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§ An approach for supervised learning:
• the most used model in science → has been around for a long time 

• simple and useful statistical learning method to predict quantitative 
responses → ideal for many real-world problems 

• forms a basis for many complex methods → learning it helps to understand 
complex methods

1. What is linear regression?
2. How to ‘fit’ a linear regression model?
3. How to evaluate a linear regression model?
4. How to select features for linear regression?

Linear regression
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§ Measuring relationships between variables

What is linear regression?
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§ Measuring relationships between variables

What is linear regression?
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§ Measuring relationships between variables through;
• data 𝐷 = 𝑥!" , 𝑥#" , 𝑥$" , 𝑦" "%!

&

What is linear regression?
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§ Measuring relationships between variables through data for 
answering questions about the relationship of variables

What is linear regression?
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• Is there a relationship between advertising 
budget and sales?

• How strong is the relationship?

• Is there a synergy among the advertisement 
media?



§ A linear regression model is defined by the y-intercept 𝛽# and the 
slope 𝛽$ as:

How to ‘fit’ a linear regression model?
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elevation average air temperature

!𝑦 = 𝑓 𝑥;𝜷 = 𝛽! + 𝑥𝛽"
which maps each 𝑥 (e.g., an elevation) to the estimated continuous
value #𝑦 (e.g., the average surface temperature prediction).  

Model 𝑓

Dataset 𝐷



§ Assume that we have a dataset of 
𝑁 samples 𝐷 = 𝑥' , 𝑦' '($

)

§ How to find good parameters    
)𝜷 = ( ,𝛽#, ,𝛽$) for a linear regression 
model #𝑦 = 𝑓 𝑥; 𝛽 = 𝛽# + 𝑥𝛽$?

→ How to ‘fit’ a linear regression 
model?

How to ‘fit’ a linear regression model?
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§ For a selection of (𝛽#, 𝛽$), the 
model 𝑓 estimates #𝑦' for each 
sample 𝑥' with error 𝜀' (residual):

#𝑦' = 𝑓 𝑥'; 𝛽 = 𝛽# + 𝑥'𝛽$ = 𝑦' ± 𝜀'

§ The best parameters )𝜷 = ( ,𝛽#, ,𝛽$)
minimize the residuals over the 
dataset.

→ How to ‘fit’ a linear regression 
model?

• By minimizing the residuals

How to ‘fit’ a linear regression model?
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§ How to minimize residuals?

• Mean absolute error (MAE) over the 
estimations and dataset

1
𝑁
5
'($

)

| #𝑦' − 𝑦'|

• Very intuitive, but does not punish
big errors  

How to ‘fit’ a linear regression model?
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§ How to minimize residuals?

• Mean squared error (MSE) over the 
estimations and dataset

1
𝑁
5
'($

)

#𝑦' − 𝑦'
*

• does punish big errors by a square 
penalty

How to ‘fit’ a linear regression model?
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§ The best parameters )𝜷 = ( ,𝛽#, ,𝛽$) are found by minimizing MSE over 
dataset through ordinary least squares (OLS) solution.

,𝛽#, ,𝛽$ = argmin
+!,+"

1
𝑁
5
'($

)

𝑓 𝑥'; 𝜷 − 𝑦'
*
= argmin

+!,+"

1
𝑁
5
'($

)

𝛽# + 𝑥'𝛽$ − 𝑦'
*

§ Solving a minimization problem:
1. Calculate partial derivatives '()*

'+$
and '()*

'+%

2. Set derivatives to zero: '()*
'+$

= 0, '()*
'+%

= 0

3. Solve for (𝛽, and (𝛽!

How to ‘fit’ a linear regression model?
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§ The best parameters )𝜷 = ( ,𝛽#, ,𝛽$) are found by minimizing MSE over 
dataset through ordinary least squares (OLS) solution. 
• By solving the minimization problem, the closed form OLS solution is 

obtained as:

,𝛽# =
1
𝑁
5
'($

)

𝑦' − 𝛽$
1
𝑁
5
'($

)

𝑥' = >𝑦 − 𝛽$𝑥̅

,𝛽$ =
1
𝑁∑'(𝑥

' − 𝑥̅)(𝑦' − >𝑦)
1
𝑁 ∑' 𝑥

' − 𝑥̅ *
=
Cov(𝑥, 𝑦)
Var(𝑥)

How to ‘fit’ a linear regression model?
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§ Some linear relations can be well-described by a single variable )𝜷.
• Temperature generally decreases with increasing elevation (known as 

environmental lapse rate).

How to ‘fit’ a linear regression model?
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elevation average air temperature

−6.5 ℃/km



§ Most relationships are non-linear, and thus can’t be described by a 
linear model with a single variable )𝜷. → univariate linear regression

How to ‘fit’ a linear regression model?
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elevation surface temperature

?



§ Some non-linear relationships can be linear when combined together 
with good feature design. → multivariate linear regression

How to ‘fit’ a linear regression model?
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§ Some non-linear relationships can be linear when combined together 
with good feature design. → multivariate linear regression

How to ‘fit’ a linear regression model?
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Multivariate 
Linear 
Regression



§ Univariate linear regression model #𝑦 = 𝑓 𝑥; 𝛽#, 𝛽$ is formulated for 
scalar 𝑥 and 𝑦 with two parameters 𝛽#, 𝛽$. 

#𝑦' = 𝛽# + 𝑥'𝛽$

§ Multivariate linear regression model is formulated for:
• input sample 𝐱" = (𝑥!" , 𝑥#" , … , 𝑥-" ) of 𝑝 scalar features
• corresponding scalar target 𝑦"
• y-intercept 𝛽, and one parameter for each feature 𝜷 = (𝛽,, 𝛽!, 𝛽#, … , 𝛽-)

3𝑦" = 𝛽, + 𝑥!"𝛽! + 𝑥#"𝛽# + 𝑥$"𝛽$ +⋯+ 𝑥-" 𝛽- = 𝜷.𝐱"

Multivariate linear regression
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§ All the samples of a multivariate dataset 𝐷 = 𝒙' , 𝑦' '($
) can be 

expressed in vectors with 𝑁 data samples and 𝑝 features.

𝐗 =

1 𝑥$$

1 𝑥$*
⋯

𝑥5$

𝑥5*

⋮ ⋱ ⋮
1 𝑥$) ⋯ 𝑥5)

, 𝐘 =

𝑦$

𝑦*
⋮
𝑦)

§ Then, for all the samples, the multivariate linear regression model with 
𝑝 + 1 parameters 𝜷 = (𝛽#, 𝛽$, … , 𝛽5) is written as:

𝐘 = 𝐗𝜷 + 𝜺

Multivariate linear regression
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§ The best parameters )𝜷 = ( ,𝛽#, ,𝛽$, … , ,𝛽5) are found by minimizing MSE 
over dataset through OLS solution.

)𝜷 = argmin
𝜷

𝐗𝜷 − 𝐘 * = argmin
𝜷

(𝐘7𝐘 − 2𝜷7𝐗7𝐘 + 𝜷7𝐗7𝐗𝜷)

§ Solving a minimization problem:
1. Calculate partial derivative '()*

'𝜷
= −2𝐗.𝐘 + 𝟐𝐗.𝐗𝜷

2. Set derivatives to zero: '()*
'𝜷

= −2𝐗.𝐘 + 𝟐𝐗.𝐗𝜷 = 𝟎

3. Solve for <𝜷 = 𝐗.𝐗 0!𝐗.𝐘

Multivariate linear regression
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Multivariate linear regression
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8𝜷 = 𝐗&𝐗
'#
𝐗&𝐘

single line of code!

𝜷 = (0,0,0,0, … ) 𝜷 = (−0.1,0.2,0.5, −0.5, … )
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Linear 
Regression 
Model Evaluation



§ After fitting the model with )𝜷, did we capture 
the underlying relationship between 𝑥 and 𝑦?

1. How large is the error 𝜺? 
• Residual sum of squares (RSS)
• Residual standard error (RSE)
• R2 metric

2. How close is the estimated )𝜷 to the true 𝜷?
• Standard errors (SE) for each parameter

3. How the relationship is significant
according to dataset size?
• Student’s t-test 

How to evaluate a linear regression model?
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§ Residual sum of squares (RSS) is defined as:

RSS = 5
'($

)

𝑦' − #𝑦'
*

§ It increases with the dataset size 𝑁: hard to 
evaluate a model independent from 𝑁.

How to evaluate a linear regression model?
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§ Residual standard error (RSE) is defined as:

RSE =
1

𝑁 − (𝑝 + 1)
,
!"#

$

𝜀! % =
1

𝑁 − 𝑝 − 1
𝑅𝑆𝑆

§ It measures the ‘corrected’ standard deviation 
of the residuals by the degrees of freedom 
(DoF):
• number of samples – number of parameters
𝛽#, 𝛽$, … , 𝛽%

§ It is in the units of the target variable: hard to 
assess what number is a good fit. 

How to evaluate a linear regression model?
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§ R2 (coefficient of determination) is a unitless metric (typically between 
0 and 1) different than RSE. 

How to evaluate a linear regression model?
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§ R2 measures the proportion of the variation in 𝐘 which can be explained using 𝐗.

§ How better is our model when compared to a simple averaging model (baseline) 
that always outputs (𝑦, independently of 𝑥?

R& = 1 −
RSS
TSS

How to evaluate a linear regression model?
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• Residual sum of squares (RSS): 

RSS = D
()#

*

𝑦( − E𝑦(
"

• Total sum of squares (TSS):

TSS = D
()#

*

𝑦( − G𝑦
"



§ How close are the estimated parameters )𝜷 (on a dataset) to the true 
𝜷?
• Standard deviation of each parameter → standard error (SE) for each 

parameter 

SE ,𝛽# = 𝜎
1
𝑁 ∑'($

) (𝑥')*

∑'($
) 𝑥' − 𝑥̅ * SE( ,𝛽$) = 𝜎

1
∑'($
) 𝑥' − 𝑥̅ *

§ Recap: 𝜎 = std 𝜀 = RSE
(residual standard error)

How to evaluate a linear regression model?
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§ How significant is the relationship with respect to dataset size? 
• Is an estimated relation a random artifact of the data?
• Is there a significant relationship between 𝑥 and 𝑦?

§ For a model (𝑦 = 𝛽# + 𝛽$𝑥 + 𝜀) we can 
test two hypotheses regarding the slope 𝛽$

How to evaluate a linear regression model?
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𝐻!: 𝛽" = 0
𝐻": 𝛽" ≠ 0

§ With the t-test statistic 𝑡 =
#$%

%&(#$%)

every 𝑥 value will give 
the same 𝑦 value and 
the model would be 
useless

Student’s T distribution

𝑃 −𝑡+,- < 𝑇 < 𝑡+,- = 1 − 2𝛼
𝑣 denotes DoF (𝑁 − 𝑝) 

§ Reject 𝐻! if 𝑡 < −𝑡+,-./ or 𝑡 > 𝑡+,-./



§ Reject 𝐻# if 𝑡 < −𝑡P,)Q* or 𝑡 > 𝑡P,)Q*
= being in the red area of the graph

§ p-value: 𝑃 𝑡P,)Q* ≤ 𝑡 = 𝛼
= probability of falling in the white area of the

graph, given a t score

§ A high p-value (usually > 5%)
• No significant relationship
• Not enough data

How to evaluate a linear regression model?
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a ~ 5% a ~ 5%

a > 5%



§ some variables 
• can be time-consuming and costly to gather
• can be redundant (highly correlated)

§ How to automatically select a minimal subset of relevant features?
• Based on their significance   

How to select features for linear regression?
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𝑥!
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§ How to automatically select a minimal subset of relevant features?
• Sequential feature selection algorithms: remove or add relevant 

features based on their significance!

Criterion: smallest p-value, highest increase in R2, highest drop in model 
RSS compared to other predictors under consideration.
Stopping rule: number of desired features or criterion threshold 

How to select features for linear regression?
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Forward Selection Algorithm
1: null model without features
2: while stopping criterion is not met do
3: for each candidate feature do
4: add feature 
5: fit model 
6: score model
7: add the best feature to the model

Backward Selection Algorithm

1: full model with all features
2: while stopping criterion is not met do
3: for each feature in the model do
4: remove feature 
5: fit model 
6: score model
7: remove the worst feature
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Decision Trees for 
Regression



How would you predict salary from years/hits? 36
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Segmenting the space in coherent partitions? 37
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Segmenting the space in coherent partitions? 38

Young 
player

small 
salary

Not so good senior player

mid salary

Good senior player

high salary
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It becomes a decision tree!
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Stratifying (segmenting) predictor space
§ A decision tree is an interpretable model in which the final output is 

based on a series of comparisons of the values of predictors against 
threshold values. 
• Nonlinear by design!
• Hierarchical
• Non-parametric

§ It basically segments the input space by                                                      
using a supervised rule:
• “if I divide there, would the two resulting                                                                    

segments be clearer about the quantity                                                                   
being predicted”?

39
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§ Graphically, decision trees can be represented by a flow chart. 

§ Geometrically, the model partitions the feature space, where each 
region is assigned a response value based on the samples of the 
region.

Stratifying (segmenting) predictor space
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Stratifying (segmenting) predictor space

§ Tree-based methods are usually used for 
classification

§ Their concept translates well to regression 
problems too

41
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In the classification case

§ You can find the 
nonlinear solution 
in 3 splits.

42

Feature Space
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In the classification case

§ You can find the 
nonlinear solution 
in 3 splits.

43
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In the classification case

§ You can find the 
nonlinear solution 
in 3 splits.

§ (with 2 you would 
get the bell   
pepper right)

44
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In the classification case

§ You can find the 
nonlinear solution 
in 3 splits.

45

Feature Space
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In the classification case

§ You can find the 
nonlinear solution 
in 3 splits.

46

Feature Space
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How to build a tree?
§ By constructing regions of the feature space

§ For regression
• Use mean of observations in each region 

47
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𝑥$

How to build a tree? 48

𝑥*

*careful! This regression example is in 
1D in contrast to the baseball example 
before or the classification one on the 

right, which are both 2D§ By constructing regions of the feature space

§ For regression*
• Use mean of observations in each region 

§ For classification
• Majority voting in each region 
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How to build a tree? 49

§ By constructing regions of the feature space

§ For regression
• Use mean of observations in each region 

§ For classification
• Majority voting in each region 
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Constructing regions for a regression tree 50

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Constructing regions for a regression tree 51

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Constructing regions for a regression tree 52

!𝑦'!

!𝑦'"

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Constructing regions for a regression tree 53

All samples in the orange part will be 
Predicted as G𝑦/!All samples in the green 

part will be Predicted as
G𝑦/"

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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𝑦

54Example of 2 different splits
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55Example of 2 different splits

55

𝑦
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How to construct regions?
§ Recursive binary splitting: Top-down, greedy approach

• Start at top of tree, successively split predictor space
• Best split is made at the current step
• Not looking forward, to find a split that at future step might give a better result
• Finish when reaching a stopping condition (e.g., each leaf has fewer than some 

fixed number of instances)

§ Why not to consider every possible partition of the feature space?
• Computationally infeasible (NP-hard)!
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Constructing regions for a regression tree 57

x1

y

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0

Tu
ia

/ S
um

bu
l /

 D
al

sa
ss

o

EN
V-

40
8:

 R
AN

D
O

M
 F

O
RE

ST
S



Constructing regions for a regression tree 58

x1

y

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Constructing regions for a regression tree 59

x1

y

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Constructing regions for a regression tree 60

x1

y

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Constructing regions for a regression tree 61

x1

y

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"

2

,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Constructing regions for a regression tree 62

x1

y

Find the regions 𝑅", 𝑅/, … , 𝑅0 minimizing residual sum of 
squares (RSS):

,
01"
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,
3∈5.

𝑦3 − ;𝑦5.
/

With ;𝑦5. being mean response for training samples in region 𝑅0
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Ok, this is a simplified exemple, where you 

only have one variable, x1. In reality you will 

have plenty of variables to sample from!



Why will this procedure (may) lead to overfitting?

§ (Too) complex tree will be preferred

§ Solution 1: early stopping 

§ Solution 2: pruning
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• First, we grow a very large tree 𝑇,, and then prune it back to obtain a subtree.

for 𝑇 ⊂ 𝑇, minimize F
1%!

|3|

F
"∈50

(𝑦" − G𝑦50) + 𝛼|𝑇|

 

Pruning 64

Number of leaves 
(terminal nodes)

predictor space
in the mth leaf
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Bagging for 
Regression



From tree to forest
§ A single decision tree can overfit

• low bias (less assumptions, high flexibility)
• high variance (data sensitivity)

§ A single decision tree can suffer from high variance (data sensitive)
• for different training sets, decisions can be quite different

§ The concept of bagging is meant to reduce such variance by building 
a committee of models.

§ Random forests (RF) use it.
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Bagging

§ Let’s say a single decision tree has an output )𝐘 with variance 𝜎*

§ If we repeat the modeling with 𝑛 independent trials, we get 𝑛 models 
)𝐘$, )𝐘*, )𝐘R, … , )𝐘S each with variance 𝜎*.

§ According to the central limit theorem, the variance of their average
has variance 𝜎*/𝑛.

§ Averaging independent models
reduces variance!
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Bagging: bootstrap aggregation

§ In practice, we train 𝐵 different methods with subsets of the data, 
and then average them out:

<𝑓678 𝑥 =
1
𝐵
,
91"

:

<𝑓∗
9
(𝑥)

§ Even more in practice, we can’t have truly independent subsets

§ We resample parts of the data and use them in each model 
training.
• random sampling with replacement
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Random Forests 
for Regression



Random Forests
§ Bagging trees with more randomization

§ For each split in a tree, we also consider a random subset of features 
(typically 𝑝 if you have p features to start with)

§ As before, we average the predictions of the B trees

,𝑓TU 𝑥 =
1
𝐵
5
V($

W

,𝑓∗
V
(𝑥)
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Random Forests
§ For each tree: 
• Select a subset of the data

• For each node:
o Select some of the variables
o Calculate some split values for those variables
o Select the best partition
o Split the data points into two groups, which become new nodes

• Predict the response for this tree

§ Take the average prediction across all trees

71

Tu
ia

/ S
um

bu
l /

 D
al

sa
ss

o

EN
V-

40
8:

 R
AN

D
O

M
 F

O
RE

ST
S



Random Forests 72
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In summary

§ Today we saw two approaches to (non)linear regression

• Linear regression, uni-and multivariate. The most popular, 
§ but “just” linear, you need to design good nonlinear features

• Decision trees-based regression. Nonlinear by design, 
§ By partitioning the predictors space into good average approximations 
§ Repeating over and over

§ Remember that all these ML approaches need data to train, the more 
the better
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