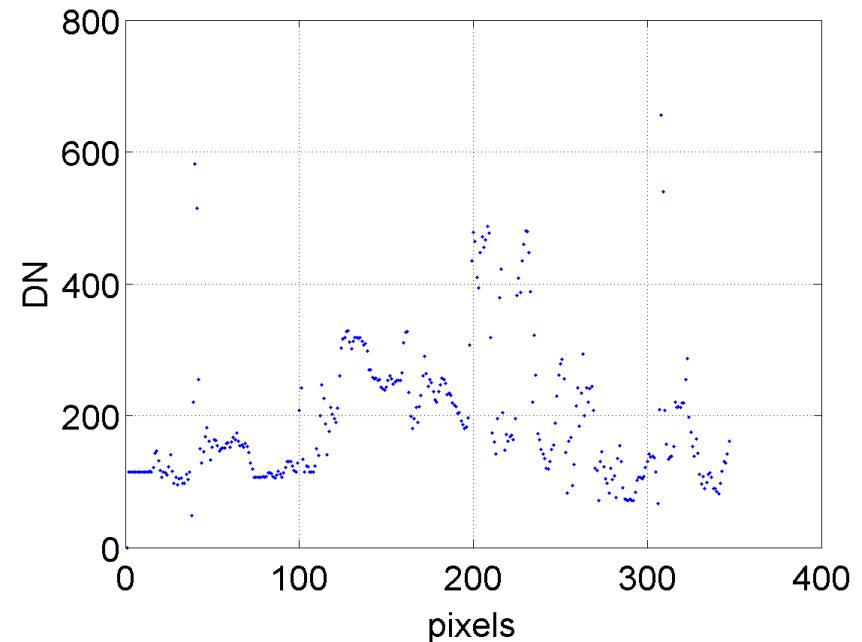


# Local enhancement

- One way to make images aware of context is to augment the input space with information about the surroundings.
- Augment = add new variables.
- We can create new features summarizing something about the local context (remember SIFT descriptions?).
- Each feature is a new variable telling us something about
  - Color distributions
  - Edges
  - Direction of spatial structures

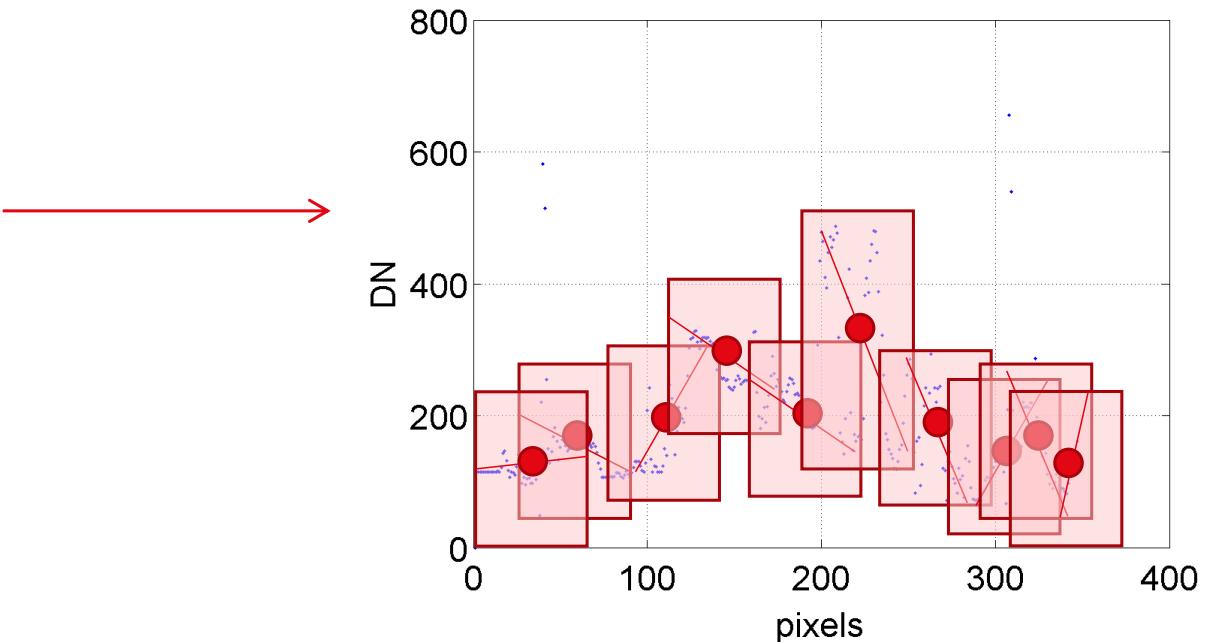
# Local convolutions (1D)

- In 1 D, we can see each row (resp. column) of the image as a series of discrete values
- We can use a convolution window to summarize nearby values



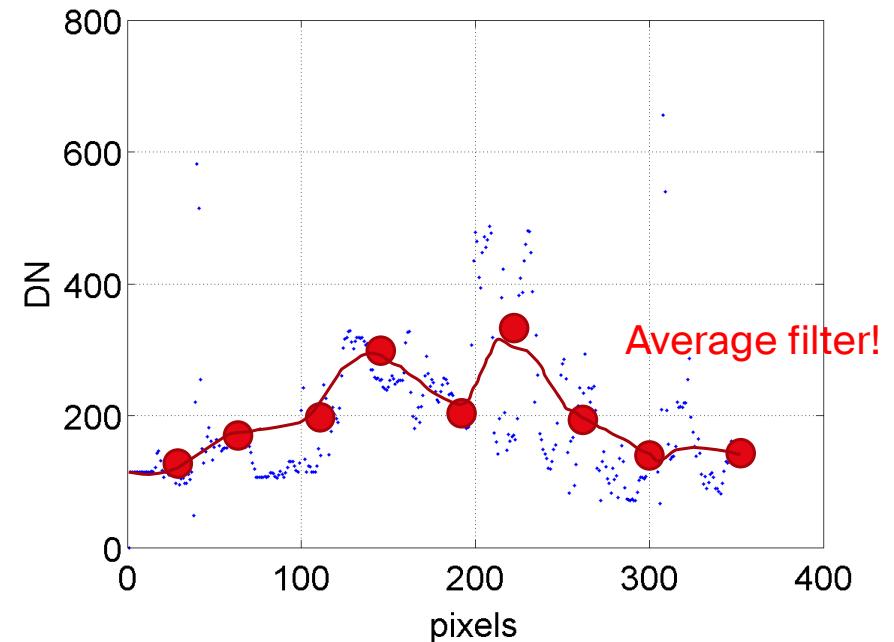
# Local convolutions (1D)

- In 1 D, we can see each row (resp. column) of the image as a series of discrete values
- We can use a convolution window to summarize nearby values



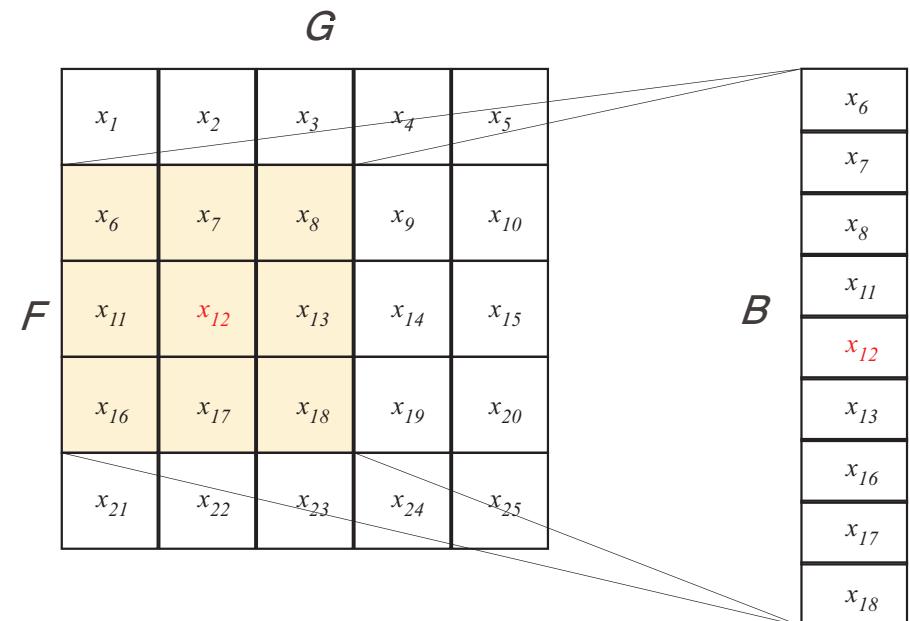
# Local convolutions (1D)

- In 1 D, we can see each row (resp. column) of the image as a series of discrete values
- We can use a convolution window to summarize nearby values



# Convolution filters in 2D

- We want to filter pixel  $x_{12}$  of the image  $G$
- We use a  $3 \times 3$  convolution filter  $F$
- The pixels considered by the convolution are in the vector  $B$



# Convolution operation

- A dot product is applied between the moving window B and the filter F
- For a filter of size with C coefficients and sum of coefficients S  
(ex: for F of the previous slide, C = 9)

$$x_{12}^F = \frac{1}{S} (F^T * B) = \frac{1}{S} \sum_{i=1}^C F_i B_i$$

# Low pass filter: average

- A low pass filter smooths the image (the resulting feature is the average of all the points in the window)

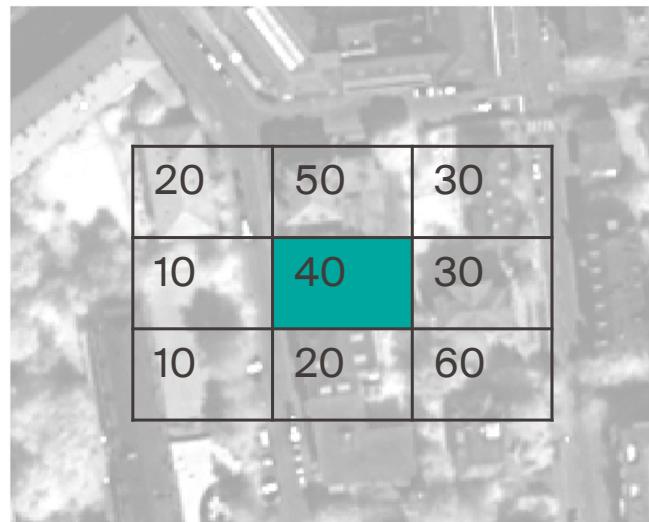


$$* \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} =$$



# Low pass filter: average

- A low pass filter smooths the image (the resulting feature is the average of all the points in the window)

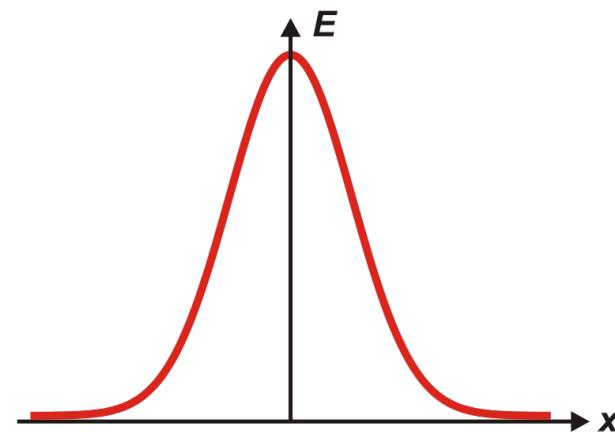


$$* \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} =$$



# Low pass filter: Gaussian

- With the average filter, the smoothing is often too strong
- A Gaussian filter weights the coefficients with respect to distance



# Low pass filter: Gaussian



$$* \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} =$$



# Comparison

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$



$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$



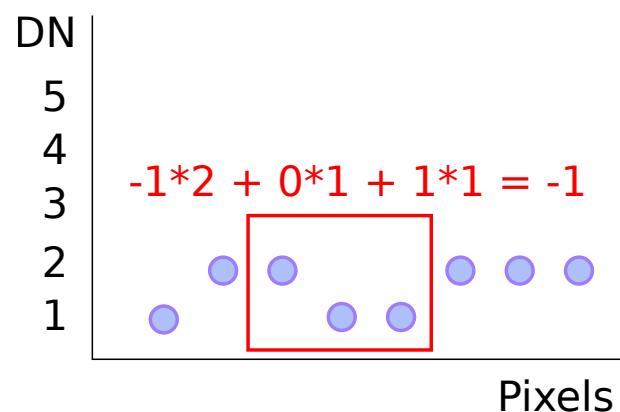
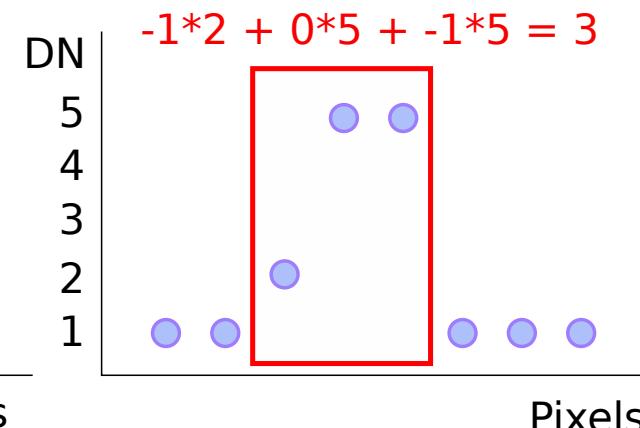
# What about edges? Sobel filter

- Sobel filters are a family of directional high pass filters
- They work on image gradients
- The filters are usually convolutions in 2D, e.g. 
$$\begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$
- They are computed in different directions, then results averaged.

# Recap: Filters based on gradients in 1D

$$\begin{pmatrix} -1 & 0 & 1 \end{pmatrix}$$

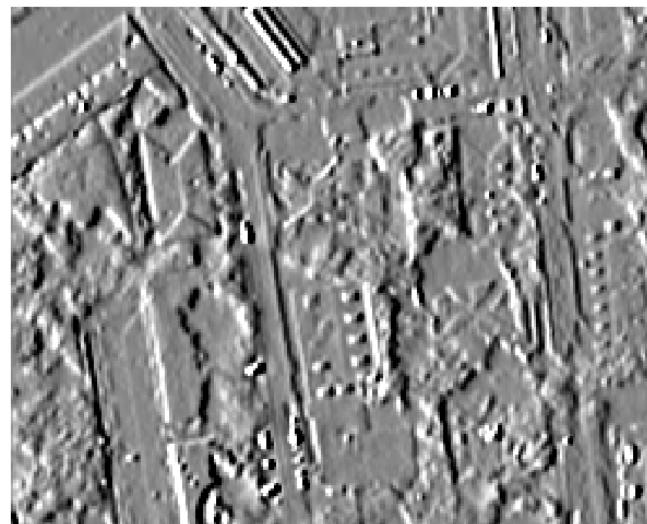
- It is a differentiation operator
- Gives the direction of the largest possible increase in intensity
- Shows how smoothly the image changes at that point
  - If an edge, the value is large
  - If not, the value is small



# Sobel filter: horizontal derivative = vertical structures



$$* \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix} =$$

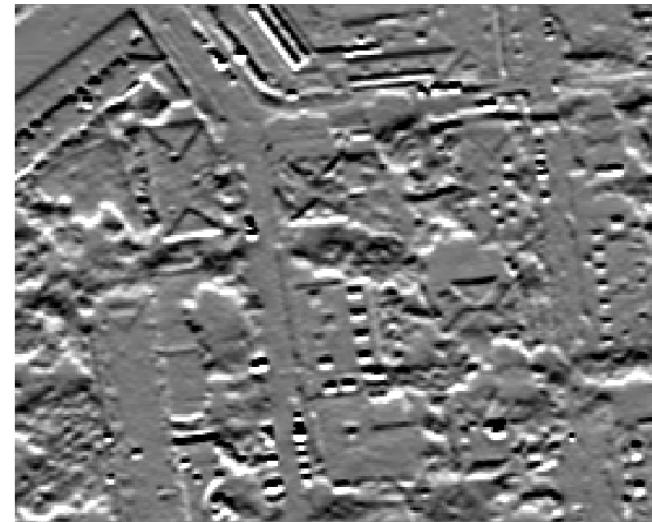


$I_V$

# Sobel filter: vertical derivative = horizontal structures



$$* \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix} =$$

 $I_H$

# Sobel filter: first diagonal component



$$* \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{pmatrix} =$$



# Sobel filter: second diagonal component



$$* \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix} =$$



# Sobel filter: isotropic filter

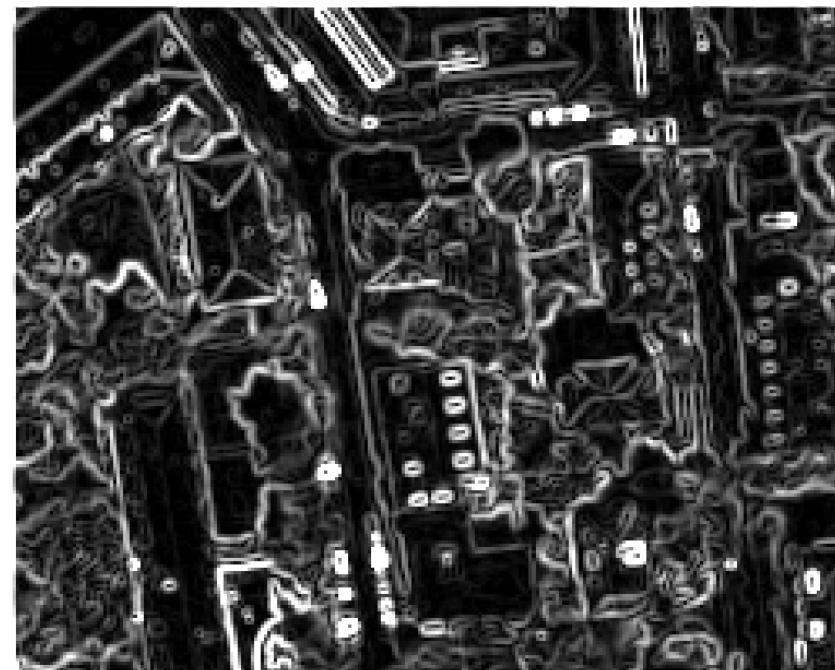


$$*(S_h + S_v + S_{d1} + S_{d2}) =$$



# Sobel filter

$$\sqrt{I_H^2 + I_V^2}$$



# Convolution filters for DEMs

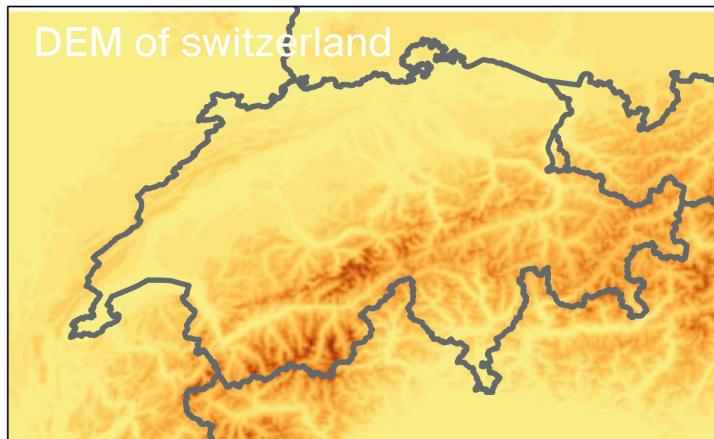
DoG

Directional derivatives

Slope

# Convolution filters for DEMs

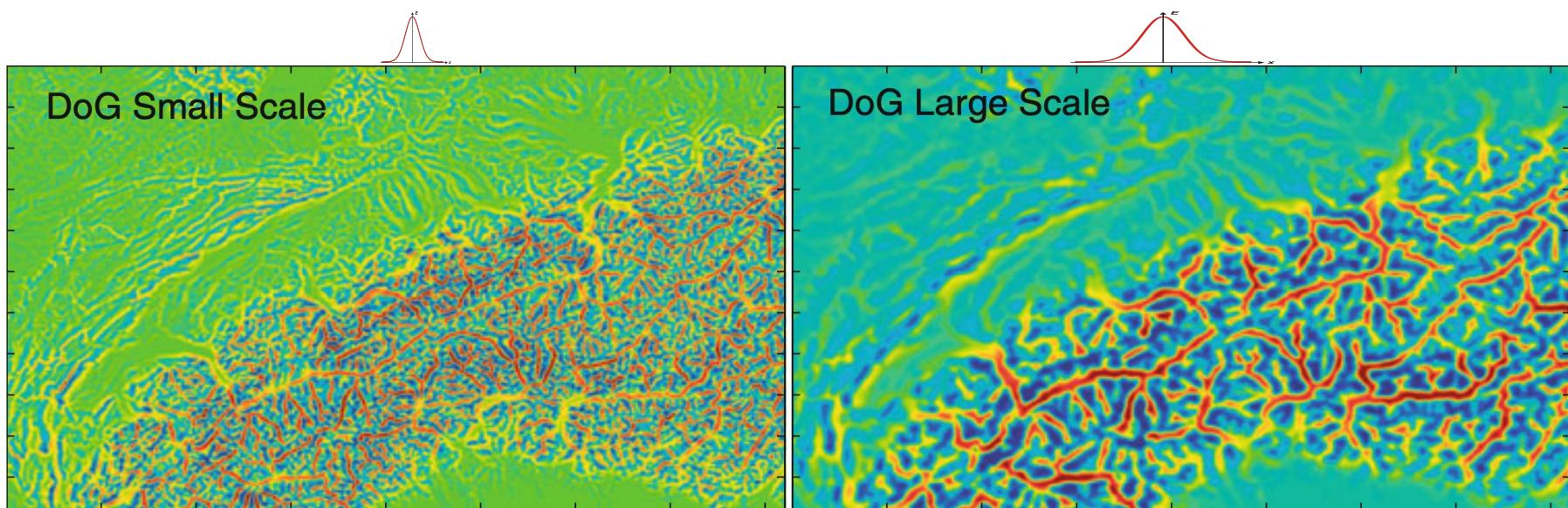
- Since we work on digital elevation models here, there are some favorites that can be computed on DEMs
- They use the ingredients we saw before



From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. *Stoch. Env. Res. Risk. Ass.*, 25(1):51–66, 2011.

# 1. Difference of Gaussians

- We calculate two Gaussian filters = are two blurred DEMs
- Blurred at two different scales (two different Gaussian  $\sigma$  values)



From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. *Stoch. Env. Res. Risk. Ass.*, 25(1):51–66, 2011.

# 1. Difference of Gaussians

- We calculate two Gaussian filters = two blurred DEMs
- Blurred at two different scales (two different Gaussian  $\sigma$  values)
- Then we subtract them
- Depending on the  $\sigma$  values, different details will appear.



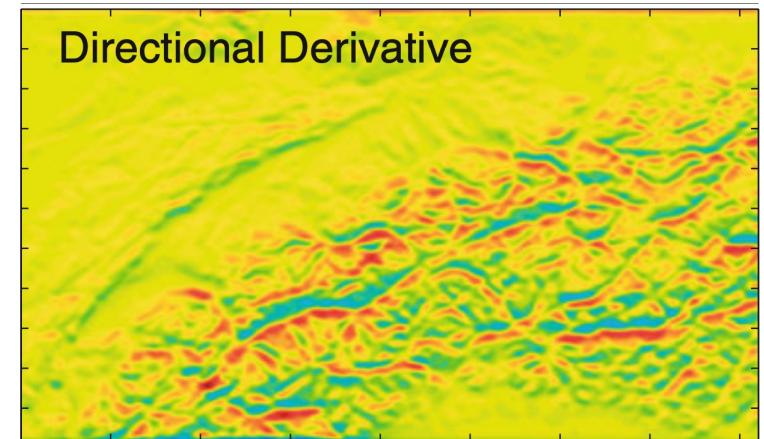
From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. *Stoch. Env. Res. Risk. Ass.*, 25(1):51–66, 2011.

# 1. Difference of Gaussians

- We calculate two Gaussian filters = two blurred DEMs
- Blurred at two different scales (two different Gaussian  $\sigma$  values)
- Then we subtract them
- Depending on the  $\sigma$  values, different details will appear.
- Yes, it is the same DoG seen for the SIFT detector (see course 2).

## 2. Directional derivatives

- DD show the main gradients of the image in a specific direction
- It is basically the horizontal or vertical component of the Sobel filter
- E.g. here the horizontal derivative:



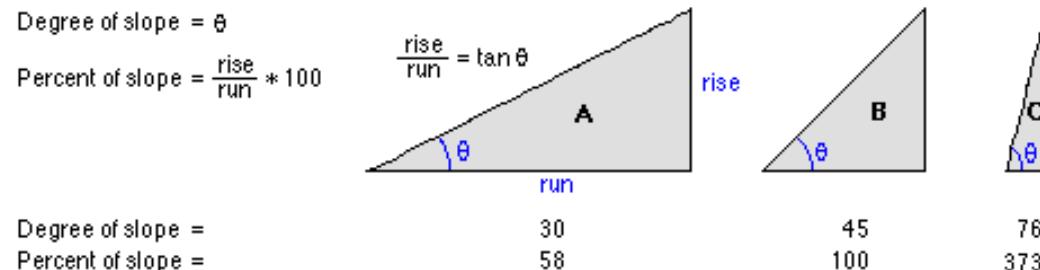
From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. *Stoch. Env. Res. Risk. Ass.*, 25(1):51–66, 2011.

# 3. Slope

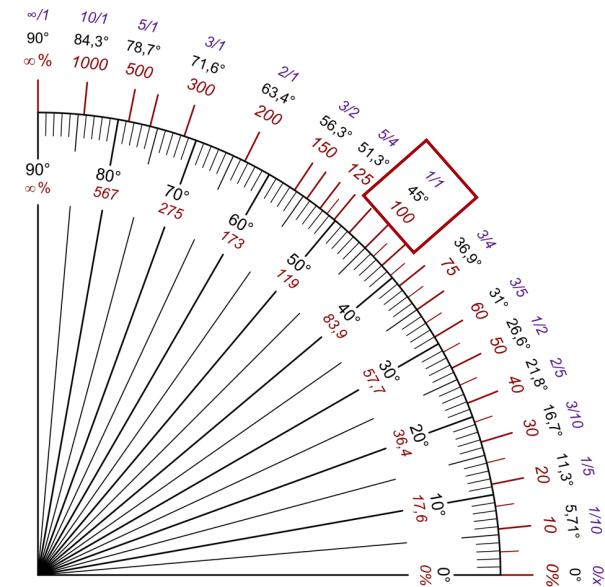
- Slope is formally described by a plane at a tangent to a point on a surface
- Slope has two components:
  - Gradient: the maximum rate of change of the elevation of the plane the angle that the plane makes with a horizontal surface. Often referred to as slope.
  - Aspect: the direction of the plane with respect to some arbitrary zero (usually north)

# 3. Slope: gradient

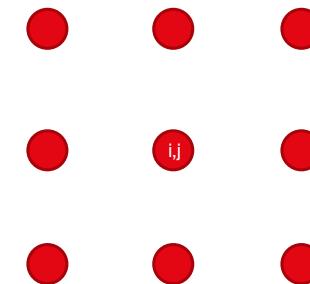
- Gradients can be calculated both in degrees (angle) or percent (rise vs run).



Comparing values for slope in degrees versus percent



# 3. Slope: steepest drop method



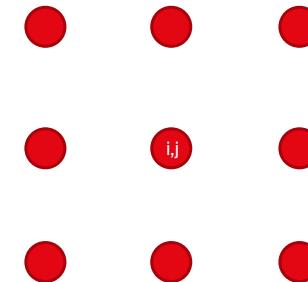
- There are many methods to calculate gradients
  - Steepest drop: use a focal function for max drop

$$\text{gradient} = \max_{a,b \in [-1,0,1]} \phi_i \frac{z_{i,j} - z_{i+a,j+b}}{\lambda}$$

where  $\phi_i = \begin{cases} 1 & \text{for } N, S, W, E \\ \frac{1}{\sqrt{2}} & \text{for } NE, SE, NW, SW \end{cases}$

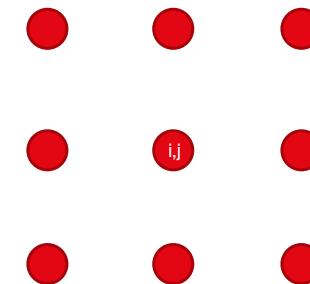
and  $\lambda$  is the resolution.

## 3. Slope: steepest drop method



- There are many methods to calculate gradients
  - Steepest drop: use a focal function for max drop
- Aspect is the direction of steepest drop
- Pros: simple
- Cons: max 8 possible aspects

# 3. Slope : finite differencing method



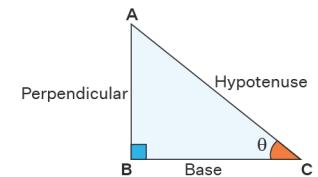
- There are many methods to calculate gradients
  - Steepest drop: use a focal function for max drop
  - Finite differencing

$$\text{gradient} = \tan^{-1} \sqrt{\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2}$$

This gradient is (perp./base) in the horizontal

This gradient is (perp./base) in the vertical

Arctan 



$$\tan \theta = \frac{\text{Perpendicular}}{\text{Base}}$$

$$\Rightarrow \theta = \tan^{-1} \left( \frac{\text{Perpendicular}}{\text{Base}} \right)$$

# 3. Slope : finite differencing method

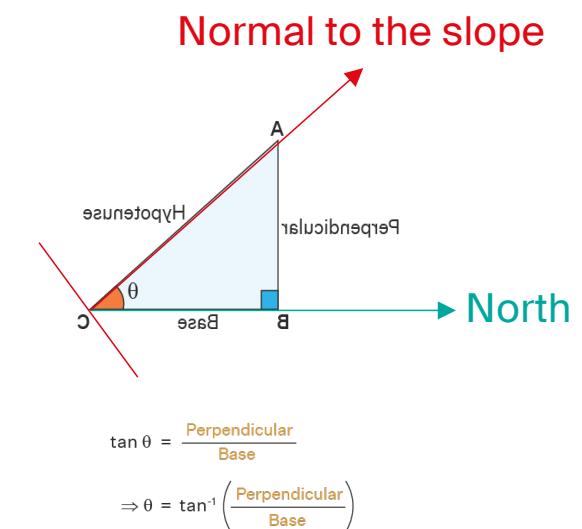
- For the aspect, we use:

$$\text{aspect} = -\tan^{-1} \left[ \frac{\left( \frac{\partial z}{\partial y} \right)}{\left( \frac{\partial z}{\partial x} \right)} \right]$$

all aspects are in the range  $[-\pi/2, \pi/2]$

$[-90, 90]$

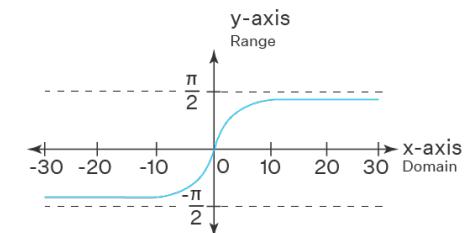
- This is ambiguous for 2D coordinates!



Arctangent Function

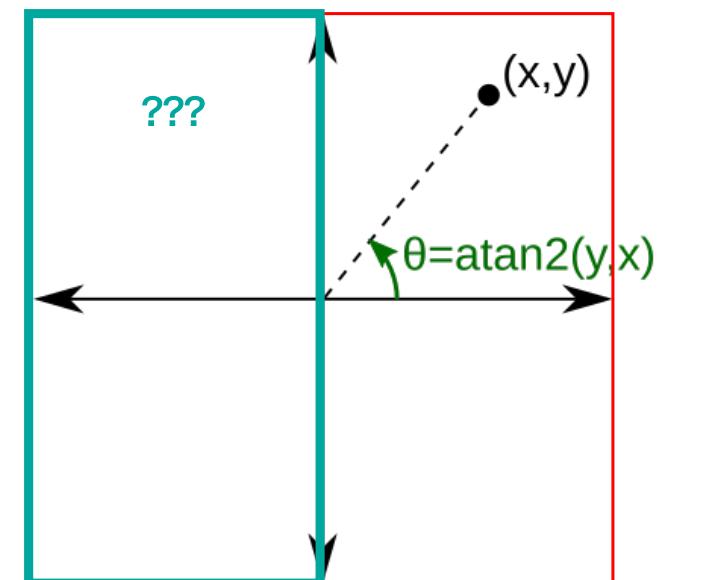


$\tan^{-1} x$



# 3. Solving the ambiguity of aspect

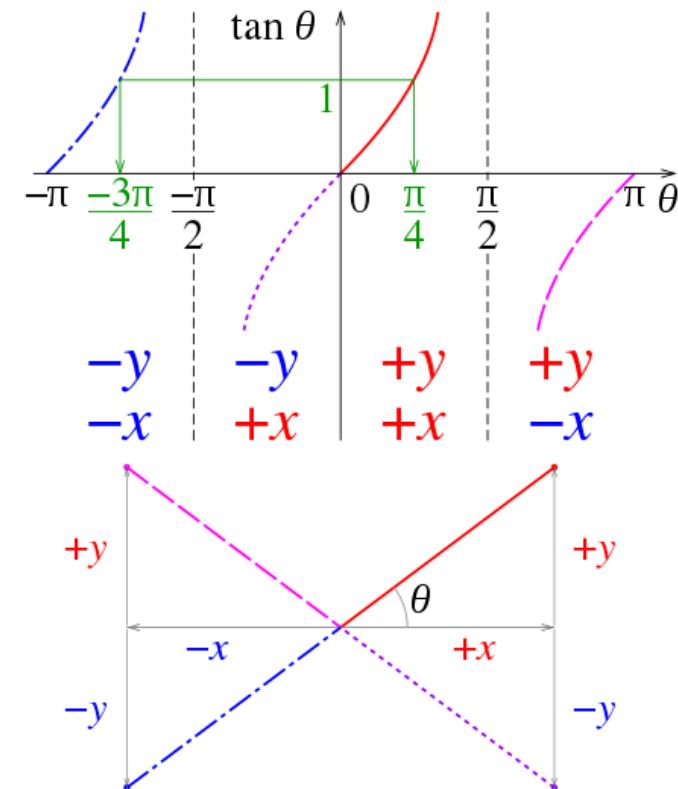
- If calculating the angle between the x axis and a vector in the 2D plane to a point  $(x,y)$ , we cannot reach the **left quadrant**
- This is because  $y/x$  and  $-y/-x$  give the same result, so we don't know in which quadrant we will be



Range of validity  
of the  $\tan^{-1}(y/x)$  fct!

# 3. Solving the ambiguity of aspect

- If calculating the angle between the x-axis and a vector in the 2D plane to a point  $(x,y)$ , we cannot reach the left quadrant
- This is because  $y/x$  and  $-y/-x$  give the same result, so we don't know in which quadrant we will be
- To solve this ambiguity, use the arctan2 fct, which works anywhere in the Cartesian plane
- It uses the sign of  $x$  and  $y$  to locate the right quadrant

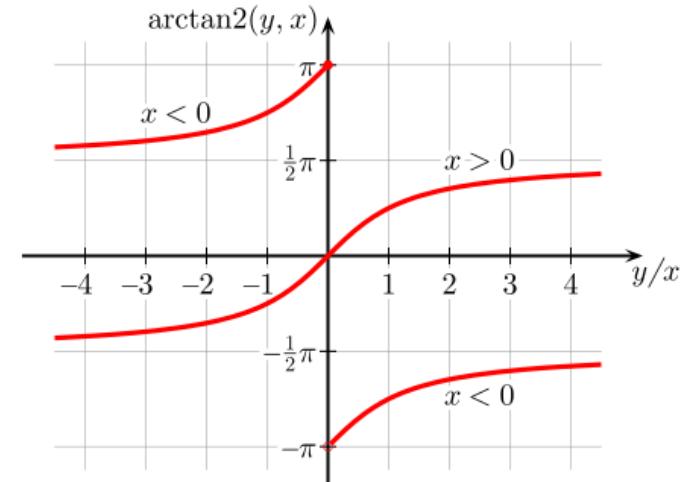


<https://en.wikipedia.org/wiki/Atan2>

# 3. Solving the ambiguity of aspect

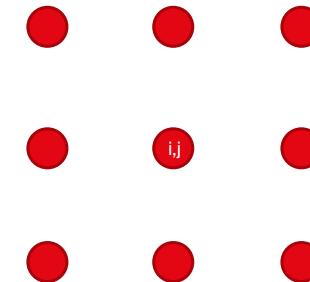
- To have aspects in [0,360], use the arctan2 function:

$$\text{aspect} = -\tan^{-1} \left[ \left( \frac{\partial z}{\partial y} \right), \left( \frac{\partial z}{\partial x} \right) \right]$$



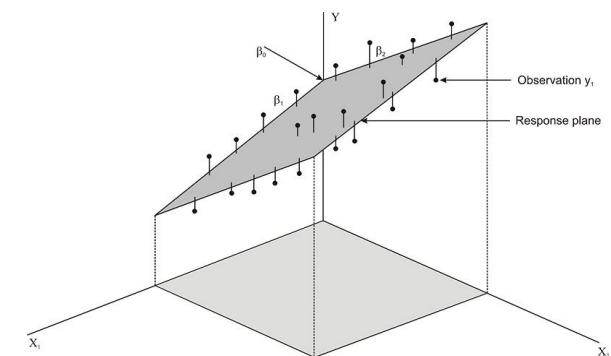
[https://geo.libretexts.org/Courses/University\\_of\\_California\\_Davis/GEL\\_056%3A\\_Introduction\\_to\\_Geophysics/Geophysics\\_is\\_everywhere\\_in\\_geology.../zz%3A\\_Back\\_Matter/Arctan\\_vs\\_Arctan2](https://geo.libretexts.org/Courses/University_of_California_Davis/GEL_056%3A_Introduction_to_Geophysics/Geophysics_is_everywhere_in_geology.../zz%3A_Back_Matter/Arctan_vs_Arctan2)

# 3. Slope: quadratic fit method



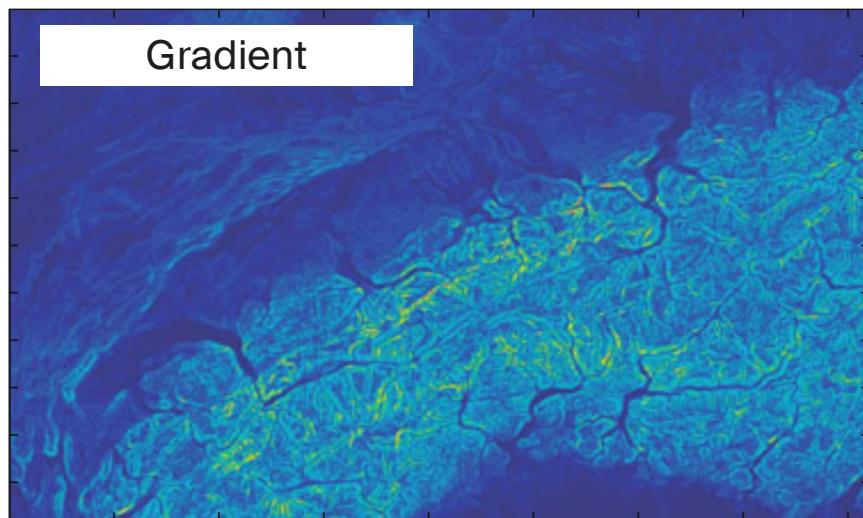
- There are many methods to calculate gradients

- Steepest drop: use a focal function for max drop
- Finite differencing
- Fit a quadratic surface to the points, minimizing errors

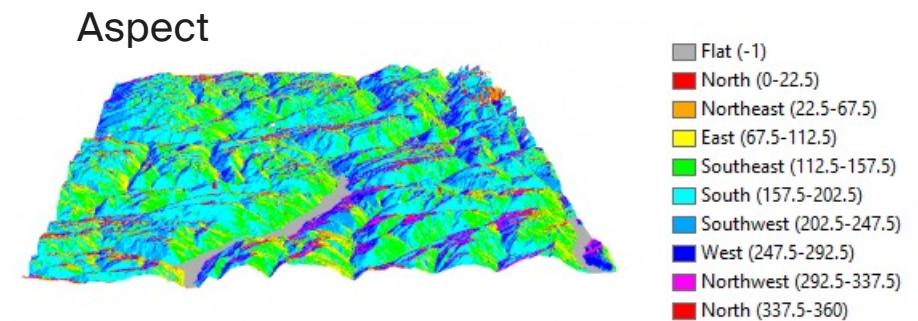


# 3. Slope

- Exemples of gradient and aspect features



From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov.  
Learning wind fields with multiple kernels. *Stoch. Env. Res. Risk. Ass.*, 25(1):51–66, 2011.



<https://gisgeography.com/aspect-map/>

# Features specific to images

# Going further

There are a lot of local descriptors for remote sensing, here a selection:

- Gray-level co-occurrence matrix (GLCM)-based ([notebook](#) here, [paper using them](#) here)
- Mathematical morphology-based (<https://hal.inria.fr/hal-00737075/document>)
- Attribute profiles (<https://ieeexplore.ieee.org/document/5482208>)
- Dense SIFT (you calculate the SIFT descriptor at each pixel location in a sliding window fashion)
- Features going beyond local patterns: local-to-global features describing recurrent patterns in the image: Bag of Visual Words (**ENV-540**)

# Going contextual

- In this last part, we see two family of contextual filters
  - Texture filters: compute 1st and 2nd order textural indices in local neighborhoods
  - Morphological filters: consider images as a terrain and work in filling “valleys” or erode “slopes”

- It can be seen as the visual aspect of the images, when taken locally
- They differentiate homogeneous areas from inhomogeneous areas
- They are invariant in translation and rotation (it's a property that holds for a type of region, come back to this later...)

# An example of texture



Source: Caloz, 2001

- Here we have two types of tree coverages
- Visually it is easy to differentiate them
- How to incorporate this knowledge into relevant indices?

# 1<sup>st</sup> order texture: occurrence

- 1<sup>st</sup> order textures are local indices computed in moving windows
- Local statistics used
  - Mean
  - Variance
  - Range
  - ...
- They are also called occurrence indices



|    |    |    |
|----|----|----|
| 24 | 27 | 25 |
| 23 | 35 | 37 |
| 25 | 15 | 25 |

→ Local statistics

# Occurrence indices

- Mean

$$\mu_{ij} = \frac{1}{PP} \sum_{m \in V} \sum_{n \in V} x_{mn}$$

Local average. Same as low-pass filter

- Variance

$$\text{var}_{ij} = \frac{1}{PP} \sum_{m \in V} \sum_{n \in V} [x_{mn} - \mu_{ij}]^2$$

Fluctuation around the mean in the local window

$$V \in \left\{ \left[ i - \frac{m}{2}; i + \frac{m}{2} \right], \left[ j - \frac{m}{2}; j + \frac{m}{2} \right] \right\}$$

Is a local neighborhood of size  $m \times m$

# Occurrence indices



Variance, 3x3



Mean, 3x3



Variance, 5x5



Mean, 5x5



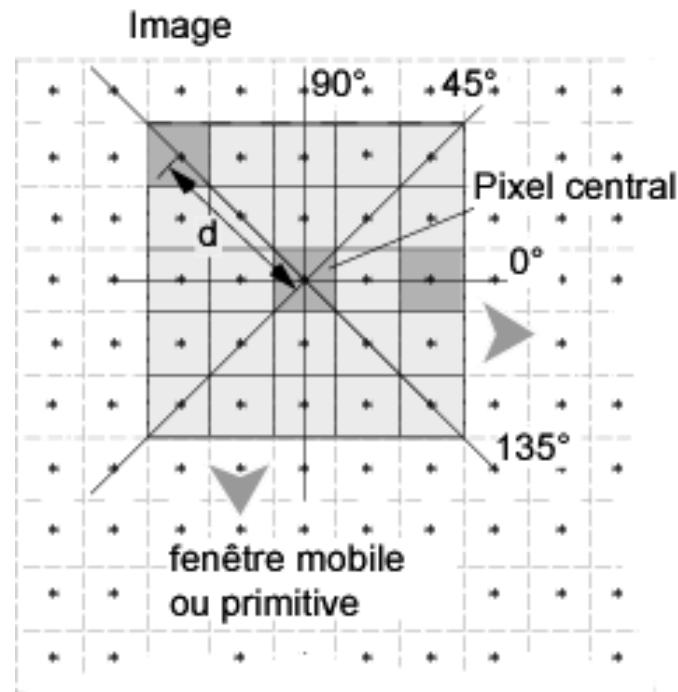
# 2nd order indices: co-occurrence

- They consider spatial information between pixels
- Textural relations are made according to distance and orientation
- Basically searches autocorrelation between graylevels
- To compute them, we use the grey level co-occurrence matrix (GLCM, Haralick, 1973)

▪

# Co-occurrence matrix

- We take a mobile window and count the co-occurrences of the same DN for a given
- Distance  $d$
- Direction  $q$
- Each pixel has its own matrice!!!



Source: Caloz, 2001

# Toy example

|    |    |    |    |    |
|----|----|----|----|----|
| 34 | 35 | 36 | 35 | 36 |
| 36 | 36 | 35 | 34 | 35 |
| 36 | 35 | 35 | 35 | 34 |
| 34 | 35 | 35 | 35 | 34 |
| 36 | 34 | 35 | 34 | 36 |

$P(d=1, \theta=0) = \text{vertical}$

|    |    |    |
|----|----|----|
| 34 | 35 | 36 |
| 2  | 5  | 4  |
| 5  | 10 | 4  |
| 4  | 4  | 2  |

$P(d=1, \theta=90) = \text{horizontal}$

|    |    |    |
|----|----|----|
| 34 | 35 | 36 |
| 0  | 8  | 2  |
| 8  | 8  | 5  |

$P(d=1, \theta=45) = 45^\circ \text{ diagonal}$

|    |    |    |
|----|----|----|
| 34 | 35 | 36 |
| 2  | 4  | 1  |
| 4  | 12 | 2  |
| 1  | 2  | 4  |

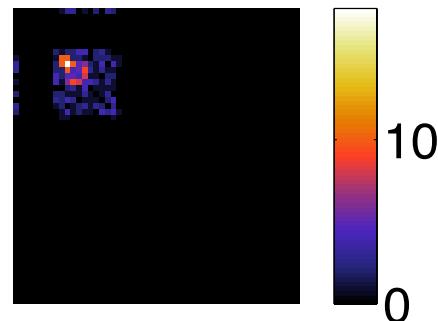
$P(d=1, \theta=135) = 135^\circ \text{ diagonal}$

|    |    |    |
|----|----|----|
| 34 | 35 | 36 |
| 4  | 2  | 2  |
| 2  | 12 | 4  |
| 2  | 4  | 0  |

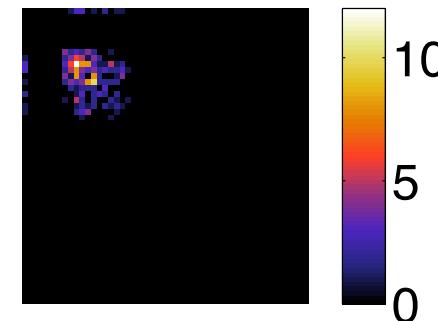
# Real example ( $d=3$ )



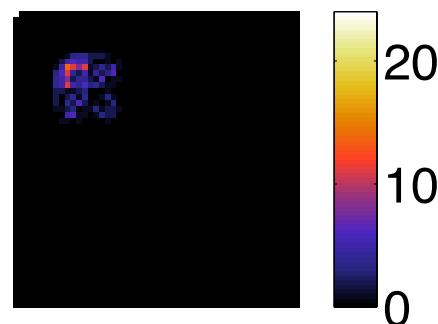
horizontal



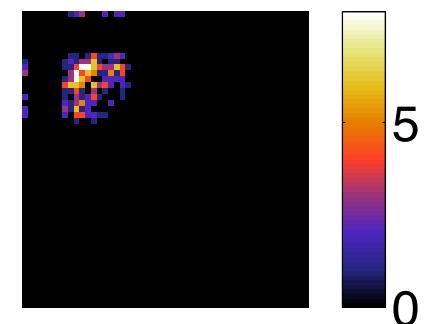
vertical



$45^\circ$



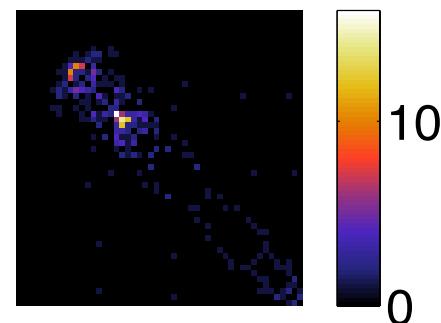
$135^\circ$



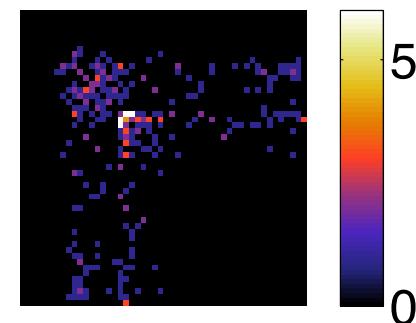
# Real example ( $d=3$ )



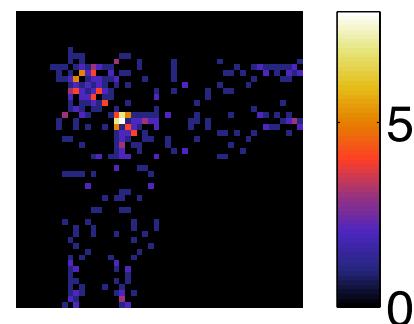
horizontal



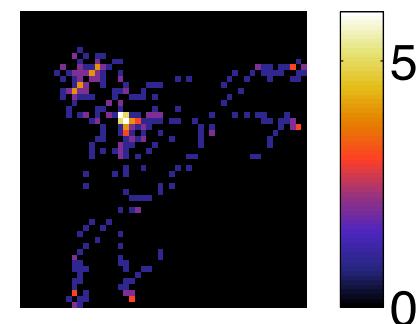
vertical



$45^\circ$



$135^\circ$



# Co-occurrence indices

- Once we have the GLCM, we can compute the co-occurrence indices

- Entropy

$$H_{ij} = - \sum_{m=1}^{Nb\text{its}} \sum_{n=1}^{Nb\text{its}} P_{d,\theta}(m,n) \log(P_{d,\theta}(m,n))$$

Low when few values  
in the window are  
Present among Nb\text{its}

- Contrast

$$C_{ij} = \sum_{m=1}^{Nb\text{its}} \sum_{n=1}^{Nb\text{its}} (m - n)^2 P_{d,\theta}(m,n)$$

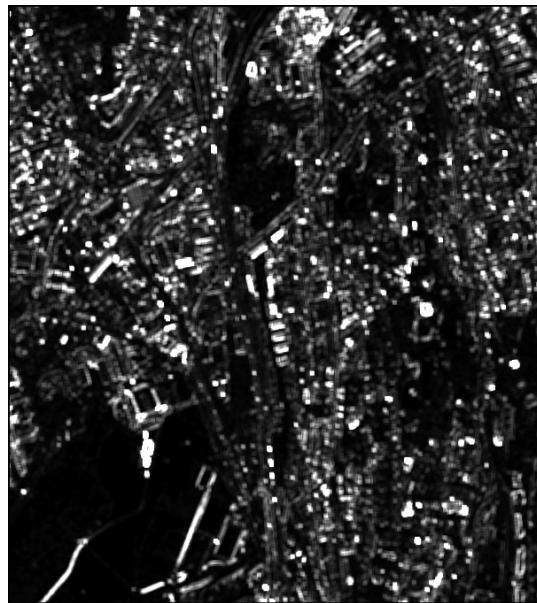
Enhances strong  
jumps in DNs

(Nb\text{its} is the number of rows of the GLCM)

# Real examples



Image



Contrast,  $5 \times 5, d=3$ ,  
average angles

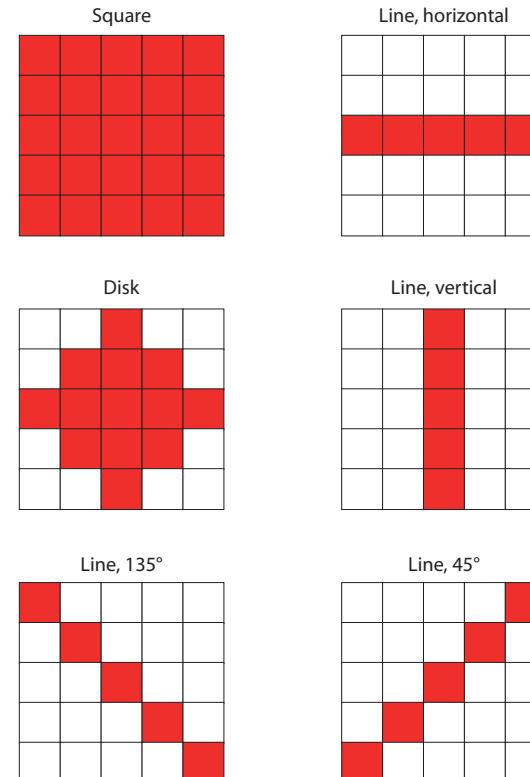


Entropy,  $5 \times 5, d=3$ ,  
average angles

- Filters based studying local intensity properties of the image
- They are based on three ingredients: the image, the structuring element and the operator.
- Most used morphology operators return filtered images enhancing elements that are darker or brighter than their surroundings

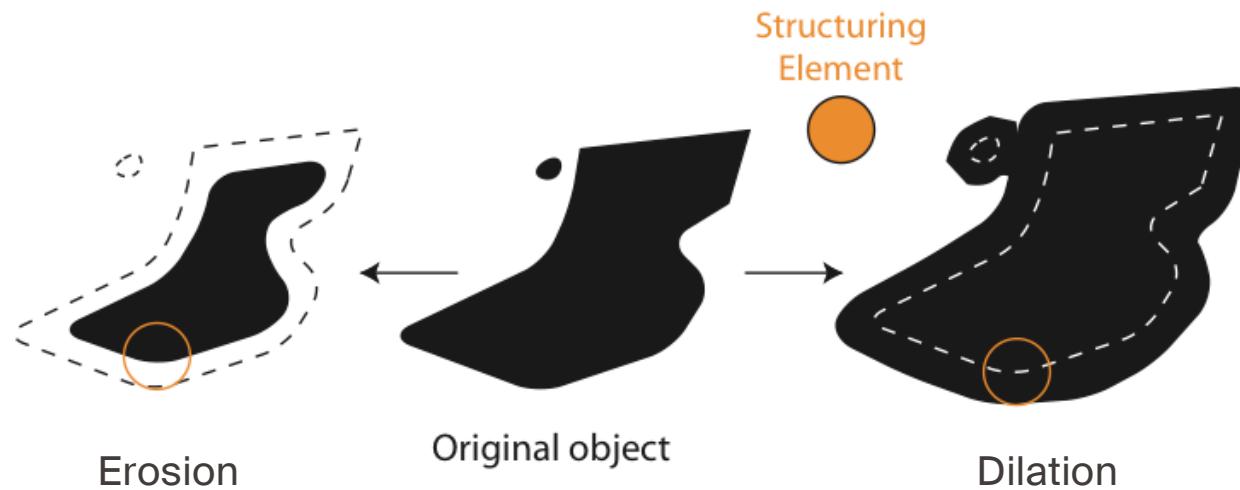
# Morphology: structuring element

- It is the convolution window
- Contrarily to texture or convolution, the structuring element (the moving window) can take any shape
- Ex → (red = 1; white = 0)



# Morphology: operators

- Two base operators: erosion and dilation



# Erosion and dilation

- Erosion is given by the intersection between the image patch and the structuring element

$$\varepsilon_B(X) = X \ominus B = \bigcap_{b \in B} X_{-b}$$

- Dilation is given by the union between the image patch and the structuring element

$$\delta_B(X) = X \oplus B = \bigcup_{b \in B} X_b$$

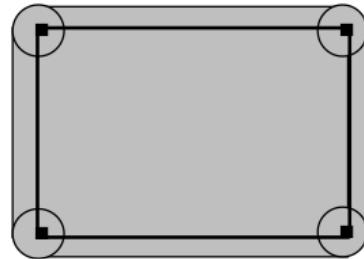
# Erosion and dilation



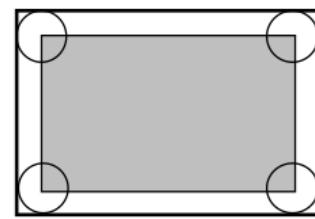
X



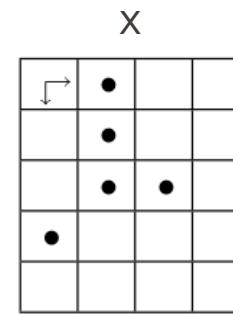
A



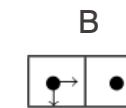
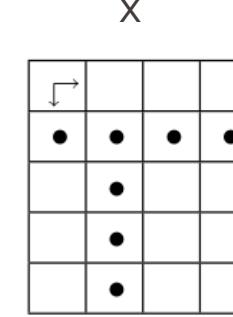
Dilation of X by A



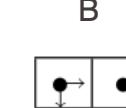
Erosion of X by A



Dilation of X by a horizontal SE



Erosion of X by a horizontal SE

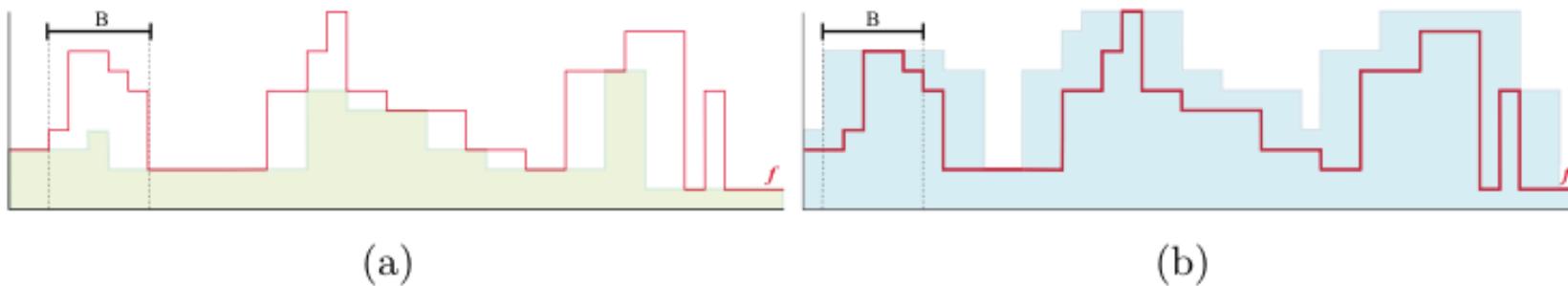


Source: Wilkinson course, Uni Groeningen 2010

# Morphology: operators for grayscale

- Two base operators: erosion and dilation
- Erosion is the minimum in SE (dark elements)
- Dilation is the maximum in SE (bright elements)

$$\varepsilon_{SE}(x) = \min_{i \in SE} x_i$$
$$\delta_{SE}(x) = \max_{i \in SE} x_i$$



# Morphology: operators

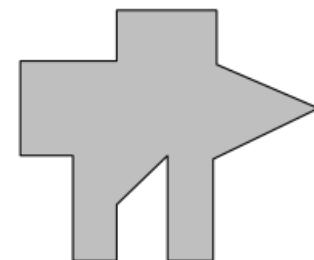
- Opening is an erosion followed by a dilation  
filters structures brighter than the surroundings

$$op_{SE}(I) = \delta_{SE}[\varepsilon_{SE}(I)]$$

- Closing is a dilation followed by an erosion  
filters structures darker than the surroundings

$$cl_{SE}(I) = \varepsilon_{SE}[\delta_{SE}(I)]$$

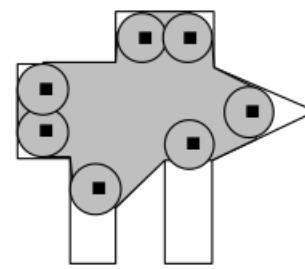
# Structural opening and closing



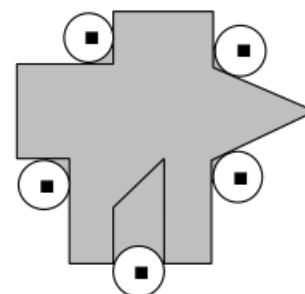
X



A



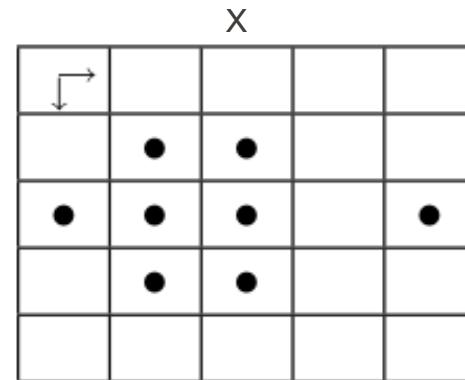
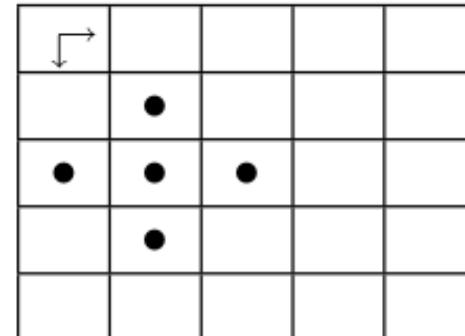
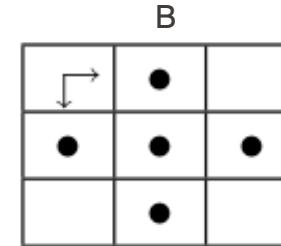
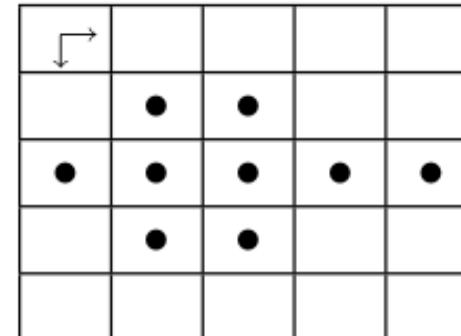
Opening of X by A



Closing of X by A

Source: Wilkinson course, Uni Groningen 2010

# Structural opening and closing



Source: Wilkinson course, Uni Groningen 2010

# Morphology: grayscale opening and closing



Closing  
11 pixels



Closing  
5 pixels



Pan

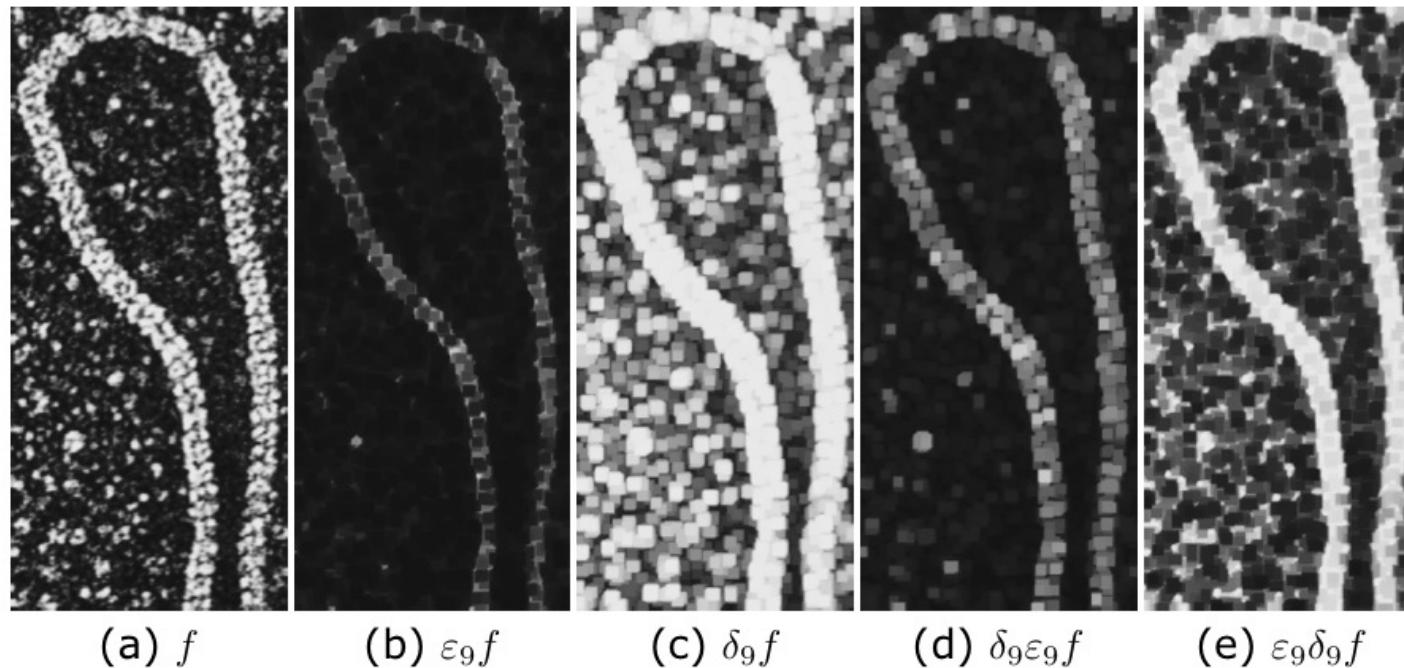


Opening  
5 pixels



Opening  
11 pixels

# Morphology: grayscale opening and closing

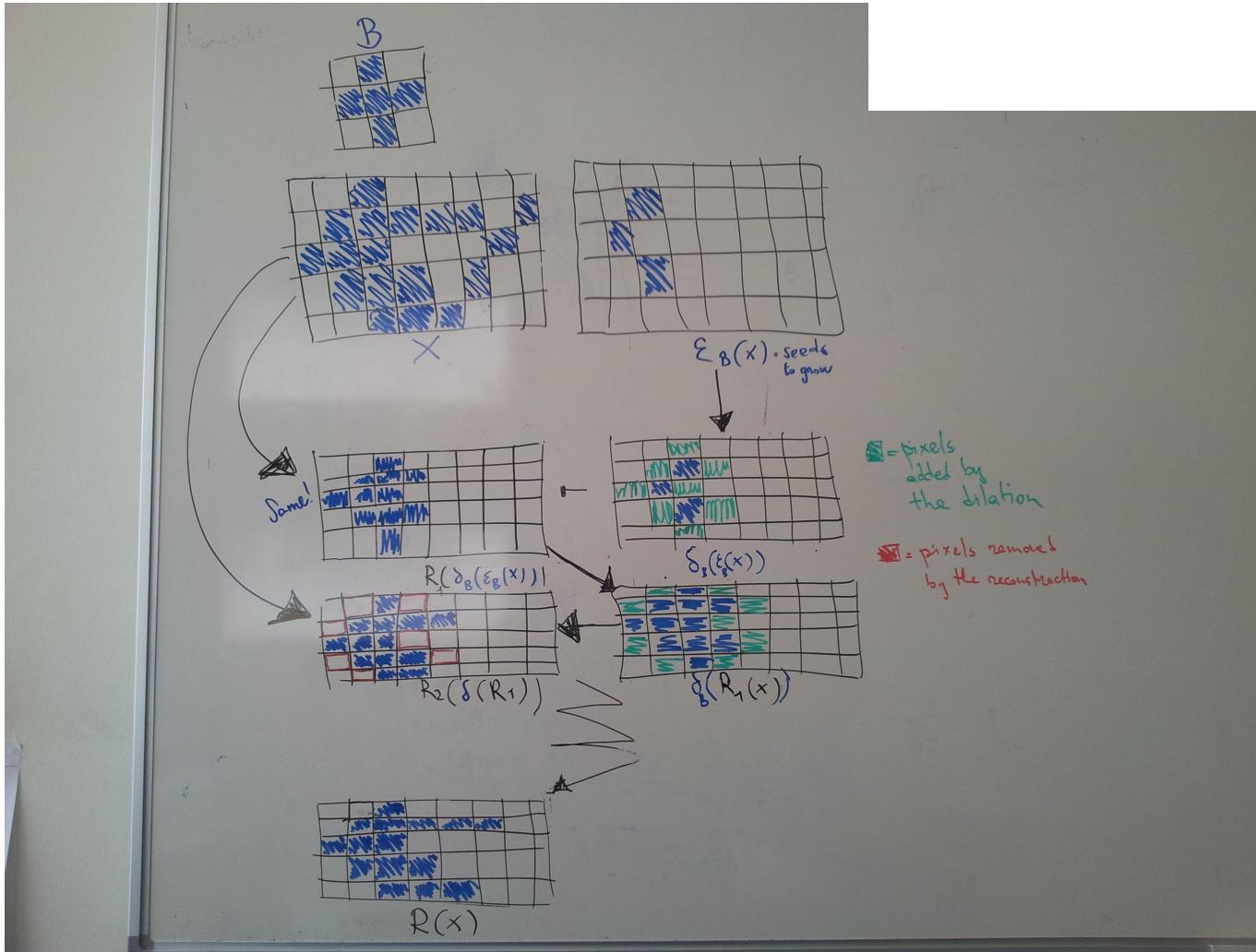


# Morphology: operators

- Opening and closing do not respect border of objects
- Especially in VHR imagery, we want to keep this geometrical information
- We can use reconstruction filtering

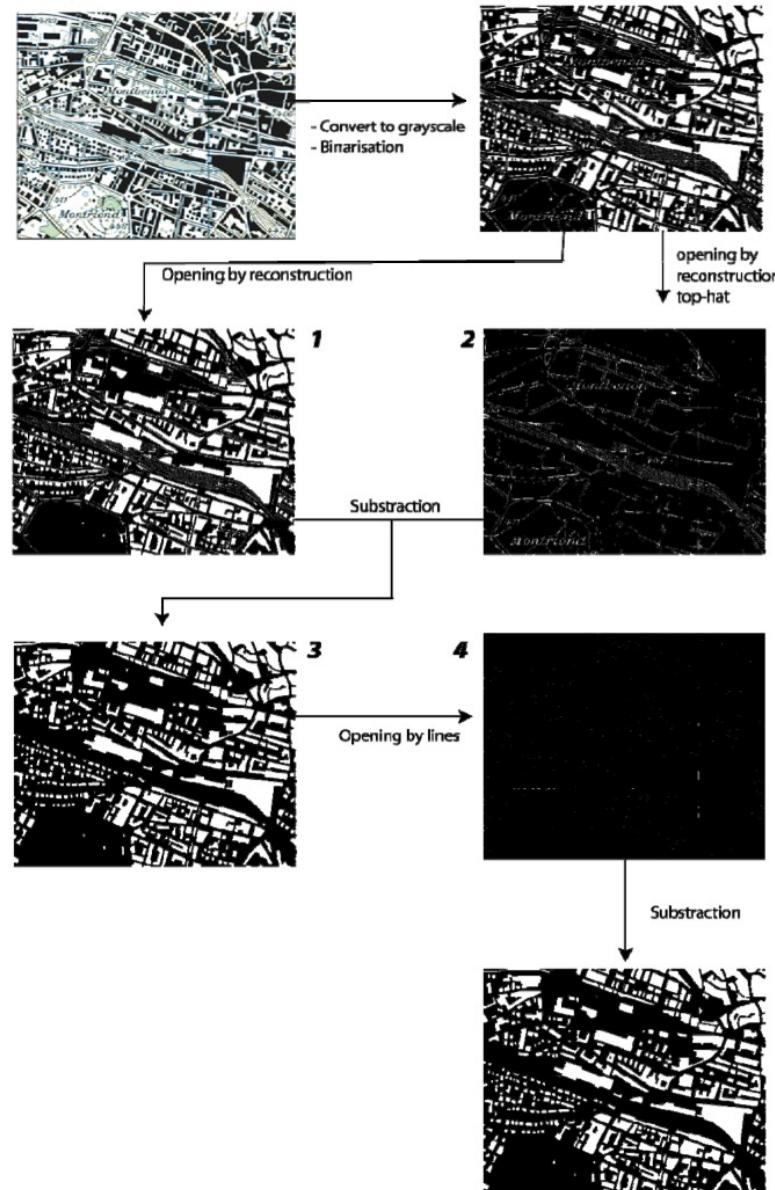
  

- Iterative procedure
- (ex: opening by reconstruction) For each dilation
  - Take the minimum between dilation and original image
  - Continue until no changes are observed



# Reconstruction filters

- This may seem a bit artificial, but can be very useful in practical scenarios



Source: Tuia and Kaiser,  
ECTQG 2008

# Final result



# Reconstruction filters

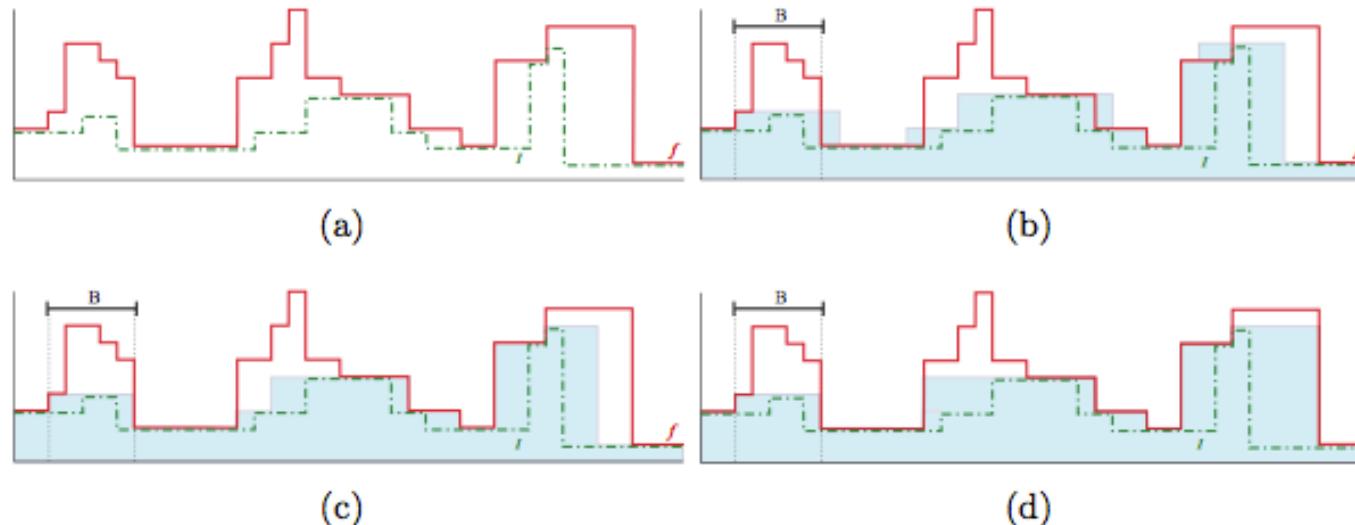


Figure C.5: Opening by reconstruction: (a) line of a grayscale image  $f$  and erosion marker  $I$ , (b) dilation by a structuring element  $B$ , (c) first geodesic dilation by  $B$  and (d) second (and last) geodesic dilation by  $B$ .

Source: D. Tuia, PhD thesis

# Filters by reconstruction



Clos. Rec.  
11 pixels



Clos. Rec.  
5 pixels



Pan



Open Rec.  
5 pixels



Open Rec.  
11 pixels

# In summary

- Many features can be extracted from images
- From the DEM, all kind of topographic information
- If taking the DEM as an image, you can extract many informations about texture
  - features based on occurrence and co-occurrence
  - features based on mathematical morphology