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We made it, we have a 
DEM!

§ Now we have the input to predict environmental variables!

§ Here we work with a DEM, but We could also use orthoimages, 
satellite images, etc. (but that’s in another course ENV-540)



We made it, we have a 
DEM!

§ Now we have the input to predict environmental variables!
§ We could also use orthoimages, satellite images, etc.
§ The structure to follow would look like:

Extract feature 
representa-

tions

Train and 
use the
model

Prediction
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We made it, we have a 
DEM!

§ Now we have the input to predict environmental factors!
§ We could also use orthoimages, satellite images, etc.
§ The structure to follow would look like:

Extract feature 
representa-

tions

Train and 
use the
model

Prediction

Next lectures



Features

Why do we need features
Good properties for features
Types of features
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What are features?

§ Features: new variables issued from the data that are more 
expressive to solve the problem

Extract feature 
representa-

tions

Train and 
use the
model

Prediction

Visual properties that help the model
Make the right decision



“Features” sound like the 
descriptors of week 2…

§ We can use the two terms interchangeably. 

§ For clarity, here I will use features for descriptors that are dense         
(= values for every pixel)

§ This is in contrast to descriptors as those seen in the keypoints 
course (e.g. SIFT), where the description was computed only at the 
keypoint location
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Examples of features

• Vegetation à features related to reflectivity of vegetation à vegetation indices from NIR bands
• Urban à features relative to the shape of objects à spatial context in visible bands
• Clouds à features relative to thermal reflectivity à TIR bands
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Extract 
something that 
differentiates 
the classes

Train and 
use the
model



“Good” vs “bad” features

§ In spectral images (as those 
we use in remote sensing) 
each surface is 
characterised by a spectral  
signature

§ A sensor samples the true 
(continuous) signature 
according to its resolution

§ E.g. 3 bands = 3 values.
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“Good” vs “bad” features

§ In the same way, we can extract 
features that tailored to the 
problem at hand.

§ A classical example is the NDVI
§ By comparing infrared to red light, 

can highlight healthy vegetated 
surfaces

§ So 
• it’s a good feature to detect 

vegetation
• It’s a bad feature to detect cars
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Classification: the aim is being discriminative

§ Good features separate examples of a class from examples of the 
other

§ Below: the histogram of three features for two classes (in red and 
green)
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Regression: the aim is being correlated 
to the output

§ Good features can lead to good fits in regression problems
§ Below the scatterplots of three features for predicting a continuous 

output value
§ A good feature correlates with the variable being predicted (output)
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How many types of features are around?

§ As many as you can imagine.

§ They all are signal modifications, channels combinations, etc.

§ In neural networks, you learn them from data (so no feature 
engineering) à Join ENV-540 if you want to know  more.
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A (very rough) 
taxonomy of features

§ Spectral: band combinations at different wavelenghts  
 (not covered today, see ENV-140/540).

§ Spatial: accounting for the spatial context around the pixel you are 
looking at
• Based on convolution windows (e.g. low/high pass filters).
• Extracted using some machine learning pipeline (e.g. BoVW, ENV540).

§ In the next part we focus on spatial features, based on convolutions, 
to be extracted from the DEM.
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Convolution-based 
features

Low- and high-pass filters (a 
reminder)
Sobel filters
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Why spatial filters?

§ Spatial filters tell us about image context and improve discrimination
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Why spatial filters?

§ Spatial filters tell us about image context and improve discrimination
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Local enhancement

§ One way to make images aware of context is to augment the input 
space with information about the surroundings.

§ Augment = add new variables.
§ We can create new features summarizing something about the local 

context (remember SIFT descriptions?).
§ Each feature is a new variable telling us something about

• Color distributions
• Edges
• Direction of spatial structures
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Local convolutions (1D)

§ In 1 D, we can see each row (resp. column) of the image as a series of 
discrete values

§ We can use a convolution window to summarize nearby values
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Local convolutions (1D)

§ In 1 D, we can see each row (resp. column) of the image as a series of 
discrete values

§ We can use a convolution window to summarize nearby values
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Local convolutions (1D)

§ In 1 D, we can see each row (resp. column) of the image as a series of 
discrete values

§ We can use a convolution window to summarize nearby values

SS
M

EO
 c

ou
rs

e,
 2

7 
M

ar
ch

 2
02

5

D
. T

ui
a.

 E
C

EO
  

22

Average filter!



Convolution filters in 2D
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• We want to filter pixel 
x12 of the image G

• We use a 3 x 3 
convolution filter F

• The pixels considered 
by the convolution are 
in the vector B

x1
x6

x7

x8

x11

x12

x13

x16

x17

x18

x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14 x15

x16 x17 x18 x19 x20

x21 x22 x23 x24 x25

B B

g

F B

G



Convolution 
operation

§ A dot product is applied between the moving window B and the filter F

§ For a filter of size with C coefficients and sum of coefficients S 
(ex: for F of the previous slide, C = 9)

x12
F =

1
S
FT *B( ) = 1S FiBi

i=1

C

∑



Low pass filter: 
average

§ A low pass filter smooths the image (the resulting feature is the 
average of all the points in the window)
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Low pass filter: 
average

§ A low pass filter smooths the image (the resulting feature is the 
average of all the points in the window)
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Low pass filter: 
Gaussian

§ With the average filter, the smoothing is often too strong
§ A Gaussian filter weights the coefficients with respect to distance



Low pass filter: 
Gaussian
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Comparison
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What about edges? Sobel filter

§ Sobel filters are a family of directional high pass filters

§ They work on image gradients

§ The filters are usually convolutions in 2D, e.g.

§ They are computed in different directions, then results averaged.
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Recap: Filters based 
on gradients in 1D

§ It is a differentiation operator 
§ Gives the direction of the largest possible increase in intensity
§ Shows how smoothly the image changes at that point

• If an edge, the value is large
• If not, the value is small
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Sobel filter:
horizontal derivative = vertical structures
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Sobel filter: 
vertical derivative = horizontal structures
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Sobel filter: first 
diagonal component
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Sobel filter: second 
diagonal component
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Sobel filter: isotrope
filter

*(Sh + Sv + Sd1 + Sd2 ) =



Sobel filter
IH
2 + IV

2



Convolution filters for 
DEMs

DoG
Directional derivatives
Slope
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Convolution filters for 
DEMs

§ Since we work on digital elevation models here, there are some 
favorites that can be computed on DEMs

§ They use the ingredients we saw before
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From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass., 
25(1):51–66, 2011. 

DEM of switzerland



1. Difference of 
Gaussians

§ We calculate two Gaussian filters = are two blurred DEMs 
§ Blurred at two different scales (two different Gaussian s values)
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From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass., 
25(1):51–66, 2011. 



1. Difference of 
Gaussians

§ We calculate two Gaussian filters = two blurred DEMs 
§ Blurred at two different scales (two different Gaussian s values)
§ Then we substract them
§ Depending on the s values, different details will appear.
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From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass., 
25(1):51–66, 2011. 



1. Difference of 
Gaussians

§ We calculate two Gaussian filters = two blurred DEMs 
§ Blurred at two different scales (two different Gaussian s values)
§ Then we substract them
§ Depending on the s values, different details will appear.

§ Yes, it is the same DoG seen for the SIFT detector (see course 2).
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2. Directional derivatives

§ DD show the main gradients of the image in a specific direction
§ It is basically the horizontal or vertical component of the Sobel 

filter
§ E.g. here the horizontal derivative:
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From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. Ass., 
25(1):51–66, 2011. 



3. Slope

§ Slope is formally described by a plane at a tangent to a point on a 
surface 

• Slope has two components: 
• Gradient: the maximum rate of change of the elevation of the plane the 

angle that the plane makes with a horizontal surface. Often referred to as 
slope.

• Aspect: the direction of the plane with respect to some arbitrary zero 
(usually north) 
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http://www.geo.uzh.ch/microsite/geo372/PDF/week4_g
eo372_terrain.pdf



3. Slope: gradient

§ Gradients can be calculated both in 
degrees (angle) or percent (rise vs run). 
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3. Slope: steepest 
drop method

§ There are many methods to calculate gradients

• Steepest drop: use a focal function for max drop

  
     where              and l is the resolution.
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3. Slope: steepest 
drop method

§ There are many methods to calculate gradients

• Steepest drop: use a focal function for max drop

§ Aspect is the direction of steepest drop
§ Pros: simple
§ Cons: max 8 possible aspects
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3. Slope : finite 
differencing method

§ There are many methods to calculate gradients

• Steepest drop: use a focal function for max drop
• Finite differencing
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http://www.geo.uzh.ch/microsite/geo372/PDF/week4_geo372_terrain.pdf

This gradient is (perp./base) in the horizontal

This gradient is (perp./base) in the vertical



3. Slope : finite 
differencing method

• For the aspect, we use:

all aspects are in the range [-p/2, p/2] 
[-90, 90]

• This is ambiguous for 2D coordinates! 
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http://www.geo.uzh.ch/microsite/geo372/PDF/week4_geo372_terrain.pdf

Normal to the slope

North



3. Solving the 
ambiguity of aspect

§ If calculating the angle between the x 
axis and a vector in the 2D plane to a 
point (x,y), we cannot reach the left 
quadrant

§ This is because y/x and –y/-x give the 
same result, so we don’t know in which 
quadrant we will be
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Range of validity 
of the tan-1(y/x) fct!

???



3. Solving the 
ambiguity of aspect

§ If calculating the angle between the x-
axis and a vector in the 2D plane to a 
point (x,y), we cannot reach the left 
quadrant

§ This is because y/x and –y/-x give the 
same result, so we don’t know in which 
quadrant we will be

§ To solve this abiguity, use the arctan2 
fct, which works anywhere in the 
Cartesian plane

§ It uses the sign of x and y to locate the 
right quadrant
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https://en.wikipedia.org/wiki/Atan2



3. Solving the 
ambiguity of aspect

• To have aspects in [0,360], use the arctan2 function:
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https://geo.libretexts.org/Courses/University_of_California_Davis/GEL_056%3A_Introduction_to_Geophysics/Geophysics_is_everywhere
_in_geology.../zz%3A_Back_Matter/Arctan_vs_Arctan2 

https://geo.libretexts.org/Courses/University_of_California_Davis/GEL_056%3A_Introduction_to_Geophysics/Geophysics_is_everywhere_in_geology.../zz%3A_Back_Matter/Arctan_vs_Arctan2
https://geo.libretexts.org/Courses/University_of_California_Davis/GEL_056%3A_Introduction_to_Geophysics/Geophysics_is_everywhere_in_geology.../zz%3A_Back_Matter/Arctan_vs_Arctan2


3. Slope: quadratic fit 
method

§ There are many methods to calculate gradients

• Steepest drop: use a focal function for max drop
• Finite differencing
• Fit a quadratic surface to the points, minimizing errors
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3. Slope

§ Exemples of gradient and aspect features
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From: L. Foresti, D. Tuia, M. Kanevski, and A. Pozdnoukhov. 
Learning wind fields with multiple kernels. Stoch. Env. Res. Risk. 
Ass., 25(1):51–66, 2011. 

https://gisgeography.com/aspect-map/

Gradient Aspect



Features specific to 
images
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Going further

There are a lot of local descriptors for remote sensing, here a selection:

§ Gray-level co-occurrence matrix (GLCM)-based (notebook here, paper using them here)

§ Mathematical morphology-based (https://hal.inria.fr/hal-00737075/document )
§ Attribute profiles (https://ieeexplore.ieee.org/document/5482208 )
§ Dense SIFT (you calculate the SIFT descriptor at each pixel location in a sliding window 

fashon)
§ Features going beyond local patterns: local-to-global features describing recurrent 

patterns in the image: Bag of Visual Words (ENV-540)
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https://hal.inria.fr/hal-00737075/document
https://ieeexplore.ieee.org/document/5482208


Going contextual

§ In this last part, we see two family of contextual filters

• Texture filters: compute 1st and 2nd order textural indices in local 
neighborhoods

• Morphological filters: consider images as a terrain and work in filling 
“valleys” or erode “slopes”
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Texture

§ It can be seen as the visual aspect of the images, when taken locally

§ They differentiate homogeneous areas from inhomogeneous areas

§ They are invariant in translation and rotation (it’s a property that holds 
for a type of region, come back to this later…)
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An example of 
texture

§ Here we have two types of 
tree coverages

§ Visually it is easy to 
differentiate them

§ How to incorporate this 
knowledge into relevant 
indices?

Coniferous trees
(arbres résineux)

Deciduous trees
(feuillus)

Source: Caloz, 2001
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1st order texture: 
occurrence

§ 1st order textures are local 
indices computed in moving 
windows

§ Local statistics used
• Mean
• Variance
• Range
• …

§ They are also called 
occurrence indices

24 27 25

23 35 37

25 15 25

Local statistics
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Occurrence indices

§ Mean

Local average. Same as low-pass filter

§ Variance

Fluctuation around the mean in the local window
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µij =
1
PP

xmn
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Occurrence 
indices
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2nd order indices: co-
occurrence

§ They consider spatial information between pixels

§ Textural relations are made according to distance and orientation

§ Basically searches autocorrelation between graylevels

§ To compute them, we use the grey level co-occurrence matrix (GLCM, 
Haralick, 1973)
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Co-occurrence 
matrix

§ We take a mobile window 
and count the co-
occurrences of the same 
DN for a given

§ Distance d
§ Direction q

§ Each pixel has its own 
matrice!!!

Source: Caloz, 2001SS
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Toy example
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Real example (d=3)
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Real example (d=3)
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Co-occurrence 
indices

§ Once we have the GLCM, we can compute the co-occurrence indices

§ Entropy

§ Contrast

(Nbits is the number of rows of the GLCM)

€ 

Hij = − Pd ,θ (m,n)log Pd ,θ (m,n)( )
n=1

Nbits

∑
m=1

Nbits

∑

€ 

Cij = m − n( )2Pd ,θ (m,n)
n=1

Nbits

∑
m=1

Nbits

∑ Enhances strong
jumps in DNs

Low when few values 
in the window are 
Present among Nbits
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Real examples

Image Contrast, 5x5,d=3, 
average angles

Entropy, 5x5,d=3, 
average angles
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Morphology

§ Filters based studying local intensity properties of the image

§ They are based on three ingredients: the image, the structuring 
element and the operator.

§ Most used morphology operators return filtered images enhancing 
elements that are darker or brighter than their surroundings
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Morphology: 
structuring element

§ It is the convolution window

§ Contrarily to texture or 
convolution, the structuring 
element (the moving window) 
can take any shape

§ Ex à (red = 1; white = 0)

Square

Disk

Line, horizontal

Line, vertical

Line, 45°Line, 135°
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Morphology: 
operators

§ Two base operators: erosion and dilation
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Erosion Dilation



Erosion and dilation

§ Erosion is given by the intersection between the image patch 
and the structuring element

§ Dilation is given by the union between the image patch and 
the structuring element

Source: Wilkinson course, Uni Groeningen 2010

δB (X) = X ⊕ B = Xb
b∈B


εB (X) = X −B = X−b
b∈B

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Erosion and dilation

Source: Wilkinson course, Uni Groeningen 2010

Dilation of X by a horizontal SE

X
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dB(X)

Erosion of X by a horizontal SE
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Morphology: operators 
for grayscale

§ Two base operators: erosion and dilation

§ Erosion is the minimum in SE (dark elements)
§ Dilation is the maximum in SE (bright elements)

€ 

δSE (x) =max
i∈SE

xi

€ 

εSE (x) =min
i∈SE

xi
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Morphology: 
operators

§ Opening is an erosion followed by a dilation
filters structures brighter than the surroundings

§ Closing is a dilation followed by an erosion
filters structures darker than the surroundings€ 

opSE (I) = δSE[ε SE (I)]

€ 

clSE (I) = εSE [δSE (I)]
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Structural opening 
and closing

Source: Wilkinson course, Uni Groeningen 2010SS
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Structural opening 
and closing

Source: Wilkinson course, Uni Groeningen 2010

X

B

OpB(X) ClB(X)
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Morphology: grayscale
opening and closing
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Morphology: grayscale
opening and closing

Source: Wilkinson course, Uni Groeningen 2010SS
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Morphology: 
operators

§ Opening and closing do not respect border of objects
§ Especially in VHR imagery, we want to keep this geometrical 

information
§ We can use reconstruction filtering

§ Iterative procedure
§ (ex: opening by reconstruction) For each dilation

• Take the minimum between dilation and original image
• Continue until no changes are observed
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Reconstruction 
filters

§ This may seem a bit 
artificial, but can be very 
useful in practical 
scenarios

Source: Tuia and Kaiser, 
ECTQG 2008
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Final result

Source: Tuia and Kaiser, 
ECTQG 2008SS
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Reconstruction 
filters

Source: D. Tuia, PhD thesisSS
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Filters by 
reconstruction
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In summary

§ Many features can be extracted from images

§ From the DEM, all kind of topographic information

§ If taking the DEM as an image, oyu can extract many informations 
about texture
• features based on occurrence and co-occurrence
• features bysed on mathematical morphology
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