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We made it, we have a
DEM!

= Now we have the input to predict environmental variables!

= Here we work with a DEM, but We could also use orthoimages,
satellite images, etc. put that's in another course ENV-540)
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We made it, we have a
DEM!

= Now we have the input to predict environmental variables!
= We could also use orthoimages, satellite images, etc.

= The structure to follow would look like:

Extract feature

representa-
tions

TODAY

-

-

Train and
use the
model

~

/

Prediction
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We made it, we have a
DEM!

= Now we have the input to predict environmental factors!
= We could also use orthoimages, satellite images, etc.
= The structure to follow would look like:

4 N

Extract feature Train and
representa- use the
tions model

o /

Next lectures

Prediction
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Features

Why do we need features
Good properties for features
Types of features

B SSMEO course, 27 March 2025




=PFL  What are features?

» Features: new variables issued from the data that are more

expressive to solve the problem

Visual properties that help the model

Make the right decision

Extract feature
representa-
tions

-

-

Train and
use the
model

~

/

Prediction




PF

B SSMEO course, 27 March 2025

L

“Features” sound like the
descriptors of week 2...

= We can use the two terms interchangeably.

= For clarity, here | will use features for descriptors that are dense
(= values for every pixel)

= This is in contrast to descriptors as those seen in the keypoints
course (e.g. SIFT), where the description was computed only at the
keypoint location

D. Tuia. ECEO ~



=PrL Examples of features

* Vegetation - features related to reflectivity of vegetation - vegetation indices from NIR bands
* Urban - features relative to the shape of objects = spatial context in visible bands
* Clouds - features relative to thermal reflectivity = TIR bands

4 I
Extract )
' Train and
something that th
differentiates use the
model
the classes

- /

B SSMEO course, 27 March 2025
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“Good” vs “bad” features

= |[n spectral images (as those
we use in remote sensing) 1
each surface is

characterised by a spectral -

signature -
()

= A sensor samples the true = ]
(continuous) signature o

according to its resolution E )

= E.9. 3 bands = 3 values. 0

|
0.4

BIVIRI

06 08 12

©
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“Good” vs “bad” features

= [n the same way, we can extract
features that tailored to the
problem at hand.

= A classical example is the NDVI

= By comparing infrared to red light,
can highlight healthy vegetated
surfaces

= SO

* it's a good feature to detect
vegetation

 |t's a bad feature to detect cars

(NIR) _(R)
NDVI == -
ajgNlR) +w§R)

Reflectance (%)
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s
o

D. Tuia. ECEO



PF

B SSMEO course, 27 March 2025

L

Frequency

Classification: the aim is being discriminative

= Good features separate examples of a class from examples of the
other

= Below: the histogram of three features for two classes (in red and
green)

Non discriminative So-so Discriminative

>
>

v

v

~— - -
Feature A values Feature B values Feature C values

—_
=
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L

Output values

Regression: the aim is being correlated
to the output

= Good features can lead to good fits in regression problems

= Below the scatterplots of three features for predicting a continuous
output value

= A good feature correlates with the variable being predicted (output)

Non correlated So-so Correlated

v
v

Feature A values Feature B values Feature C values

v

-
@
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How many types of features are around?

= As many as you can imagine.

= They all are signhal modifications, channels combinations, etc.

= [n neural networks, you learn them from data (so no feature
engineering) = Join ENV-540 if you want to know more.

N

D. Tuia. ECEO
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A (very rough)
taxonomy of features

= Spectral: band combinations at different wavelenghts
(not covered today, see ENV-140/540).

= Spatial: accounting for the spatial context around the pixel you are
looking at

» Based on convolution windows (e.g. low/high pass filters).
« Extracted using some machine learning pipeline (e.g. BoVW, ENV540).

= [n the next part we focus on spatial features, based on convolutions,
to be extracted from the DEM.

-
(4]
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Convolution-based
features

Low- and high-pass filters (a
reminder)

Sobel filters

B SSMEO course, 27 March 2025




P

, 27 March 2025

B SSMEO course

r

Why spatial filters?

= Spatial filters tell us about image context and improve discrimination

D. Tuia. ECEO



=P7L Why spatial filters?

= Spatial filters tell us about image context and improve discrimination

e, 27 March 2025

B SSMEO cours

-
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Local enhancement

= One way to make images aware of context is to augment the input
space with information about the surroundings.

= Augment = add new variables.

= We can create new features summarizing something about the local
context (remember SIFT descriptions?).

= Each feature is a new variable telling us something about
» Color distributions
 Edges
» Direction of spatial structures

-
©
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Local convolutions (1D)

= [n 1D, we can see each row (resp. column) of the image as a series of
discrete values

= \We can use a convolution window to summarize nearby values

800

Vv

200r

0 100 200 300 400

N
o
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L

Local convolutions (1D)

= [n 1D, we can see each row (resp. column) of the image as a series of
discrete values

= \We can use a convolution window to summarize nearby values

800

Vv

200§

0 100 200 300
pixels

400

N
=
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Local convolutions (1D)

= [n 1D, we can see each row (resp. column) of the image as a series of
discrete values

= \We can use a convolution window to summarize nearby values

800

Vv

Average filter!

200r

0 100 200 300 400
pixels

N
N
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=PFL  Convolution filtersin 2D

-  We want to filter pixel
X;o0f the image G

- Weuseal3dx3
convolution filter F

« The pixels considered
by the convolution are
in the vector B

B SSMEO course, 27 March 2025
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=PFL  Convolution
operation

= A dot product is applied between the moving window B and the filter F

= For afilter of size with C coefficients and sum of coefficients S
(ex: for F of the previous slide, C = 9)

p L 1%
X, =—(F B)=§EFiBi
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=PrL Low pass filter:
average

= A low pass filter smooths the image (the resulting feature is the
average of all the points in the window)




=PrL Low pass filter:
average

= A low pass filter smooths the image (the resulting feature is the
average of all the points in the window)




=PrL Low pass filter:
Gaussian

= With the average filter, the smoothing is often too strong
= A Gaussian filter weights the coefficients with respect to distance

AE




Low pass filter
Gaussian
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What about edges? Sobel filter

= Sobel filters are a family of directional high pass filters

= They work on image gradients

-1 0 1
-2 0 2
-1 0 1

= The filters are usually convolutions in 2D, e.qg.

= They are computed in different directions, then results averaged.
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Recap: Filters based .
on gradients in1D (- |

= [t is a differentiation operator
= Gives the direction of the largest possible increase in intensity

= Shows how smoothly the image changes at that point
 If an edge, the value is large
* |f not, the value is small

DN oN| 1%2 + 0%5 + -1%5 =3
5 5 @0

4 J1%2 + 0%1 + 1%1 = -1 4

3 3

2 ol® e o0 2 ©

1| o @0 1| @ @ SR

Pixels Pixels

[0
=
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=PFL  Sobel filter:
horizontal derivative = vertical structures




=PFL  Sobel filter:
vertical derivative = horizontal structures
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Sobel filter

=PrL

diagonal component




=PFL  Sobel filter: second
diagonal component




=PFL  Sobel filter: isotrope
filter




=PFL  Sobel filter
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Convolution filters for
DEMs

DoG
Directional derivatives
Slope

, 27 March 2025

B SSMEO course
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Convolution filters for
DEMs

= Since we work on digital elevation models here, there are some
favorites that can be computed on DEMs

= They use the ingredients we saw before

From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass.,
25(1):51-66, 2011.

[o\]
©
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1. Difference of
Gaussians

= We calculate two Gaussian filters = are two blurred DEMs
= Blurred at two different scales (two different Gaussian o values)

# 3 el
: ’ . e n. B . 5 ‘ . .
» ‘ (= J e T - 1 -
: i o - : e » g " o M o l K -l P -
. v 7 )
£y N E ; - W oy » 4
-l i _ - 4 [ P

From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass.,
25(1):51-66, 2011.

'S
o
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1. Difference of
Gaussians

» We calculate two Gaussian filters = two blurred DEMs

= Blurred at two different scales (two different Gaussian o values)
= Then we substract them

From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass.,
25(1):51-66, 2011.

£
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1. Difference of
Gaussians

» We calculate two Gaussian filters = two blurred DEMs

= Blurred at two different scales (two different Gaussian o values)
= Then we substract them

= Depending on the o values, different details will appear.

= Yes, it is the same DoG seen for the SIFT detector (see course 2).

'S
)
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2. Directional derivatives

= DD show the main gradients of the image in a specific direction

= |t is basically the horizontal or vertical component of the Sobel
filter

= E£.9. here the horizontal derivative:

. Directional Derivative

From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass.,
25(1):51-66, 2011.

'S
@
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3. Slope

= Slope is formally described by a plane at a tangent to a point on a
surface

- Slope has two components:

« Gradient: the maximum rate of change of the elevation of the plane the

angle that the plane makes with a horizontal surface. Often referred to as
slope.

« Aspect: the direction of the plane with respect to some arbitrary zero
(usually north)

http://www.geo.uzh.ch/microsite/geo372/PDF/week4_g
eo0372_terrain.pdf

IS
N
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3. Slope: gradient

= Gradients can be calculated both in
degrees (angle) or percent (rise vs run).

Degree of slope = 8

. rise =tan®
Percent of slope =%*100 un rise
B
& )
run
Dearee of slope = 30 45 76
Percent of slope = 58 100 373

Comparing values for slope in degrees versus percent

/1

'S
o
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3. Slope: steepest °

® O
drop method o © o
® o ©¢

= There are many methods to calculate gradients

« Steepest drop: use a focal function for max drop

] Z. - —_— Z. . b
gradient =  max ;— anivhs
a,be[—1,0,1] A

1 forN, S, W, E

% forNE,SE. NW,SW and A is the resolution.

where ¢; = {

D. Tuia. ECEO
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3. Slope: steepest °
drop method °
o

= There are many methods to calculate gradients

« Steepest drop: use a focal function for max drop

= Aspect is the direction of steepest drop
= Pros: simple
= Cons: max 8 possible aspects

8

D. Tuia. ECEO
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=PrL 3. Slope : finite
differencing method

'S
©

D. Tuia. ECEO

= There are many methods to calculate gradients

 Finite differencing

rrrrrrrrrrr

8 2 8 2 Perpendicular
gradient = tan~? (—Z) + (—Z)
8133‘ ay B Base c

tan6 =
This gradient is (perp./base) in the horizontal l

This gradient is (perp./base) in the vertical

B SSMEO course, 27 March 2025

http://www.geo.uzh.ch/microsite/geo372/PDF/week4 _geo372_terrain.pdf
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=PrL 3- Slﬂpe : finite Normal to the slope
differencing method

D. Tuia. ECEO

szunstoqyH
¢ 1eluoibnaqgisd

_ ( » North
- For the aspect, we use: aspect = —tan ™' 8

all aspects are in the range [-1t/2, 11/2]
[-90, 90]

Arctangent Function

TTTTTTTTTTTTT

Tan"x
g )Fg-aXIS
S 1
9 - This is ambiguous for 2D coordinates! S0 Zo 1o J[O 020 35 bomn
3 - A
o
z

http://www.geo.uzh.ch/microsite/geo372/PDF/week4_geo372_terrain.pdf
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3. Solving the
ambiguity of aspect

= If calculating the angle between the x
axis and a vector in the 2D plane to a
point (x,y), we cannot reach the left
quadrant

= This is because y/x and -y/-x give the
same result, so we don’t know in which
quadrant we will be

??7?

,f\lezatanZ(y X)

oXY)

/
/

L

Y

>

Range of validity

[4)]
=

D. Tuia. ECEO

of the tan-(y/x) fct!
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3. Solving the
ambiguity of aspect

= |f calculating the angle between the x-
axis and a vector in the 2D plane to a

point (X,y), we cannot reach the left
quadrant

= This is because y/x and -y/-x give the
same result, so we don’t know in which
quadrant we will be

= To solve this abiguity, use the arctan2
fct, which works anywhere in the
Cartesian plane

= |t uses the sign of x and y to locate the
right quadrant

I | tan@ |
/| |
/o I :
7 | |
/ ! !
—T =31 T 0 m o /o
4 2 4 2 /
| | /
| v/
- -
=y L=y | 4y 4y
-X | +X +X | =X
N
N
\\
+y \\ +Yy
NC 0
—-x +x
e
-7 -y
e
v :

https://en.wikipedia.org/wiki/Atan2

a
N
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3. Solving the
ambiguity of aspect

* To have aspects in [0,360], use the arctan2 function:

arctan2(y, x)

x>0

aspect = —tan 1 (g—?j), (%)

r<0

=TT

[4)]
(&)

D. Tuia. ECEO

https://geo.libretexts.org/Courses/University_of_California_Davis/GEL_056%3A_Introduction_to_Geophysics/Geophysics_is_everywhere

_in_geology.../zz%3A_Back_Matter/Arctan_vs_Arctan2
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https://geo.libretexts.org/Courses/University_of_California_Davis/GEL_056%3A_Introduction_to_Geophysics/Geophysics_is_everywhere_in_geology.../zz%3A_Back_Matter/Arctan_vs_Arctan2
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L=

L

3. Slope: quadratic fit °

method °

o
= There are many methods to calculate gradients

» Fit a quadratic surface to the points, minimizing errors

ol
»

D. Tuia. ECEO
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3. Slope

= Exemples of gradient and aspect features

From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov.
Learning wind fields with multiple kernels. Stoch. Env. Res. Risk.
Ass., 25(1):51-66, 2011.

https://gisgeography.com/aspect-map/

[4)]
(3]
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Flat (-1)

M North (0-22.5)
Northeast (22.5-67.5)
[]East (67.5-112.53)

I Southeast (112.5-157.5)
[ South (157.5-202.5)

I Southwest (202.5-247.5)
M West (247.5-292.5)

I Northwest (292.5-337.5)
I North (337.5-360)
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Features specific to
Images
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Going further

There are a lot of local descriptors for remote sensing, here a selection:

= Gray-level co-occurrence matrix (GLCM)-based (notebook here, paper using them here)

= Mathematical morphology-based (htips:/hal.inria.fr/hal-00737075/document )

= Attribute profiles (hitps:/ieeexplore.ieee.org/document/5482208 )

= Dense SIFT (you calculate the SIFT descriptor at each pixel location in a sliding window
fashon)

= Features going beyond local patterns: local-to-global features describing recurrent
patterns in the image: Bag of Visual Words (ENV-540)

9]
N

D. Tuia. ECEO


https://rstudio-pubs-static.s3.amazonaws.com/536921_af2c31c083544a3a9588da9c86692636.html
https://www.sciencedirect.com/science/article/pii/S0303243411001565
https://hal.inria.fr/hal-00737075/document
https://ieeexplore.ieee.org/document/5482208
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Going contextual

= |[n this last part, we see two family of contextual filters

» Texture filters: compute 1st and 2nd order textural indices in local
neighborhoods

» Morphological filters: consider images as a terrain and work in filling
“valleys” or erode “slopes”

[¢)]
o

D. Tuia. ECEO
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Texture

= [t can be seen as the visual aspect of the images, when taken locally
= They differentiate homogeneous areas from inhomogeneous areas

= They are invariant in translation and rotation (it's a property that holds
for a type of region, come back to this later...)

[4)]
©
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An example of
texture

Source: Caloz, 2001

Coniferous trees
(arbres résineux)

Deciduous trees
(feuillus)

= Here we have two types of
tree coverages

= Visually it is easy to
differentiate them

= How to incorporate this
knowledge into relevant
indices?

2]
o
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1St order texture:
occurrence

= 1St order textures are local
indices computed in moving
windows

= Local statistics used
 Mean
« Variance
 Range

= They are also called
occurrence indices

24 (27 | 25
23 (35| 37
2515 [ 25

——> Local statistics

o]
N

D. Tuia. ECEO
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Occurrence indices

Vegli-—i+— |-+
(b33 -25])

Is a local neighborhood of size mxm

= Mean y EE X

mEVnEV

Local average. Same as low-pass filter

= Variance i =725 E E[ - “u]

mEVnEV

Fluctuation around the mean in the local window

(o)
B

D. Tuia. ECEO
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L

2nd order indices: co-
occurrence

= They consider spatial information between pixels
= Textural relations are made according to distance and orientation
= Basically searches autocorrelation between graylevels

= To compute them, we use the grey level co-occurrence matrix (GLCM,
Haralick, 1973)

o]
o]
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Co-occurrence
matrix

= We take a mobile window
and count the co-
occurrences of the same
DN for a given

= Distance d
= Direction g

= Each pixel has its own
matrice!!!

Image
- - 4 moo - 4500 - -
- 4 - - -
Pixel central
- " . - -
d L] 0
: D
- 4 - - - -
- v 4 - - 135: -
fenétre mobile
ou primitive i

- ) - - - -

Source: Caloz, 2001

=]
b4
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PFL - Toy example

P(d=1, 6=0) = vertical P(d=1, 6=45) = 450 diagonal
34 35 36 35 36 34 35 36 34 35 36
34 34
36| 36 35| 34| 35 i R 2 14|
35 |5 10| 4 3514 12| 2
36| 35| 35|35 34
614 |4 |2 611 |2 |4
34 (35|35 35| 34
P(d=1, 8=90) = horizontal P(d=1, 6=135) = 1350 diagonal
36 |34 ||35(/34| 36 s s a
3410 (8 |2 M1a 12 |2
3518 8 5 3512 12| 4
36|12 |5 |2 3612 (4 |0

B SSMEO course, 27 March 2025

(]
o]

D. Tuia. ECEO



M

, 27 March 2025

B SSMEO course

Real example (d=3)

horizontal

0
45°

20

0

vertical

|

135°

|

D. Tuia. ECEO
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Real example (d=3)

horizontal

|
- |

vertical

|

135°

|
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Co-occurrence
indices

= Once we have the GLCM, we can compute the co-occurrence indices

_ NbitsNbits Low when few values
Entropy Hij = _E EPdﬂ(m,n)log(Pdﬂ (m,n)) in the window are

Present among Nbits

m=l n=1
C t t NbitsNbits
= Lontras _ 2 Enhances strong
Cij - (m - n) Pd,@ (m’n) jumps in DNs
m=1 n=1

(Nbits is the number of rows of the GLCM)

~
w
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Morphology

= Filters based studying local intensity properties of the image

= They are based on three ingredients: the image, the structuring
element and the operator.

= Most used morphology operators return filtered images enhancing
elements that are darker or brighter than their surroundings

~
[4)]
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=PrL

B SSMEO course, 27 March 2025

Morphology:
structuring element

» [t is the convolution window

= Contrarily to texture or
convolution, the structuring
element (the moving window)
can take any shape

= Ex 2 (red = 1; white = 0O)

Line, 135°

~
o]

D. Tuia. ECEO
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Morphology:
operators

= Two base operators: erosion and dilation

Original object

Erosion

Dilation

D.Tuia.ECEO Y
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L=

L

Erosion and dilation

= Erosion is given by the intersection between the image patch
and the structuring element

e;(X)=XsB=[)X,

bEB

= Dilation is given by the union between the image patch and
the structuring element

6X)=X®B=| X,

bEB

Source: Wilkinson course, Uni Groeningen 2010

~
®
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L Erosion and dilation

(o L)
2 _/
Dilation of X by A

Source: Wilkinson course, Uni Groeningen 2010

[\
NI

ap
N

¢

&

Erosion of X by A

X op(X)
l—’ [ J l—’ ® ®
[ J B [ ] [ ]
[ J [ J $—> [ ] [ ] [ ]
[ ] [ J [ ]
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Morphology: operators
for grayscale

= Two base operators: erosion and dilation

= Erosion is the minimum in SE (dark elements)
= Dilation is the maximum in SE (bright elements)

= min x.
Ese (x) iESE i

O (X) =maxx.
SE() ieSE !

(b)
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L

Morphology:
operators

= Opening is an erosion followed by a dilation
filters structures brighter than the surroundings

OPgp (I) = 655 [855 (I)]

= Closing is a dilation followed by an erosion
filters structures darker than the surroundings

Clgp (1) = €5 [0 ()]
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- Structural opening
and closing

Opening of X by A Closing of X by A

Source: Wilkinson course, Uni Groeningen 2010
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=PrL Structural opening
and closing
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? Source: Wilkinson course, Uni Groeningen 2010
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Morphology: grayscale
opening and closing

Closing Closing
11 pixels 5 pixels

Pan

Opening
5 pixels

Opening
11 pixels
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Morphology: grayscale
opening and closing

(b) eof

Source: Wilkinson course, Uni Groeningen 2010
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Morphology:
operators

= Opening and closing do not respect border of objects

= Especially in VHR imagery, we want to keep this geometrical
information

= We can use reconstruction filtering

= [terative procedure

= (ex: opening by reconstruction) For each dilation
» Take the minimum between dilation and original image
« Continue until no changes are observed
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L Reconstruction
filters

= This may seem a bit
artificial, but can be very
useful in practical
scenarios

Source: Tuia and Kaiser,
ECTQG 2008
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Final result

45’ R~ .

‘@‘-“% "'°§c=1 %

Q%llonlb(’nan\

..ln.. Ol. -

LLE L] ’
g i' i /
')\\) /'361 ‘ = 3

Source: Tuia and Kaiser,

ECTQG 2008
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Reconstruction
filters

(c) (d)

Figure C.5: Opening by reconstruction: (a) line of a grayscale image f and erosion
marker I, (b) dilation by a structuring element B, (c) first geodesic dilation
by B and (d) second (and last) geodesic dilation by B.

Source: D. Tuia, PhD thesis
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Filters by
reconstruction

Clos. Rec. Clos. Rec.
11 pixels 5 pixels

Pan

Open Rec.
5 pixels

Open Rec.
11 pixels
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In summary

= Many features can be extracted from images

= From the DEM, all kind of topographic information

= |[f taking the DEM as an image, oyu can extract many informations
about texture

» features based on occurrence and co-occurrence
» features bysed on mathematical morphology
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