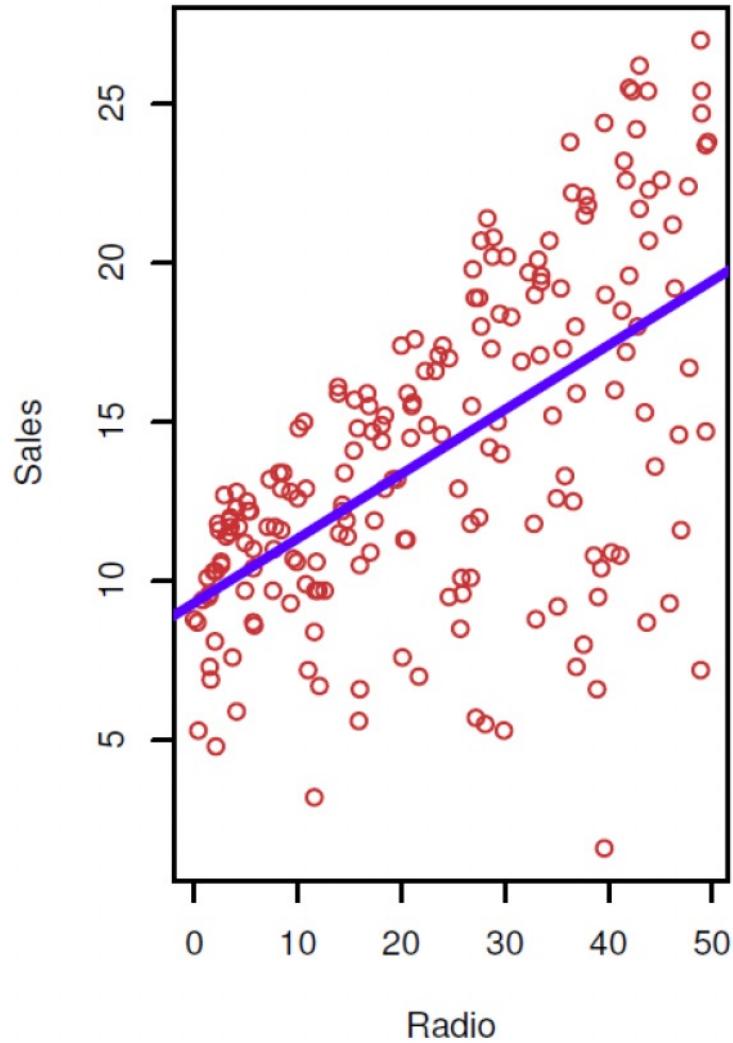


Linear Regression Random Forests

ENV-408
Sensing and
Spatial Modeling
for Earth
Observation

D. Tuia
G. Sumbul
E. Dalsasso
ECEO

EPFL, Spring Semester
2024-2025



Outline

Linear Regression Fundamentals

Multivariate Linear Regression

Model Evaluation

Decision Trees

Bagging

Random Forests

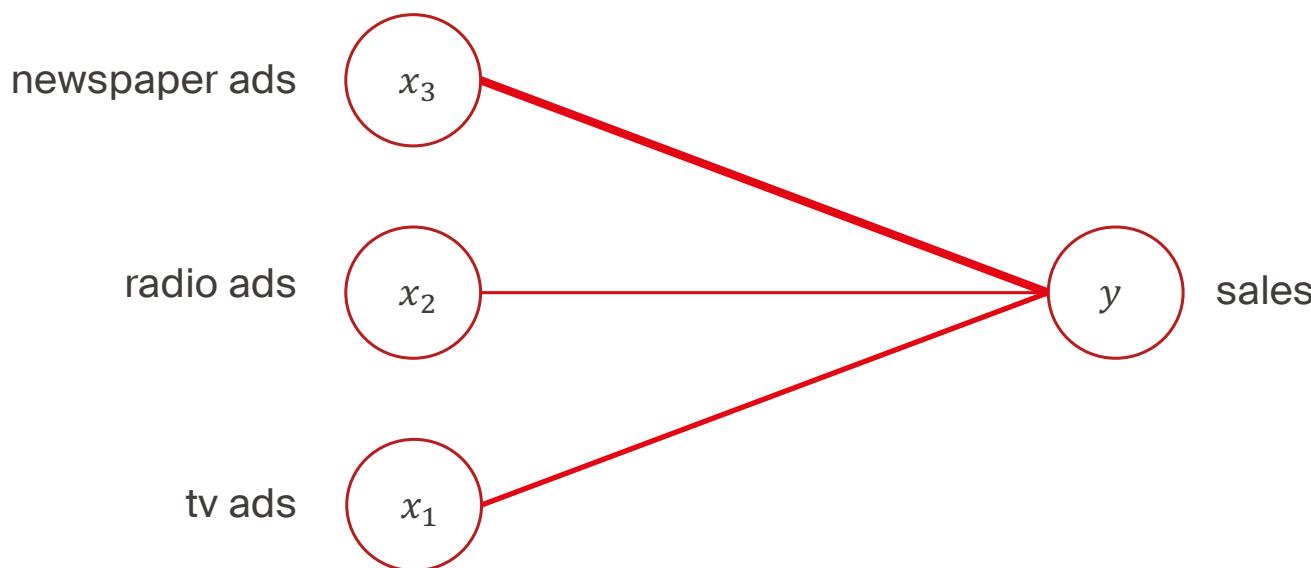
Linear regression

- An approach for supervised learning:
 - the **most used** model in science → has been around for a long time
 - **simple** and **useful** statistical learning method to predict quantitative responses → ideal for many real-world problems
 - forms a **basis** for many **complex** methods → learning it helps to understand complex methods

1. What is linear regression?
2. How to ‘fit’ a linear regression model?
3. How to evaluate a linear regression model?
4. How to select features for linear regression?

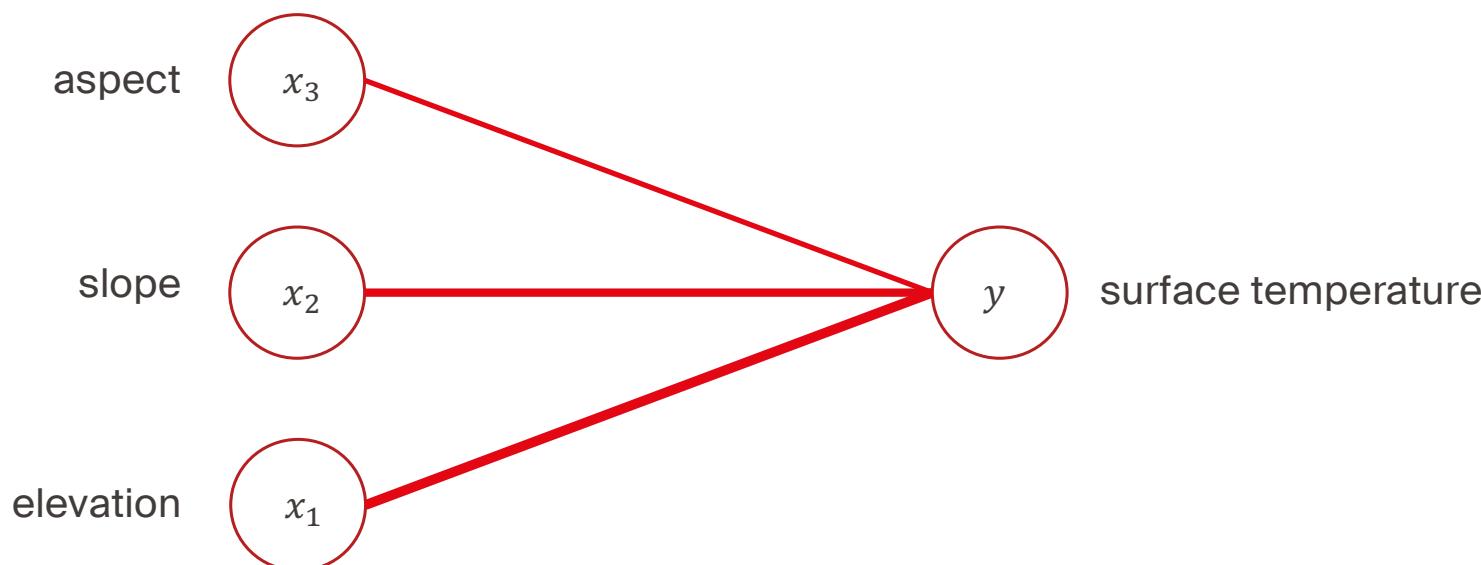
What is linear regression?

- Measuring **relationships** between **variables**



What is linear regression?

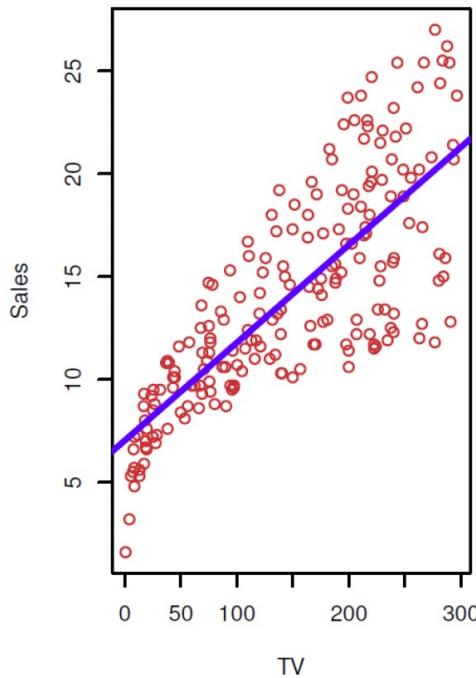
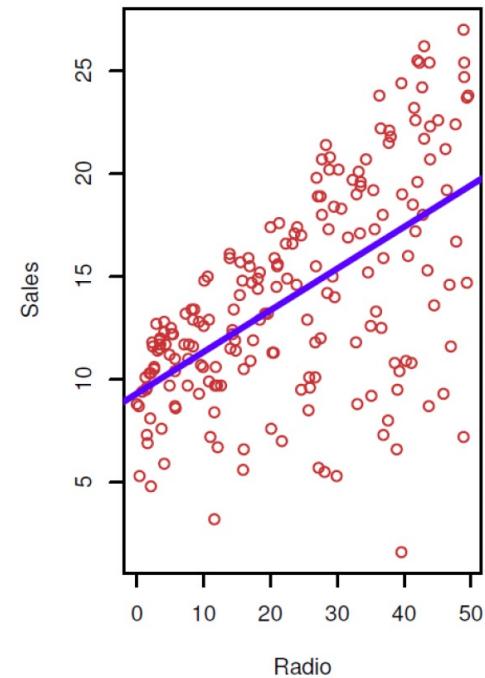
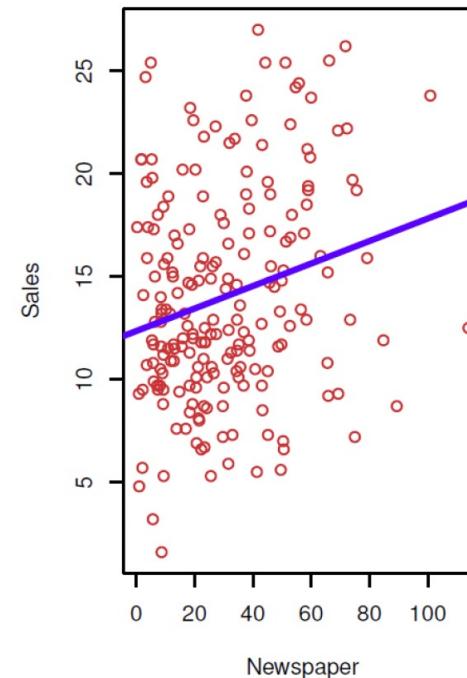
- Measuring **relationships** between **variables**



What is linear regression?

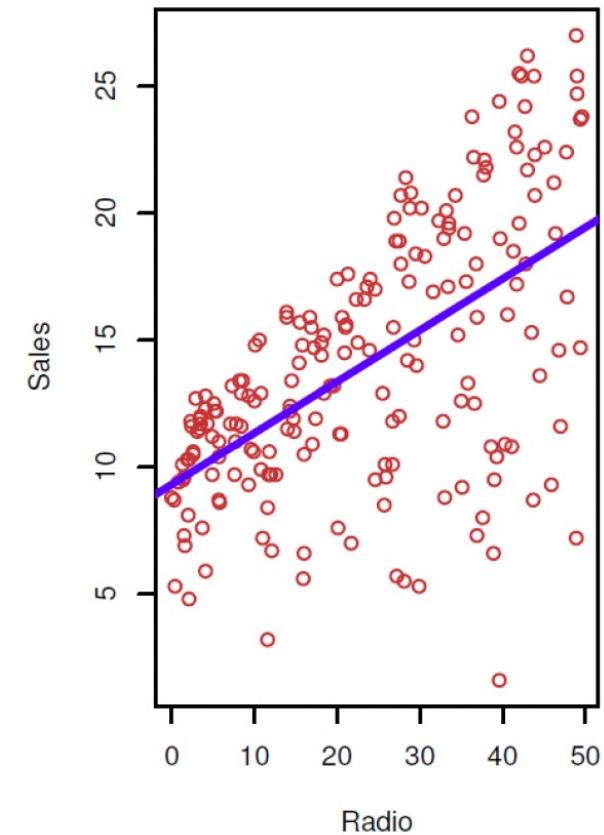
- Measuring **relationships** between **variables** through;

- data** $D = \left\{ \left((x_1^i, x_2^i, x_3^i), y^i \right) \right\}_{i=1}^N$

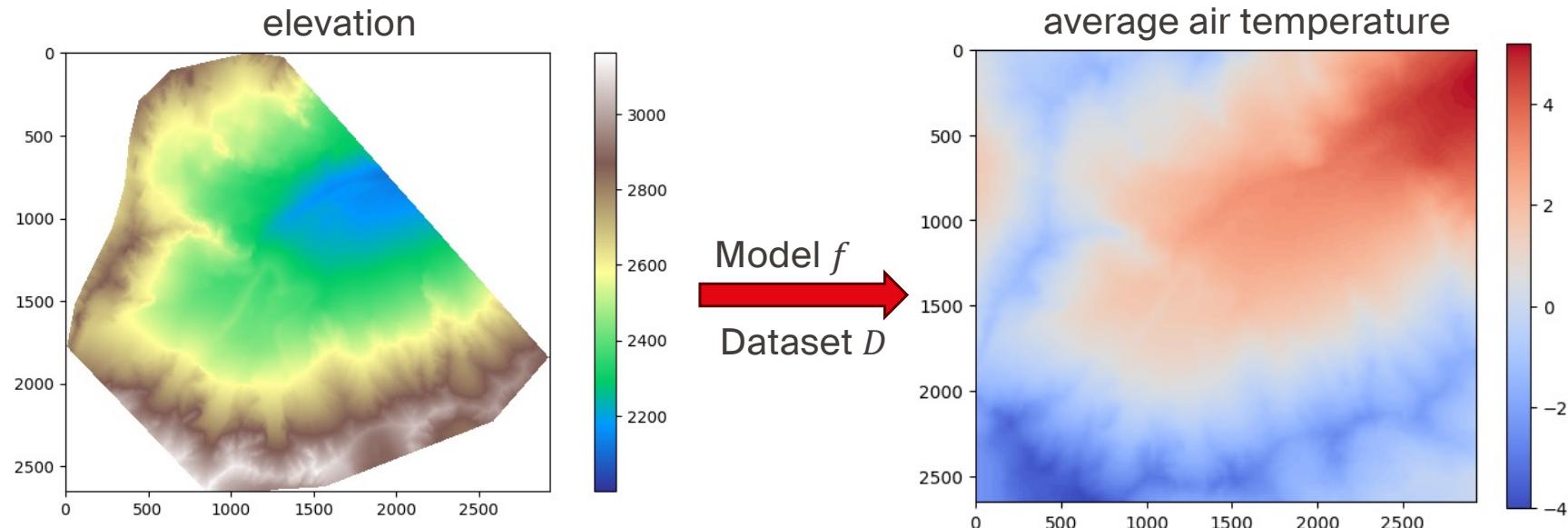


What is linear regression?

- Measuring **relationships** between **variables** through **data** for answering questions about the relationship of variables
 - Is there a relationship between advertising budget and sales?
 - How strong is the relationship?
 - Is there a synergy among the advertisement media?



How to ‘fit’ a linear regression model?

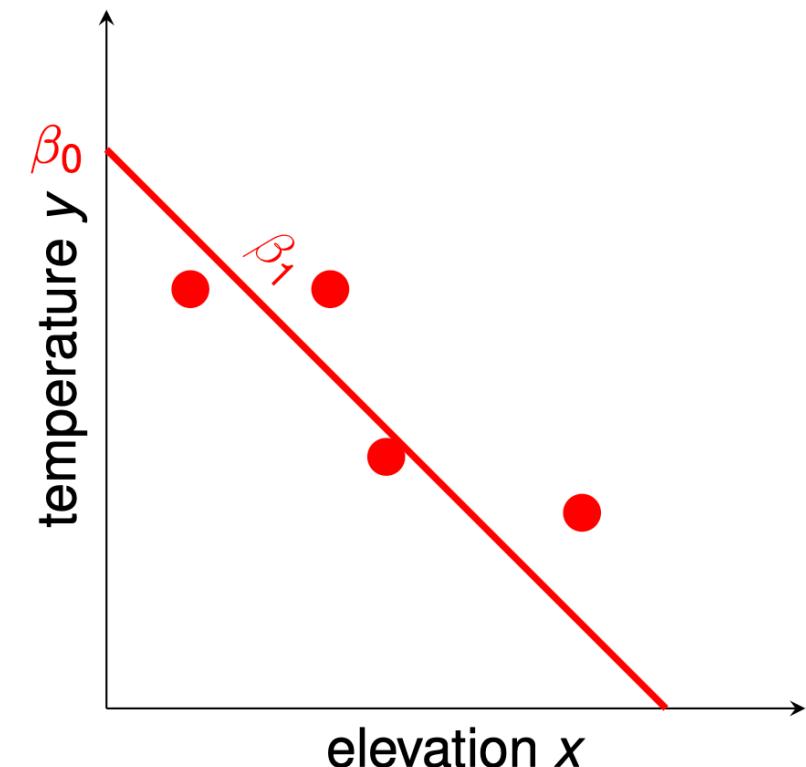


- A linear regression model is defined by the **y-intercept** β_0 and the **slope** β_1 as:

$$\hat{y} = f(x; \boldsymbol{\beta}) = \beta_0 + x\beta_1$$

which maps each x (e.g., an elevation) to the estimated **continuous** value \hat{y} (e.g., the average surface temperature prediction).

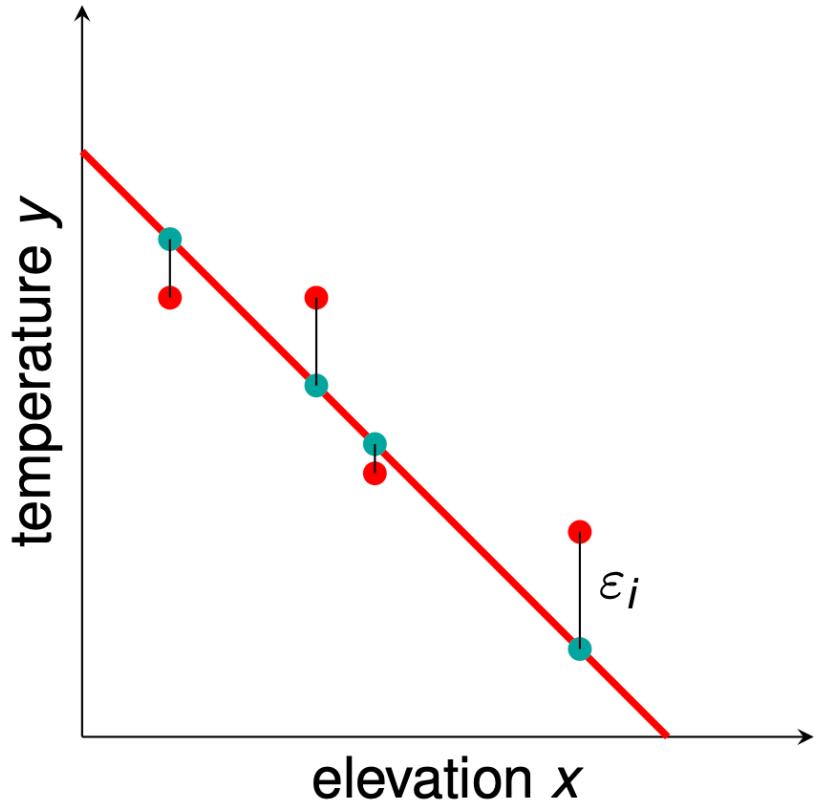
How to ‘fit’ a linear regression model?



- Assume that we have a dataset of N samples $D = \{(x^i, y^i)\}_{i=1}^N$
- How to find **good parameters** $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$ for a linear regression model $\hat{y} = f(x; \beta) = \beta_0 + x\beta_1$?

→ How to ‘fit’ a linear regression model?

How to ‘fit’ a linear regression model?



- For a selection of (β_0, β_1) , the model f estimates \hat{y}^i for each sample x^i with error ε^i (**residual**):

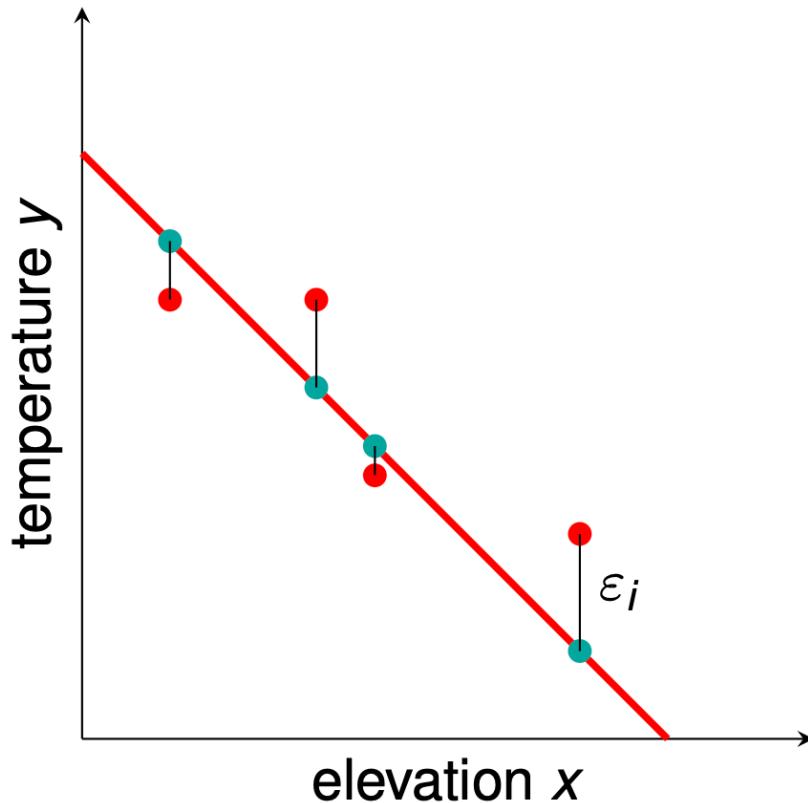
$$\hat{y}^i = f(x^i; \beta) = \beta_0 + x^i \beta_1 = y^i \pm \varepsilon^i$$

- The best parameters $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$ minimize the residuals over the dataset.

→ How to ‘fit’ a linear regression model?

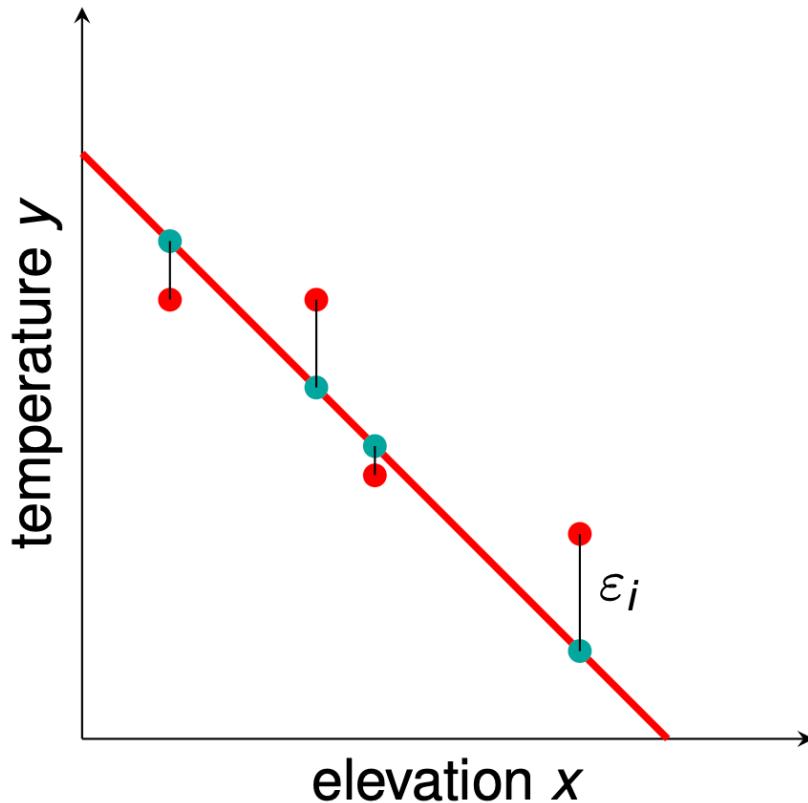
- By **minimizing** the **residuals**

How to ‘fit’ a linear regression model?



- How to minimize residuals?
 - Mean absolute error (**MAE**) over the estimations and dataset
$$\frac{1}{N} \sum_{i=1}^N |\hat{y}^i - y^i|$$
 - Very intuitive, but does **not punish big errors**

How to ‘fit’ a linear regression model?



- How to minimize residuals?
 - Mean squared error (MSE) over the estimations and dataset
$$\frac{1}{N} \sum_{i=1}^N (\hat{y}^i - y^i)^2$$
 - does **punish big errors** by a square penalty

How to ‘fit’ a linear regression model?

- The best parameters $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$ are found by minimizing MSE over dataset through **ordinary least squares** (OLS) solution.

$$\hat{\beta}_0, \hat{\beta}_1 = \operatorname{argmin}_{\beta_0, \beta_1} \frac{1}{N} \sum_{i=1}^N (f(x^i; \beta) - y^i)^2 = \operatorname{argmin}_{\beta_0, \beta_1} \frac{1}{N} \sum_{i=1}^N (\beta_0 + x^i \beta_1 - y^i)^2$$

- Solving a minimization problem:
 1. Calculate partial derivatives $\frac{\partial \text{MSE}}{\partial \beta_0}$ and $\frac{\partial \text{MSE}}{\partial \beta_1}$
 2. Set derivatives to zero: $\frac{\partial \text{MSE}}{\partial \beta_0} = 0, \frac{\partial \text{MSE}}{\partial \beta_1} = 0$
 3. Solve for $\hat{\beta}_0$ and $\hat{\beta}_1$

How to ‘fit’ a linear regression model?

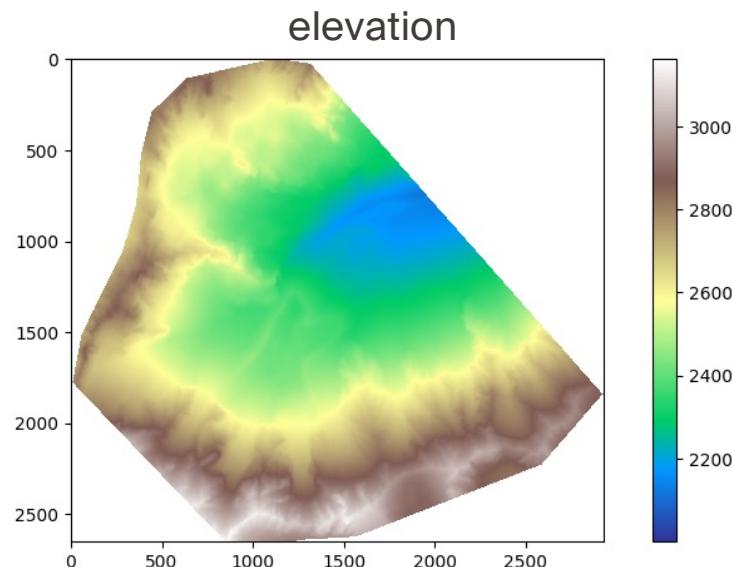
- The best parameters $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)$ are found by minimizing MSE over dataset through **ordinary least squares** (OLS) solution.
 - By solving the minimization problem, the **closed form OLS** solution is obtained as:

$$\hat{\beta}_0 = \frac{1}{N} \sum_{i=1}^N y^i - \beta_1 \frac{1}{N} \sum_{i=1}^N x^i = \bar{y} - \beta_1 \bar{x}$$

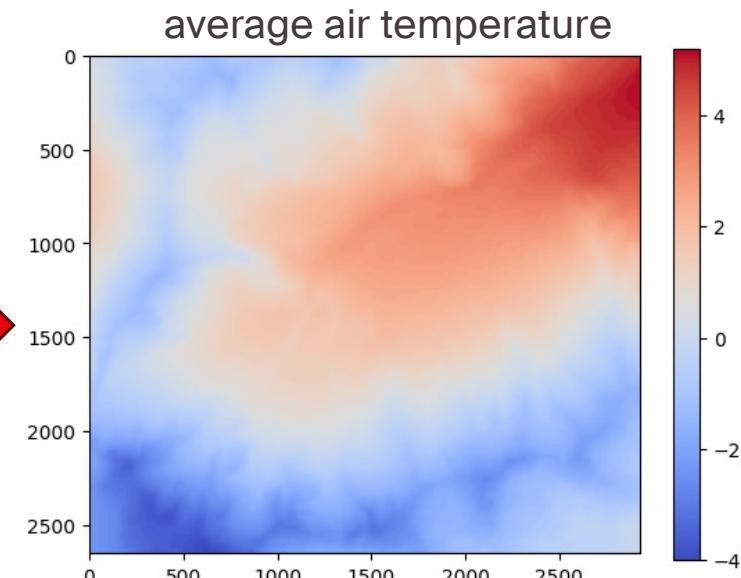
$$\hat{\beta}_1 = \frac{\frac{1}{N} \sum_i (x^i - \bar{x})(y^i - \bar{y})}{\frac{1}{N} \sum_i (x^i - \bar{x})^2} = \frac{\text{Cov}(x, y)}{\text{Var}(x)}$$

How to ‘fit’ a linear regression model?

- Some linear relations can be well-described by a single variable $\hat{\beta}$.
 - Temperature generally decreases with increasing elevation (known as environmental lapse rate).

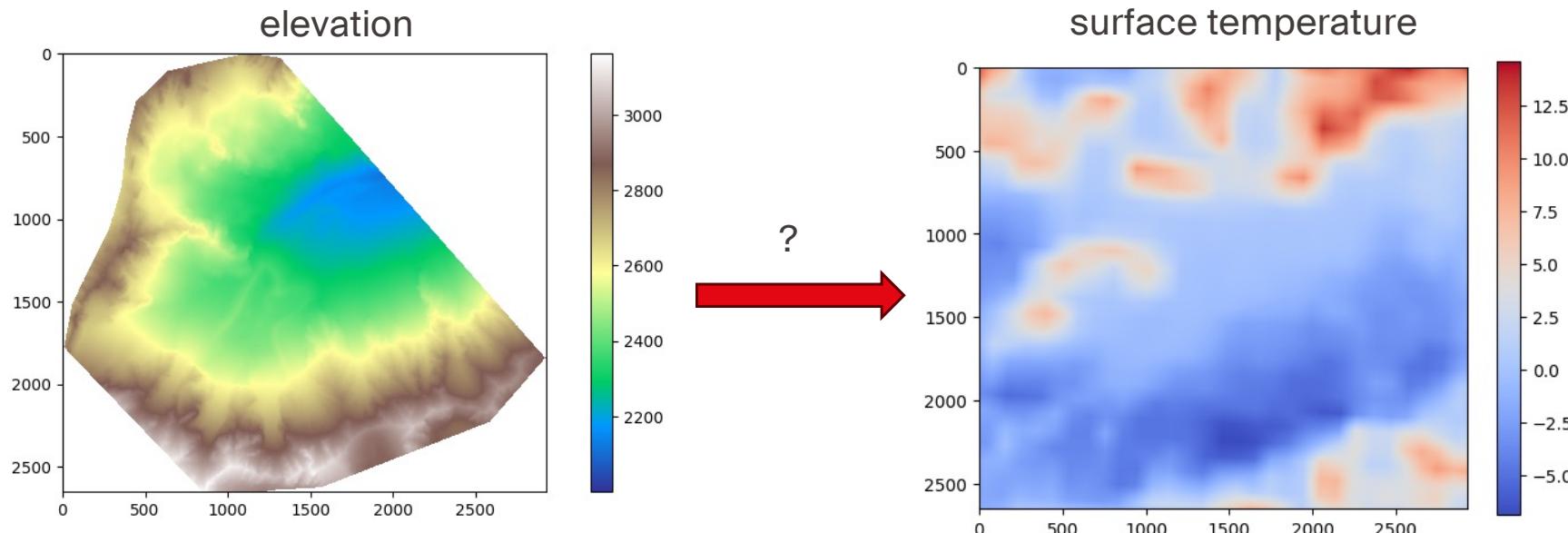


$-6.5 \text{ }^{\circ}\text{C/km}$



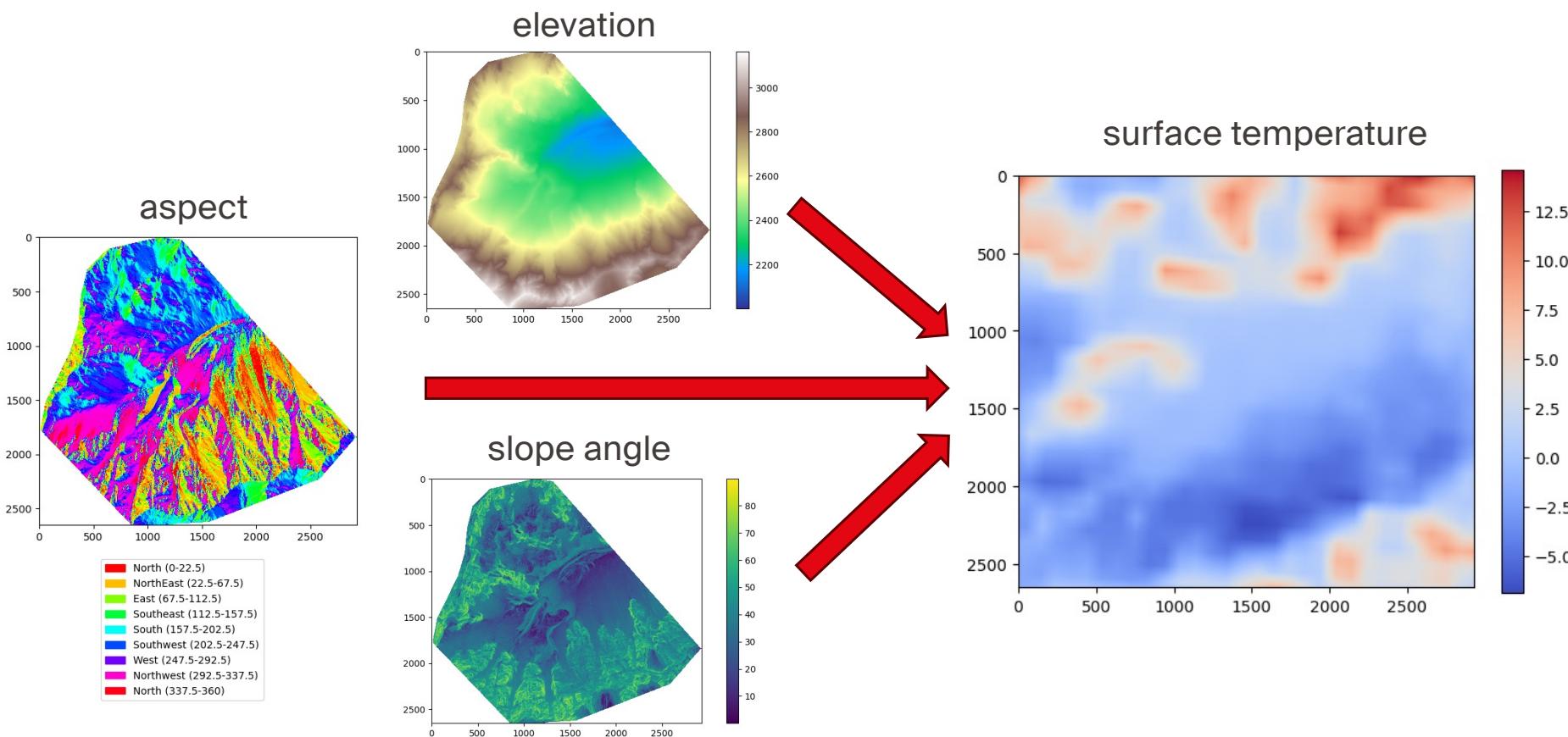
How to ‘fit’ a linear regression model?

- Most relationships are **non-linear**, and thus can't be described by a linear model with a single variable $\hat{\beta}$. → univariate linear regression



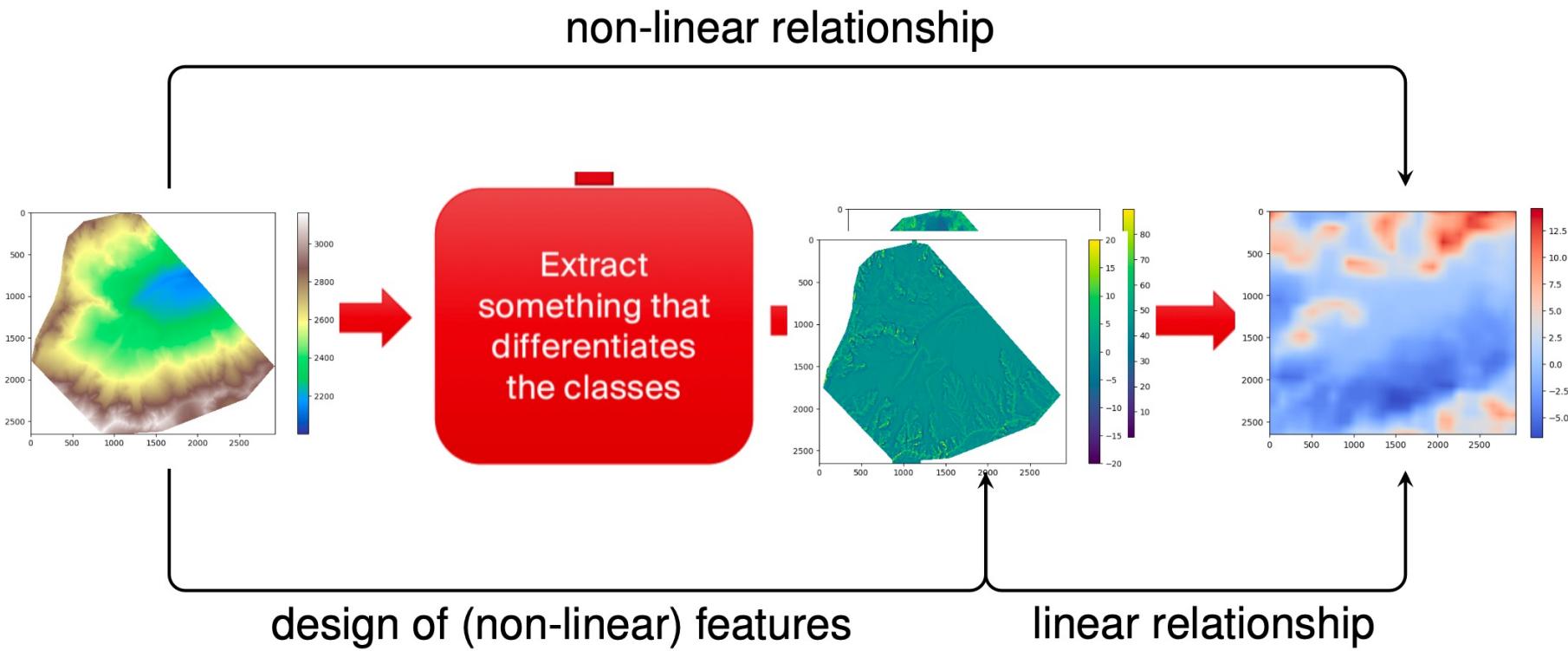
How to ‘fit’ a linear regression model?

- Some **non-linear** relationships can be linear when combined together with good feature design. → **multivariate** linear regression



How to 'fit' a linear regression model?

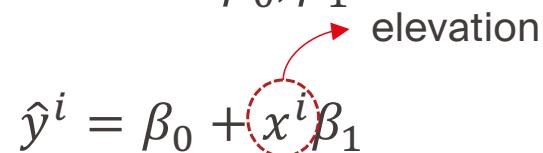
- Some **non-linear** relationships can be linear when combined together with good feature design. → **multivariate** linear regression



Multivariate Linear Regression

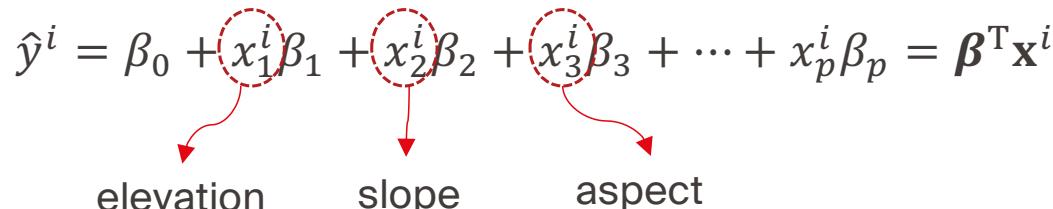
Multivariate linear regression

- Univariate linear regression model $\hat{y} = f(x; \beta_0, \beta_1)$ is formulated for scalar x and y with two parameters β_0, β_1 .

$$\hat{y}^i = \beta_0 + x^i \beta_1$$


A diagram showing the univariate linear regression equation $\hat{y}^i = \beta_0 + x^i \beta_1$. The term $x^i \beta_1$ is circled in red, with a red arrow pointing from the circled term to the text 'elevation' located above the equation.

- **Multivariate** linear regression model is formulated for:
 - input sample $\mathbf{x}^i = (x_1^i, x_2^i, \dots, x_p^i)$ of p scalar features
 - corresponding scalar target y^i
 - **y-intercept** β_0 and **one parameter for each feature** $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \dots, \beta_p)$

$$\hat{y}^i = \beta_0 + x_1^i \beta_1 + x_2^i \beta_2 + x_3^i \beta_3 + \dots + x_p^i \beta_p = \boldsymbol{\beta}^T \mathbf{x}^i$$


A diagram showing the multivariate linear regression equation $\hat{y}^i = \beta_0 + x_1^i \beta_1 + x_2^i \beta_2 + x_3^i \beta_3 + \dots + x_p^i \beta_p = \boldsymbol{\beta}^T \mathbf{x}^i$. The terms $x_1^i \beta_1$, $x_2^i \beta_2$, and $x_3^i \beta_3$ are circled in red, with red arrows pointing from each circled term to the labels 'elevation', 'slope', and 'aspect' respectively.

Multivariate linear regression

- All the samples of a multivariate dataset $D = \{(x^i, y^i)\}_{i=1}^N$ can be expressed in vectors with N data samples and p features.

$$\mathbf{X} = \begin{pmatrix} 1 & x_1^1 & \dots & x_p^1 \\ 1 & x_1^2 & \dots & x_p^2 \\ \vdots & \ddots & \ddots & \vdots \\ 1 & x_1^N & \dots & x_p^N \end{pmatrix}, \mathbf{Y} = \begin{pmatrix} y^1 \\ y^2 \\ \vdots \\ y^N \end{pmatrix}$$

- Then, for all the samples, the multivariate linear regression model with $p + 1$ parameters $\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_p)$ is written as:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

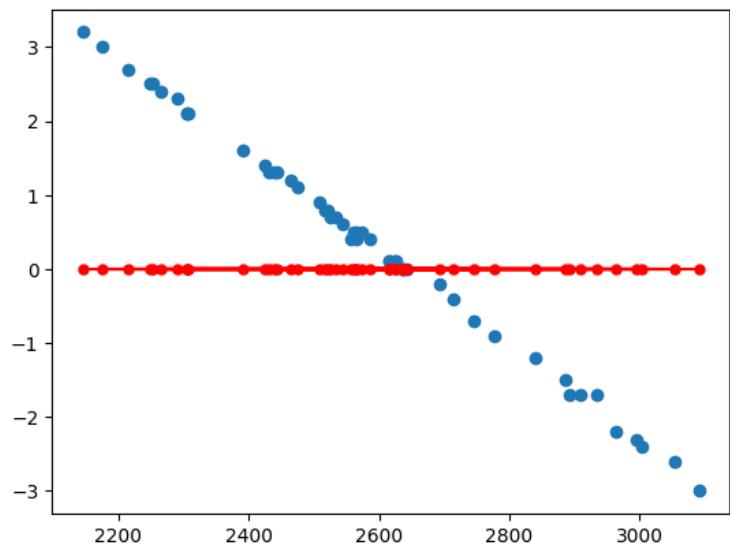
Multivariate linear regression

- The best parameters $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p)$ are found by **minimizing MSE** over dataset through **OLS solution**.

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} \| \mathbf{X}\beta - \mathbf{Y} \|^2 = \underset{\beta}{\operatorname{argmin}} (\mathbf{Y}^T \mathbf{Y} - 2\beta^T \mathbf{X}^T \mathbf{Y} + \beta^T \mathbf{X}^T \mathbf{X} \beta)$$

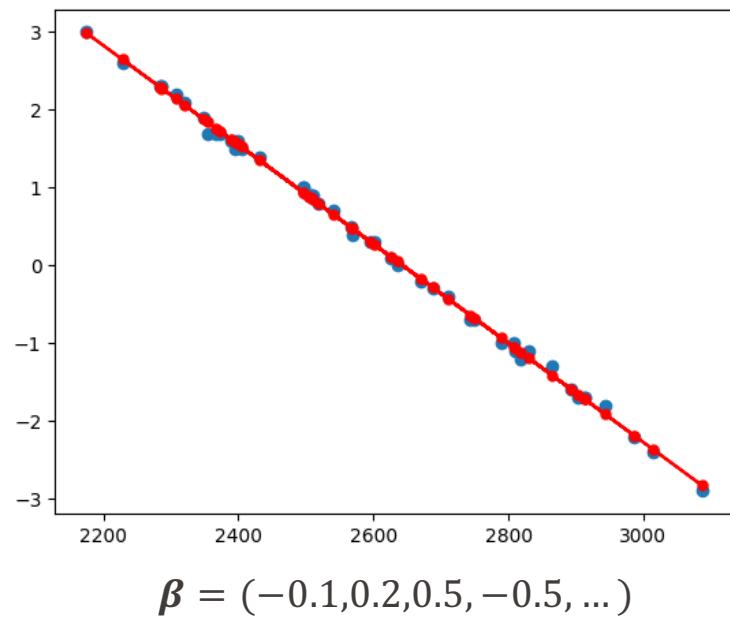
- Solving a minimization problem:
 1. Calculate partial derivative $\frac{\partial \text{MSE}}{\partial \beta} = -2\mathbf{X}^T \mathbf{Y} + 2\mathbf{X}^T \mathbf{X} \beta$
 2. Set derivatives to zero: $\frac{\partial \text{MSE}}{\partial \beta} = -2\mathbf{X}^T \mathbf{Y} + 2\mathbf{X}^T \mathbf{X} \beta = \mathbf{0}$
 3. Solve for $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$

Multivariate linear regression



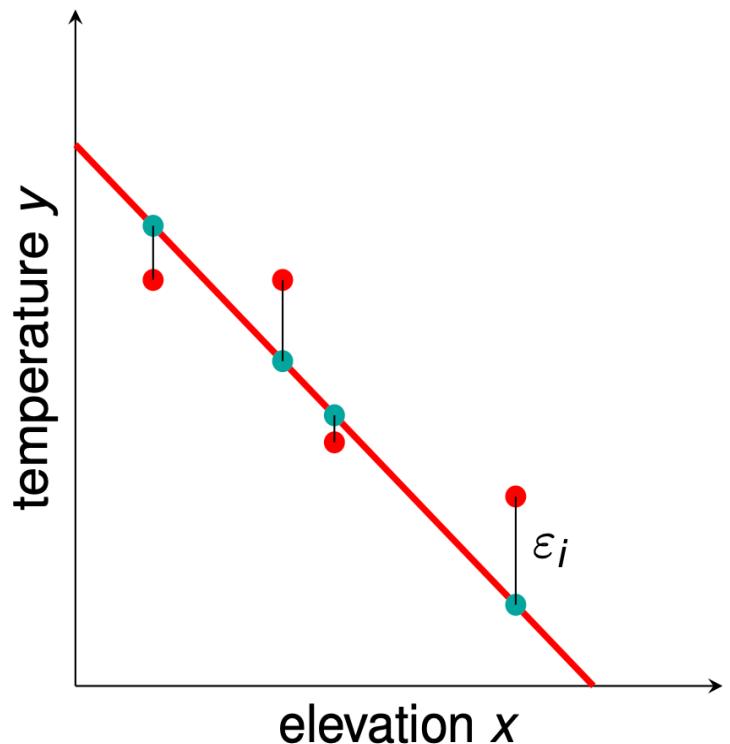
$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

single line of code!



Linear Regression Model Evaluation

How to evaluate a linear regression model?



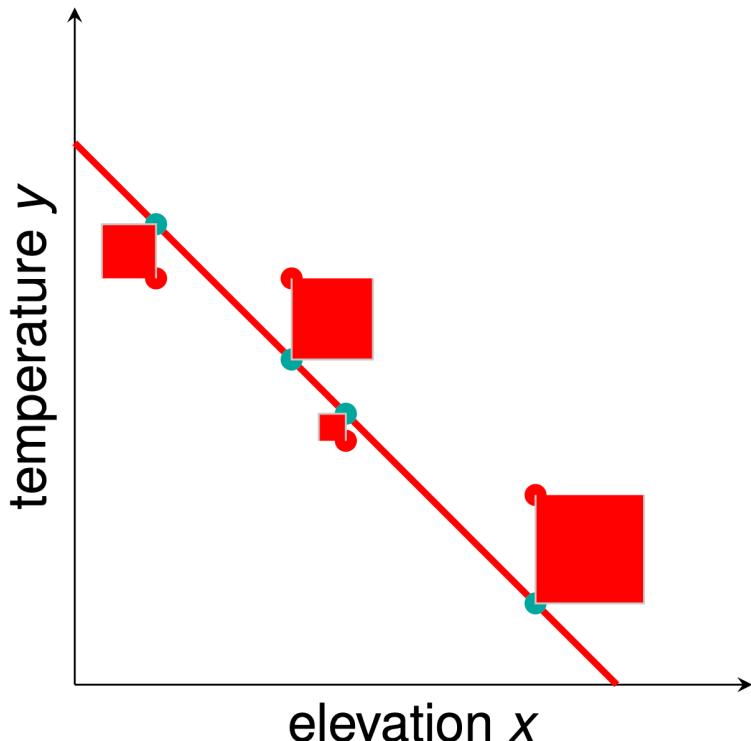
- After fitting the model with $\hat{\beta}$, did we capture the underlying relationship between x and y ?
 1. How **large** is the error ε ?
 - Residual sum of squares (RSS)
 - Residual standard error (RSE)
 - R^2 metric
 2. How **close** is the **estimated** $\hat{\beta}$ to the **true** β ?
 - Standard errors (SE) for each parameter
 3. How the relationship is **significant** according to dataset size?
 - Student's t-test

How to evaluate a linear regression model?

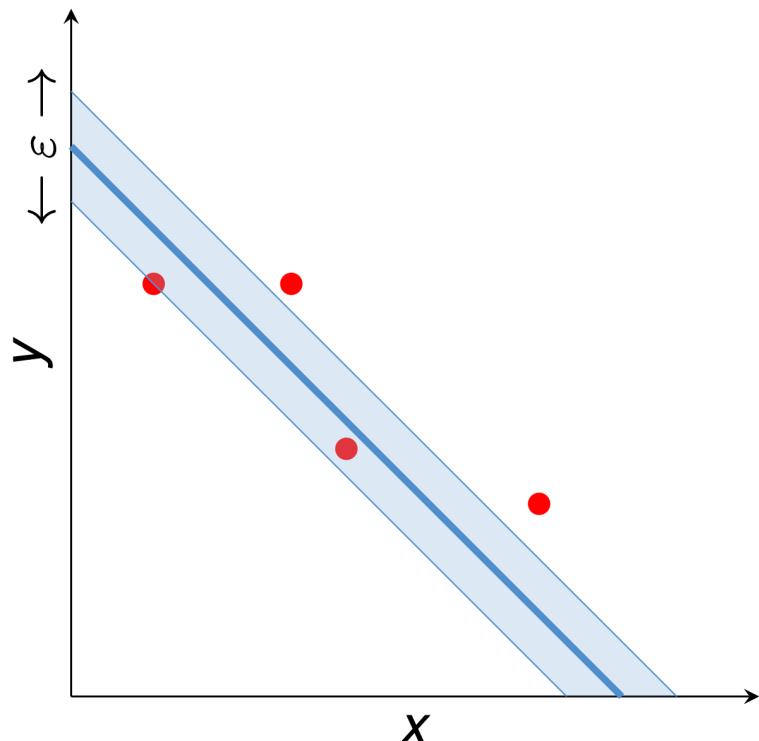
- Residual sum of squares (RSS) is defined as:

$$\text{RSS} = \sum_{i=1}^N (y^i - \hat{y}^i)^2$$

- It increases with the dataset size N : **hard to evaluate** a model **independent from N** .



How to evaluate a linear regression model?



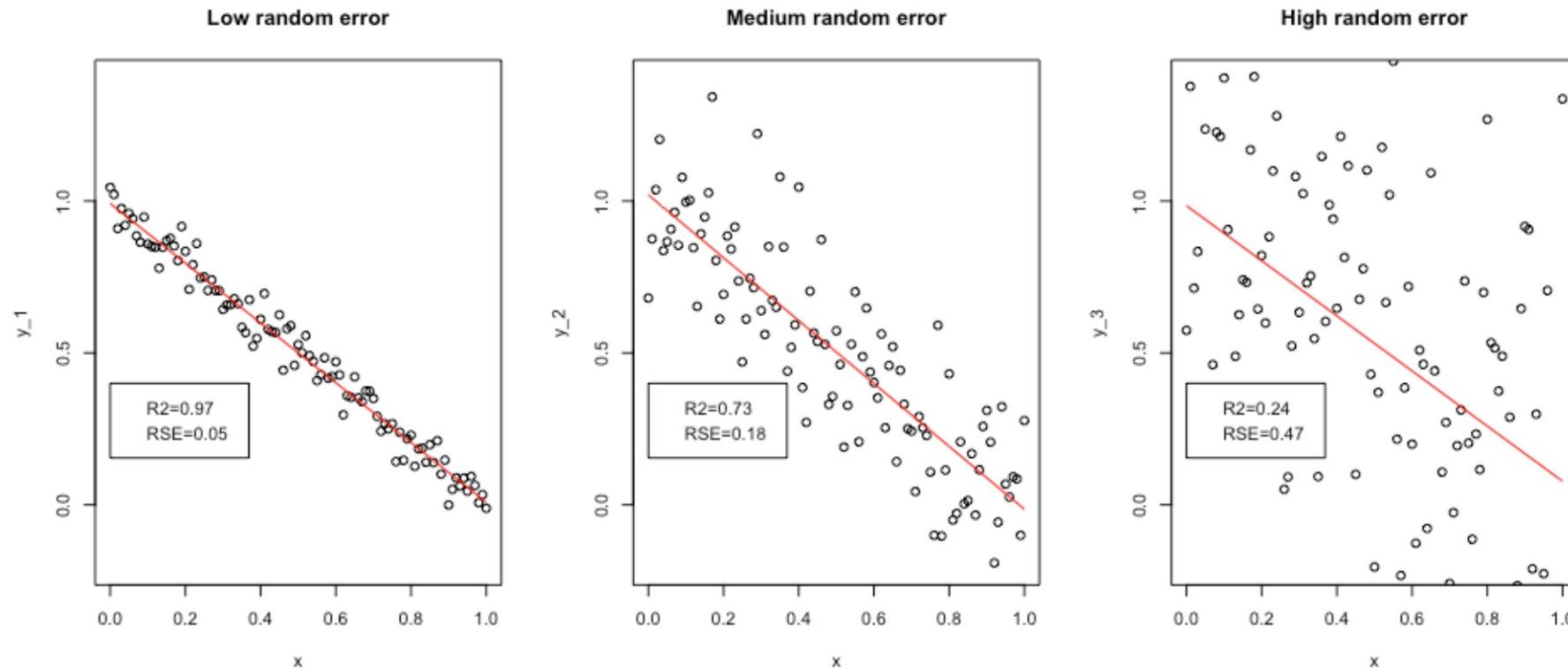
- Residual standard error (RSE) is defined as:

$$RSE = \sqrt{\frac{1}{N - (p + 1)} \sum_{i=1}^N (\varepsilon^i)^2} = \sqrt{\frac{1}{N - p - 1} RSS}$$

- It measures the ‘corrected’ standard deviation of the residuals by the degrees of freedom (DoF):
 - number of samples – number of parameters $\beta_0, \beta_1, \dots, \beta_p$
- It is in the **units of the target variable**: hard to assess what number is a good fit.

How to evaluate a linear regression model?

- R^2 (coefficient of determination) is a **unitless** metric (typically between 0 and 1) different than RSE.



How to evaluate a linear regression model?

- R^2 measures the proportion of the variation in Y which can be explained using X .
- How better is our model when compared to a simple averaging model (baseline) that always outputs \bar{y} , independently of x ?

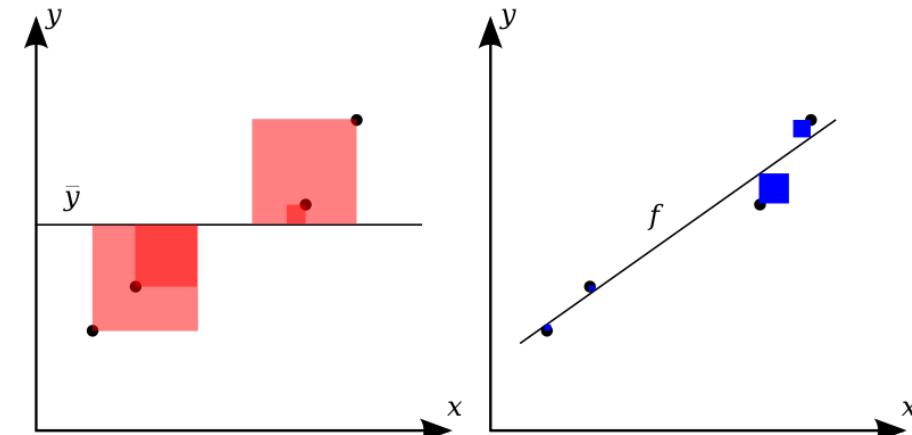
$$R^2 = 1 - \frac{\text{RSS}}{\text{TSS}}$$

- Residual sum of squares (RSS):

$$\text{RSS} = \sum_{i=1}^N (y^i - \hat{y}^i)^2$$

- Total sum of squares (TSS):

$$\text{TSS} = \sum_{i=1}^N (y^i - \bar{y})^2$$



How to evaluate a linear regression model?

- How close are the estimated parameters $\hat{\beta}$ (on a dataset) to the true β ?
 - Standard deviation of each parameter → standard error (SE) for each parameter

$$\text{SE}(\hat{\beta}_0) = \sigma \sqrt{\frac{\frac{1}{N} \sum_{i=1}^N (x^i)^2}{\sum_{i=1}^N (x^i - \bar{x})^2}}$$
$$\text{SE}(\hat{\beta}_1) = \sigma \sqrt{\frac{1}{\sum_{i=1}^N (x^i - \bar{x})^2}}$$

- Recap: $\sigma = \text{std}(\varepsilon) = \text{RSE}$
(residual standard error)

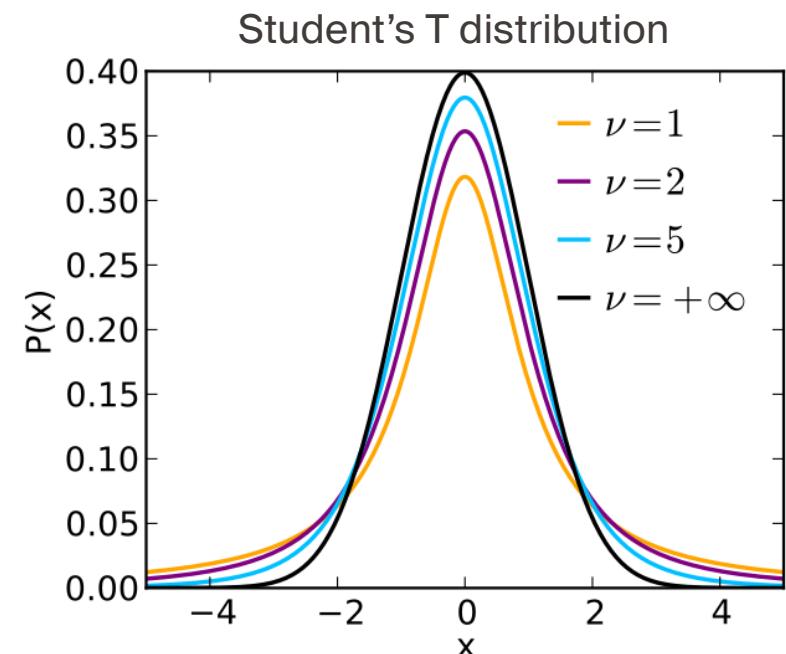
How to evaluate a linear regression model?

- How significant is the relationship with respect to dataset size?
 - Is an estimated relation a **random artifact** of the data?
 - Is there a **significant** relationship between x and y ?
- For a model $(y = \beta_0 + \beta_1 x + \varepsilon)$ we can test two hypotheses regarding the slope β_1

$$\begin{aligned} H_0: \beta_1 &= 0 \\ H_1: \beta_1 &\neq 0 \end{aligned}$$

every x value will give the same y value and the model would be useless

- With the t-test statistic $t = \frac{\hat{\beta}_1}{\text{SE}(\hat{\beta}_1)}$
- Reject H_0 if $t < -t_{\alpha, N-2}$ or $t > t_{\alpha, N-2}$



$$P(-t_{\alpha, \nu} < T < t_{\alpha, \nu}) = 1 - 2\alpha$$

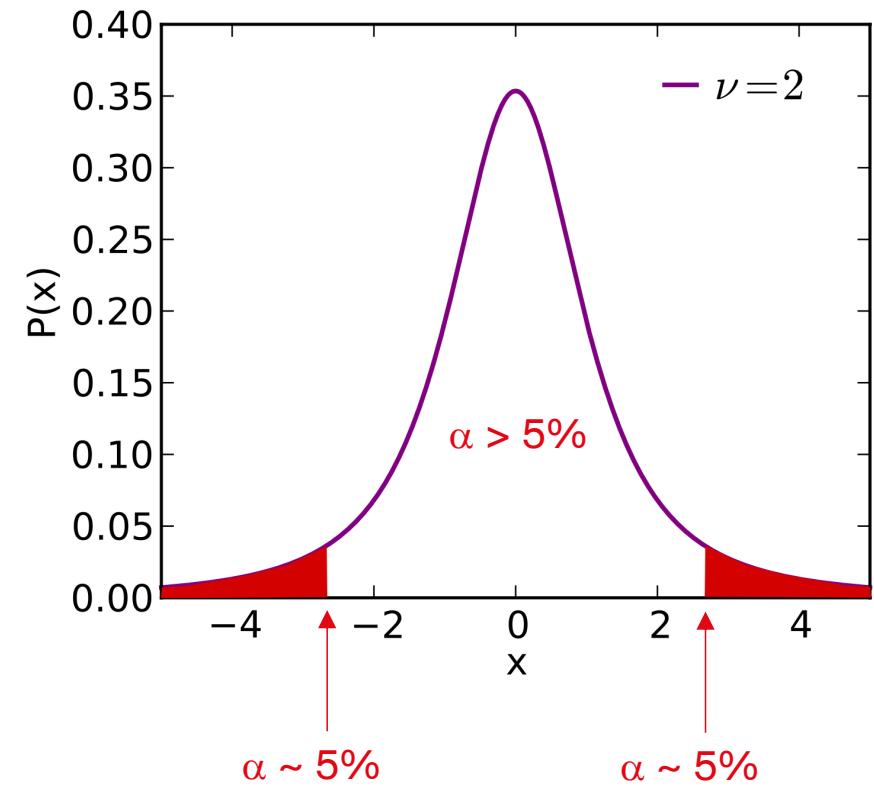
ν denotes DoF ($N - p$)

How to evaluate a linear regression model?

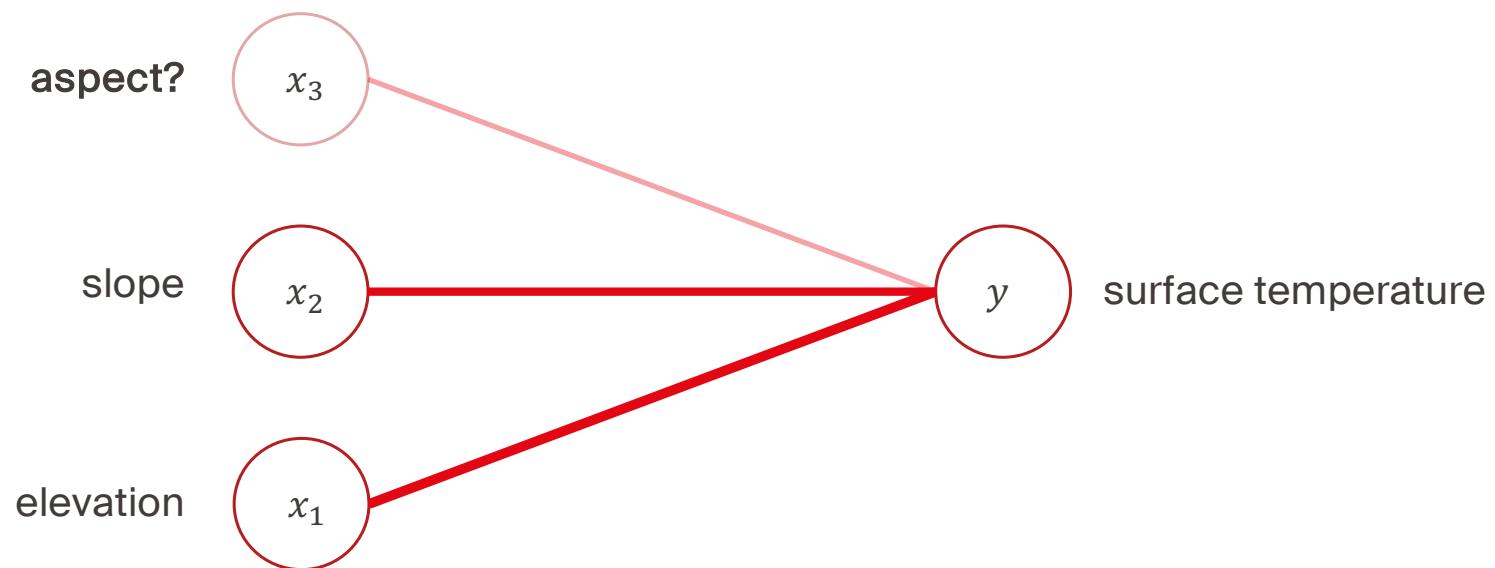
- Reject H_0 if $t < -t_{\alpha, N-2}$ or $t > t_{\alpha, N-2}$
= being in the red area of the graph

- p-value: $P(t_{\alpha, N-2} \leq t) = \alpha$
= probability of falling in the white area of the graph, given a t score

- A high p-value (usually $> 5\%$)
 - No significant relationship
 - Not enough data



How to select features for linear regression?



- some variables
 - can be **time-consuming** and **costly** to gather
 - can be **redundant** (highly correlated)
- How to automatically select a minimal subset of **relevant features**?
 - Based on their significance

How to select features for linear regression?

- How to automatically select a minimal subset of relevant features?
 - **Sequential** feature **selection** algorithms: remove or add relevant features based on their significance!

Criterion: smallest p-value, highest increase in R2, highest drop in model RSS compared to other predictors under consideration.

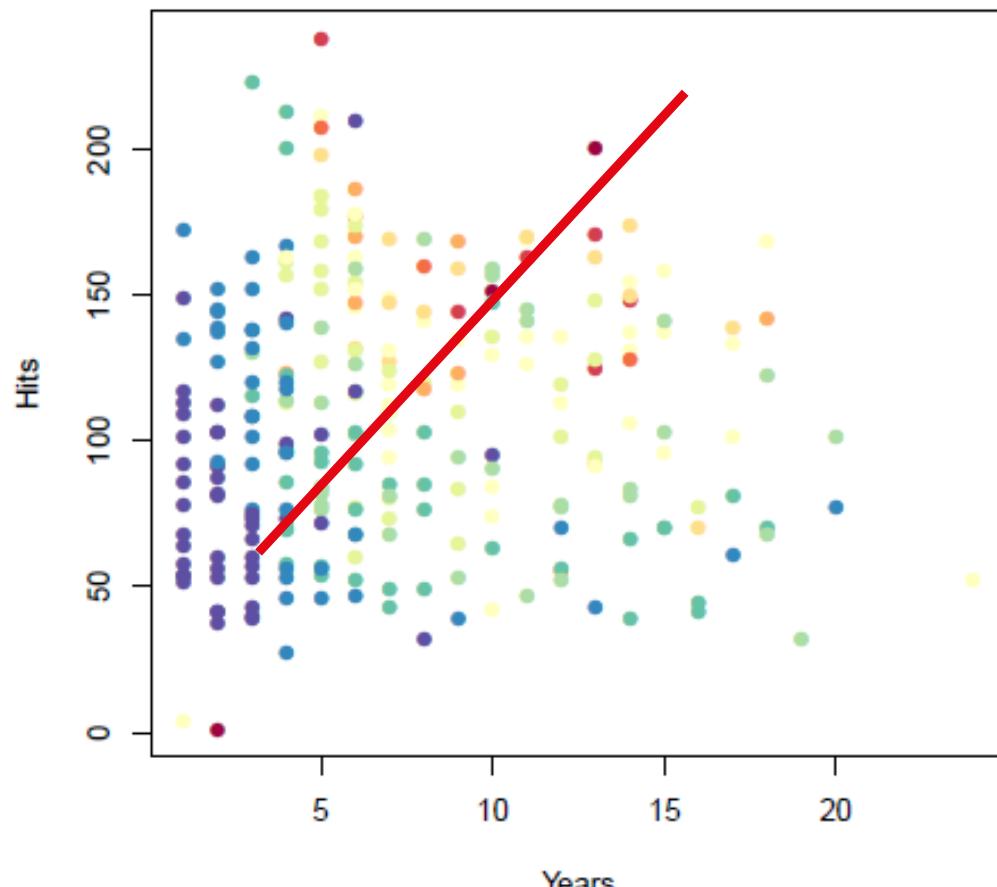
Stopping rule: number of desired features or criterion threshold

Forward Selection Algorithm	
1:	null model without features
2:	while stopping criterion is not met do
3:	for each candidate feature do
4:	add feature
5:	fit model
6:	score model
7:	add the best feature to the model

Backward Selection Algorithm	
1:	full model with all features
2:	while stopping criterion is not met do
3:	for each feature in the model do
4:	remove feature
5:	fit model
6:	score model
7:	remove the worst feature

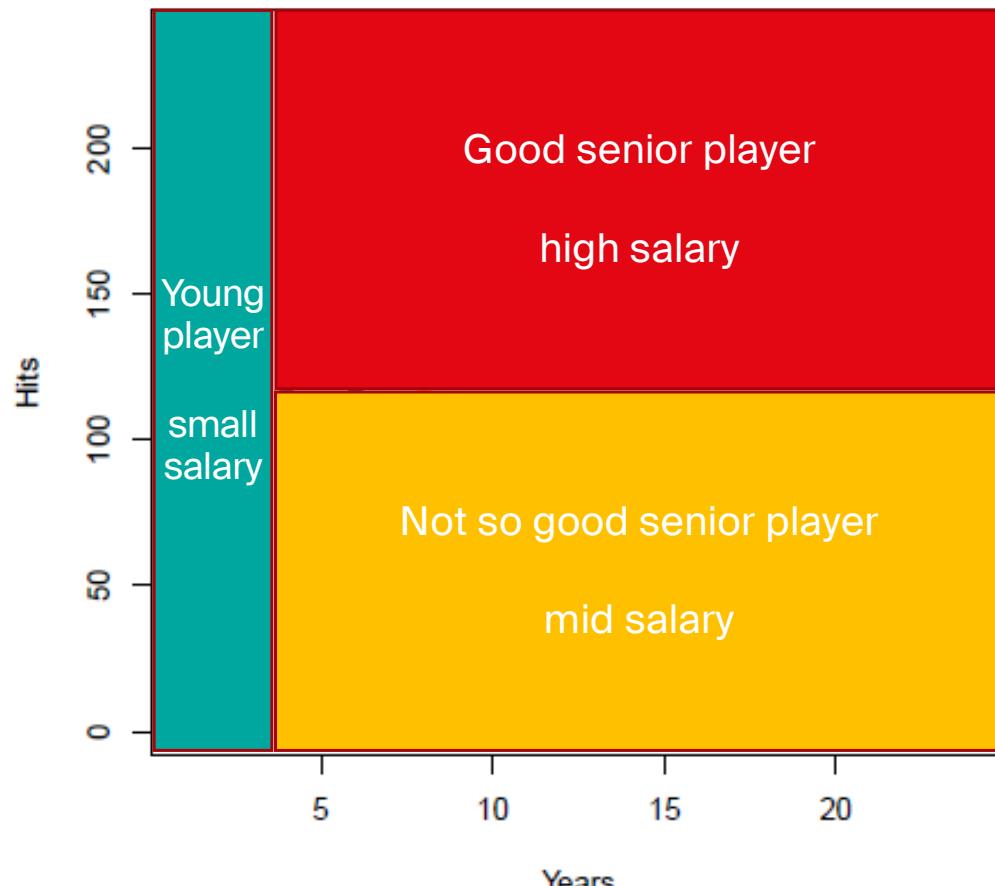
Decision Trees for Regression

How would you predict salary from years/hits?

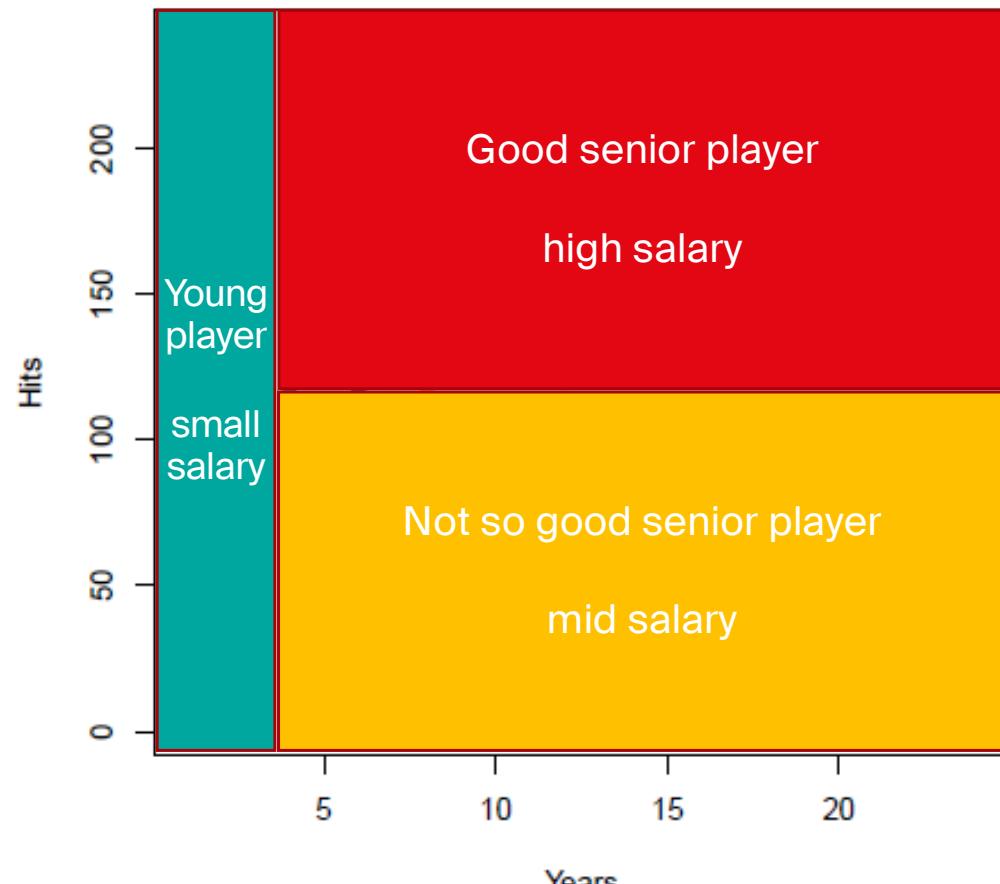


There is **no linear relationship** between years/hits and salary!

Segmenting the space in coherent partitions?



Segmenting the space in coherent partitions?



Salary is color-coded from low (blue, green) to high (yellow,red)

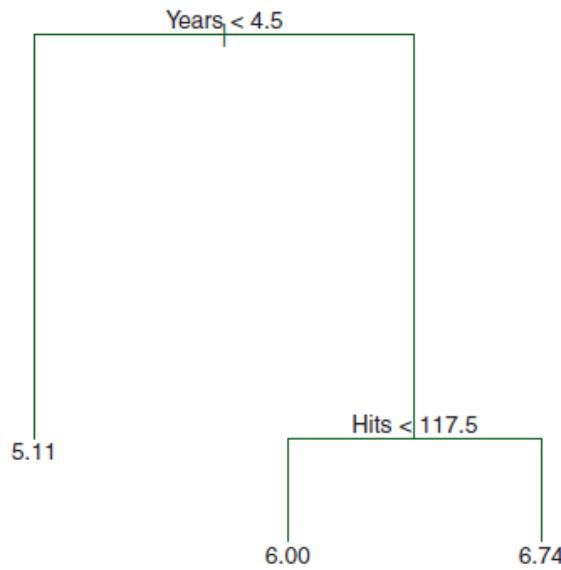
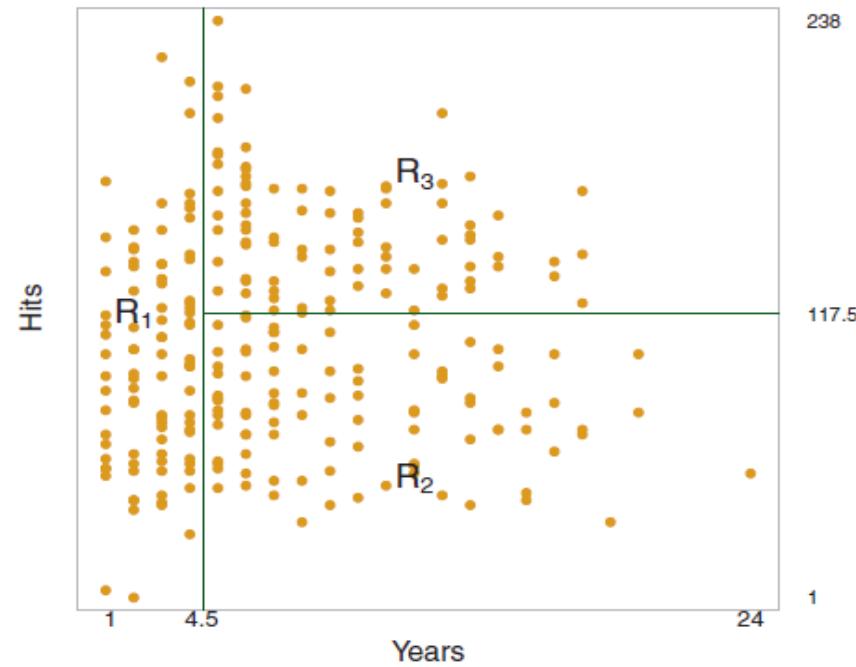
It becomes a **decision tree**!

Stratifying (segmenting) predictor space

- A **decision tree** is an interpretable model in which the final output is based on a series of **comparisons** of the values of predictors against threshold values.
 - Nonlinear by design!
 - Hierarchical
 - Non-parametric
- It basically segments the input space by using a supervised rule:
 - “if I divide there, would the two resulting segments be clearer about the quantity being predicted”?

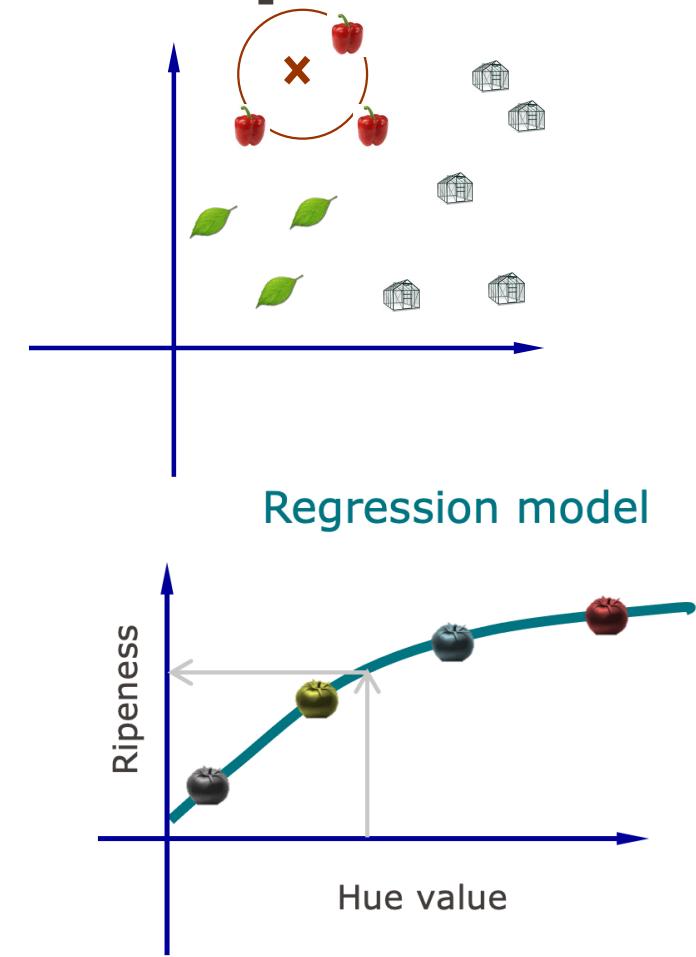
Stratifying (segmenting) predictor space

- Graphically, decision trees can be represented by a flow chart.
- Geometrically, the model partitions the feature space, where each region is assigned a response value based on the samples of the region.



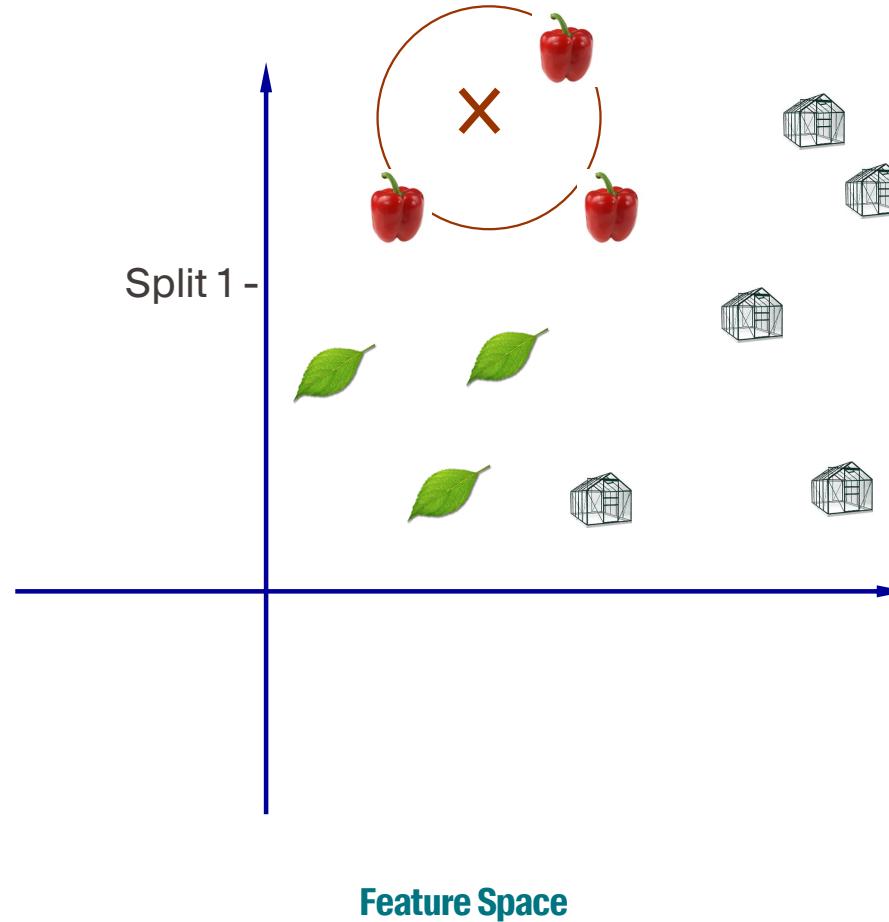
Stratifying (segmenting) predictor space

- Tree-based methods are usually used for classification
- Their concept translates well to regression problems too



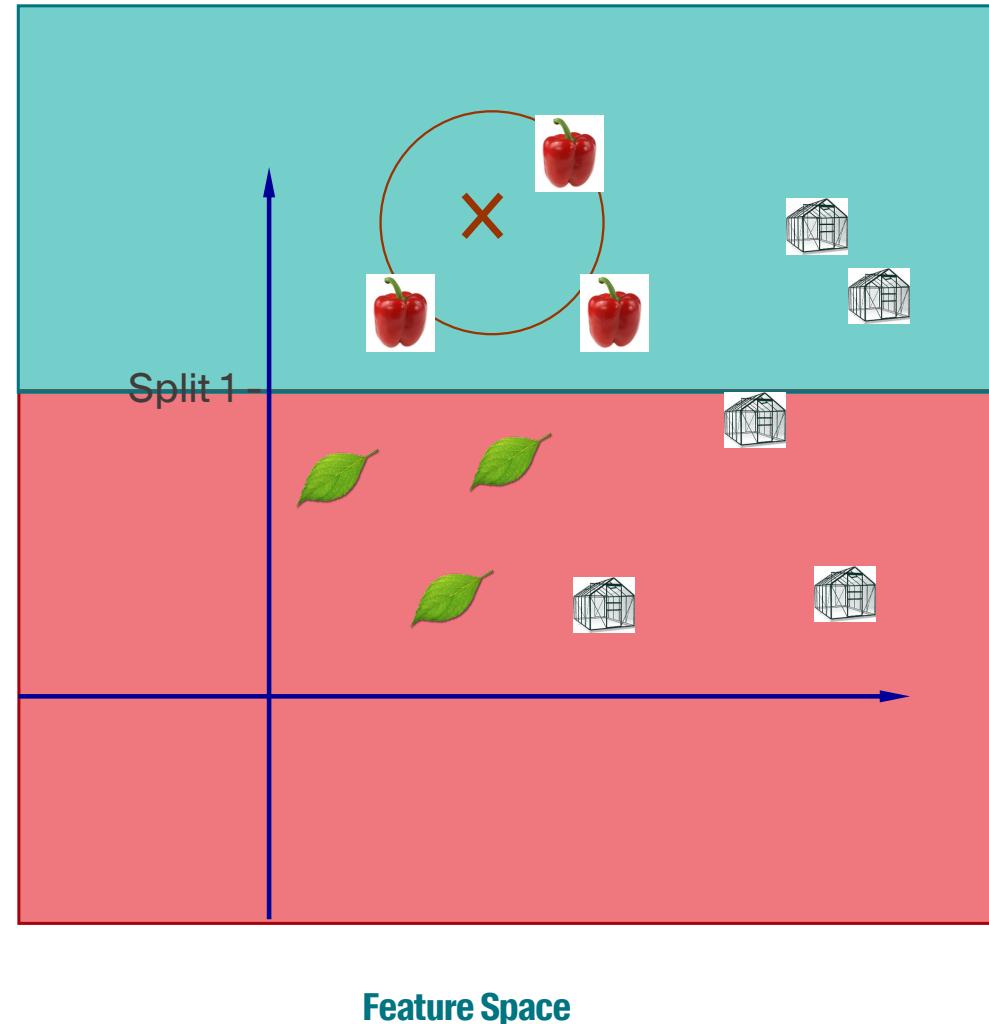
In the classification case

- You can find the nonlinear solution in 3 splits.



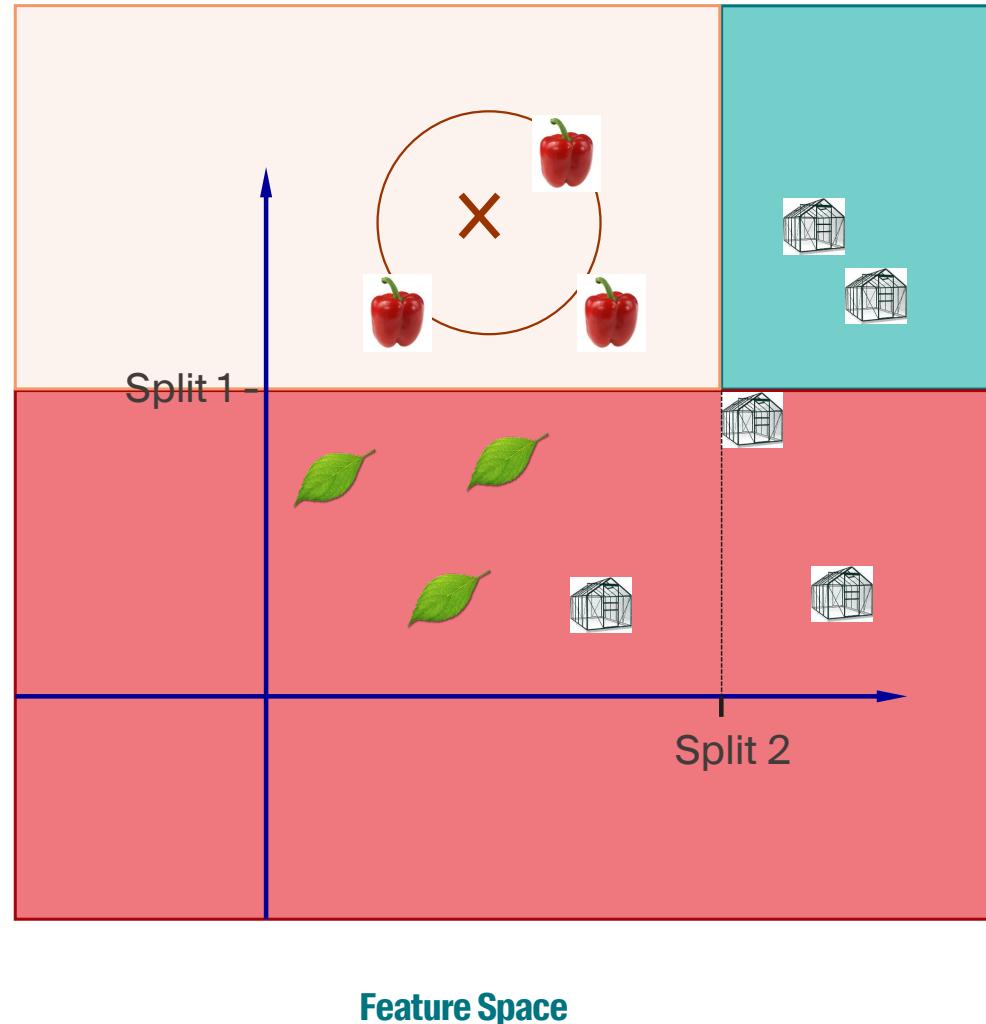
In the classification case

- You can find the nonlinear solution in 3 splits.



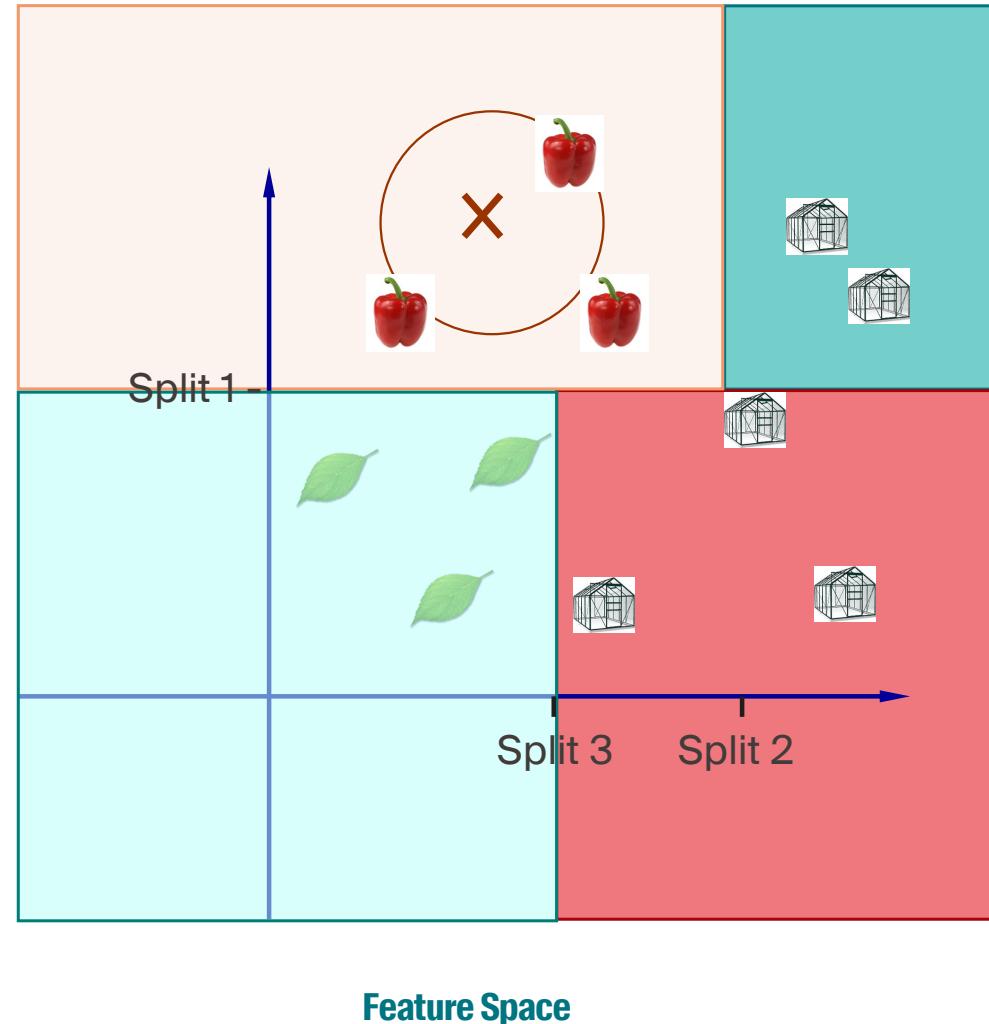
In the classification case

- You can find the nonlinear solution in 3 splits.
- (with 2 you would get the bell pepper right)



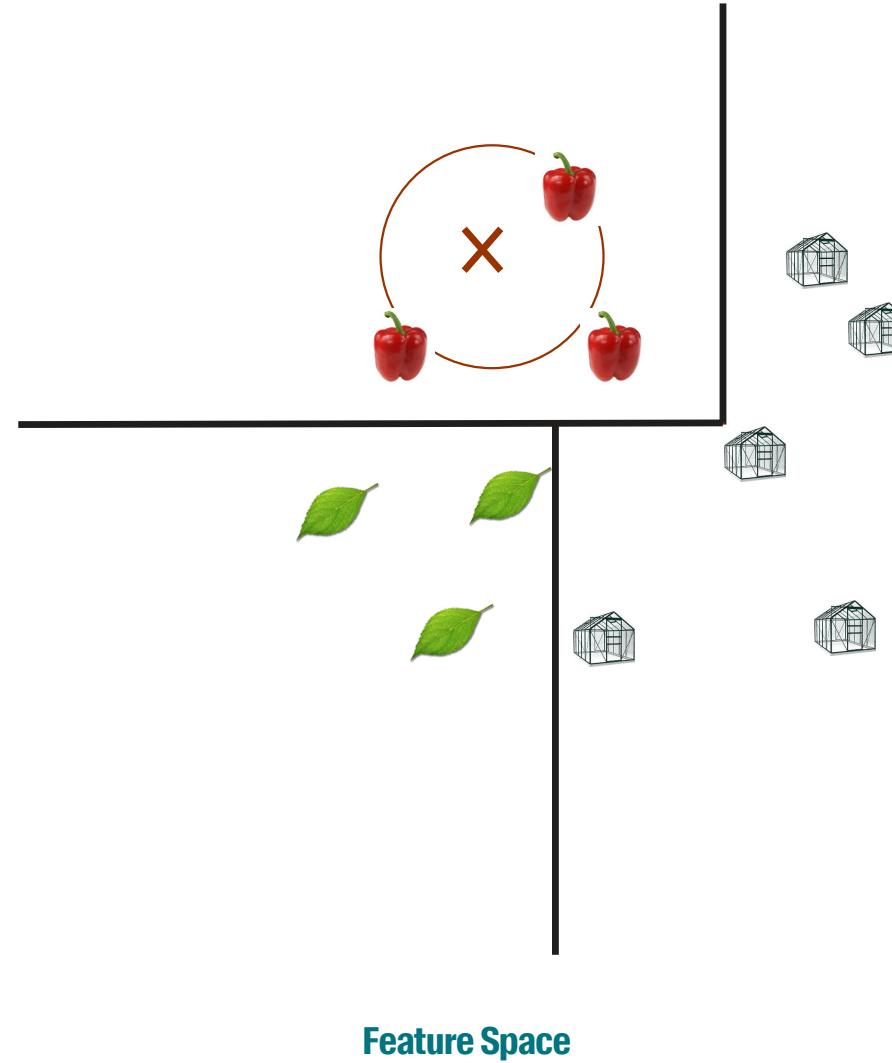
In the classification case

- You can find the nonlinear solution in 3 splits.



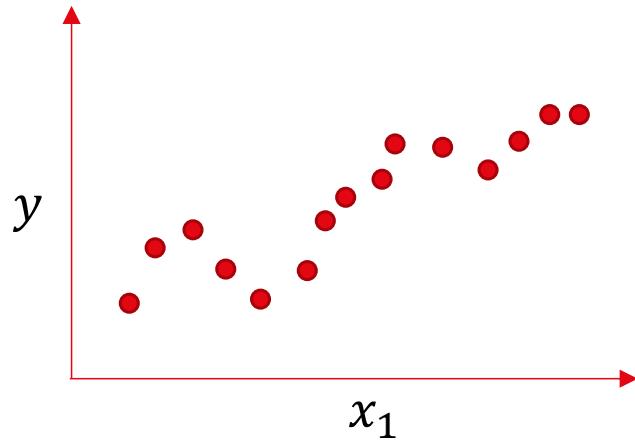
In the classification case

- You can find the nonlinear solution in 3 splits.



How to build a tree?

- By **constructing regions** of the feature space
- For regression
 - Use mean of observations in each region
- For classification
 - Majority voting in each region



How to build a tree?

- By **constructing regions** of the feature space

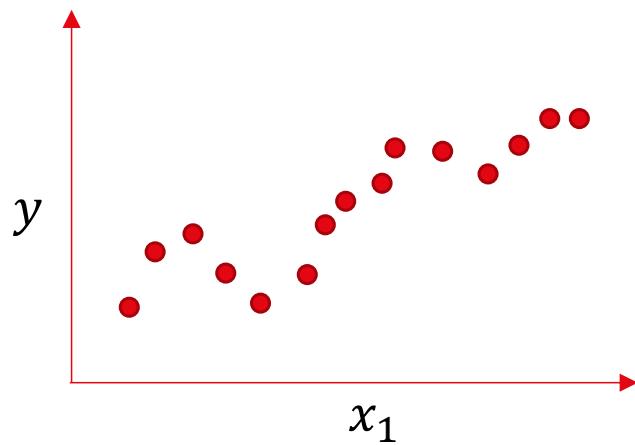
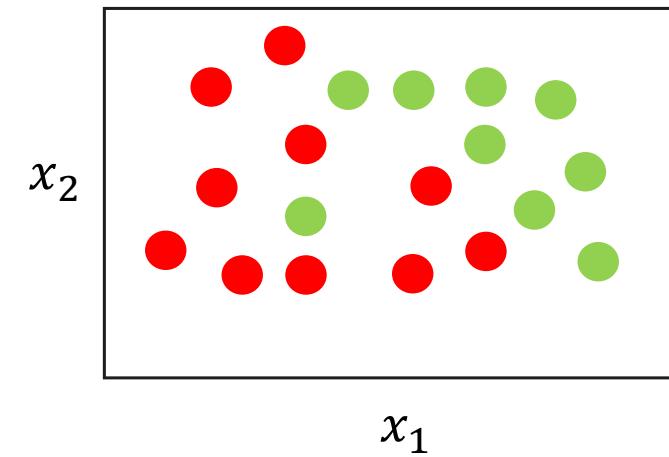
*careful! This regression example is in 1D in contrast to the baseball example before or the classification one on the right, which are both 2D

- For regression*

- Use mean of observations in each region

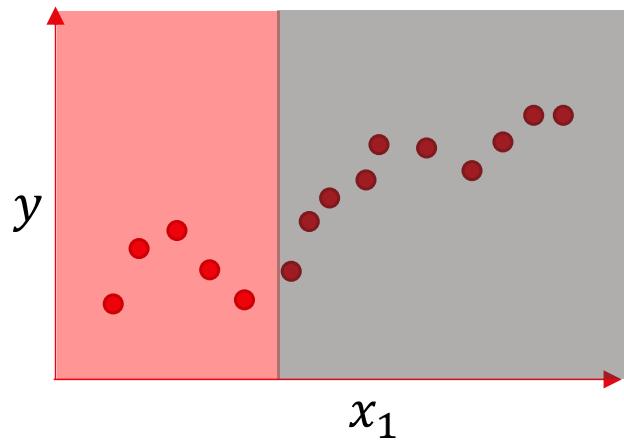
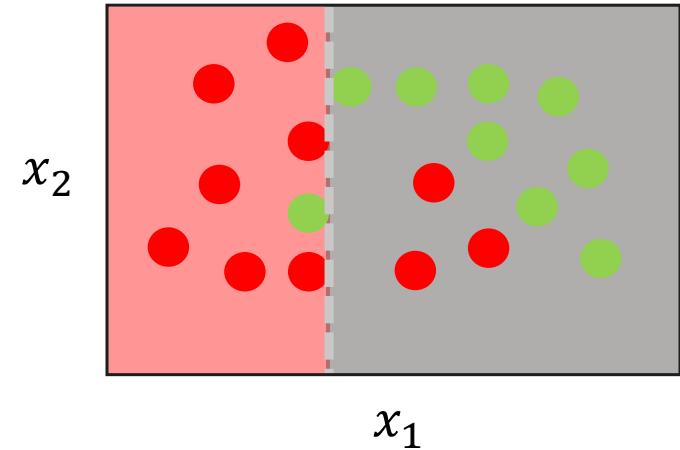
- For classification

- Majority voting in each region



How to build a tree?

- By **constructing regions** of the feature space
- For regression
 - Use mean of observations in each region
- For classification
 - Majority voting in each region

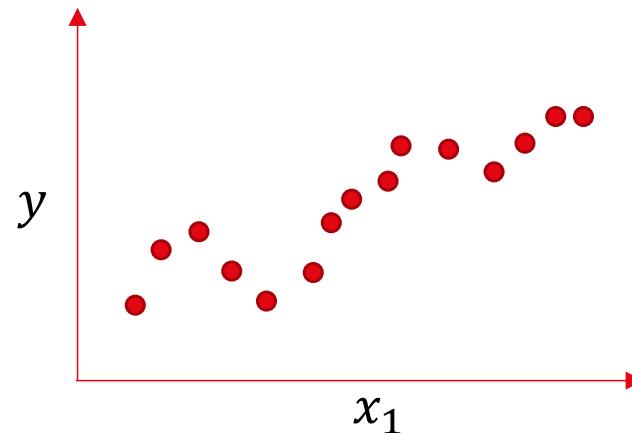


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

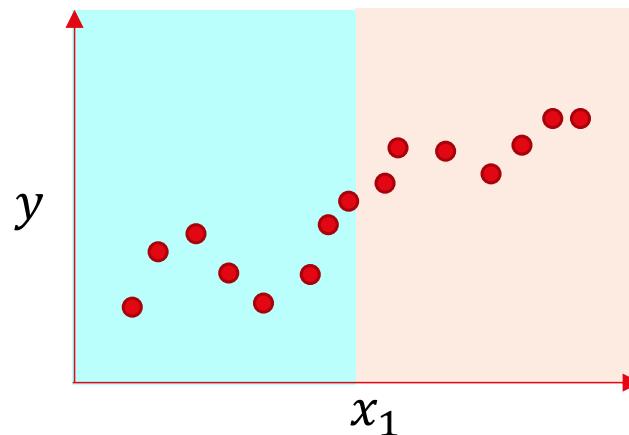


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

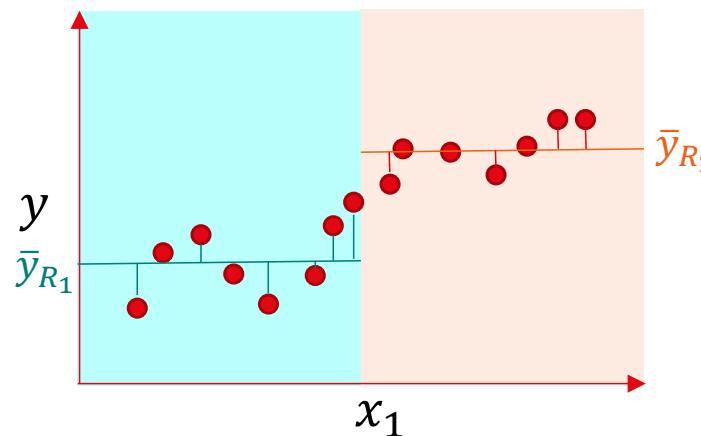


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j



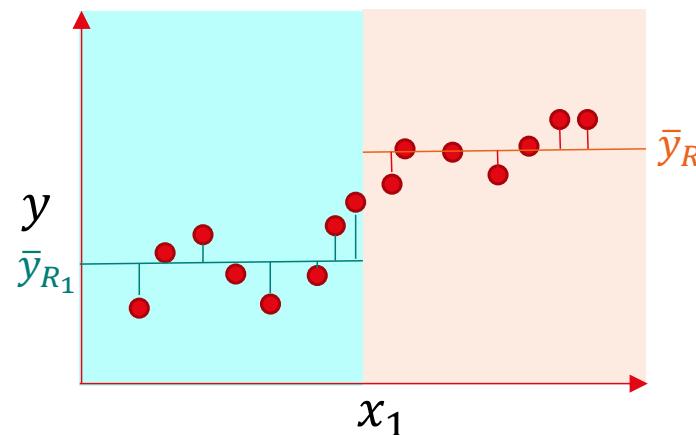
Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

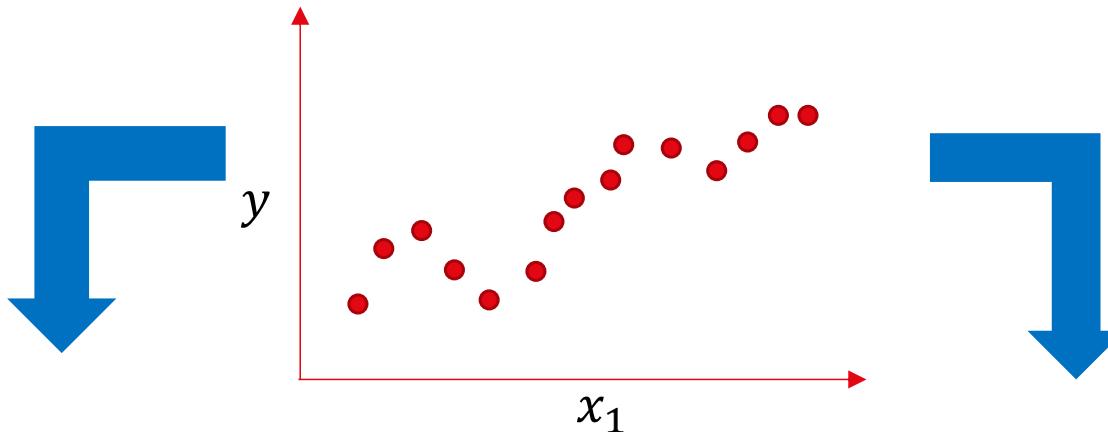
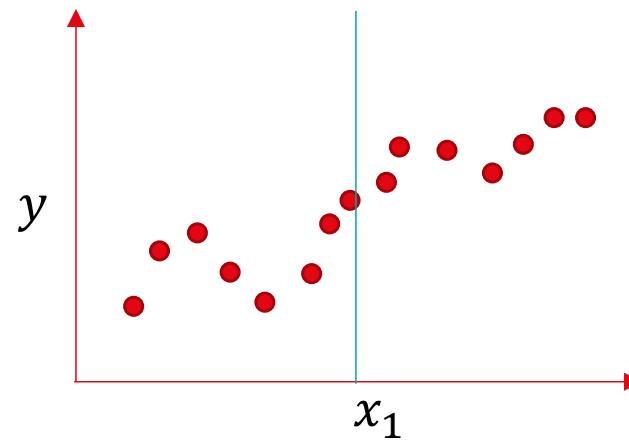
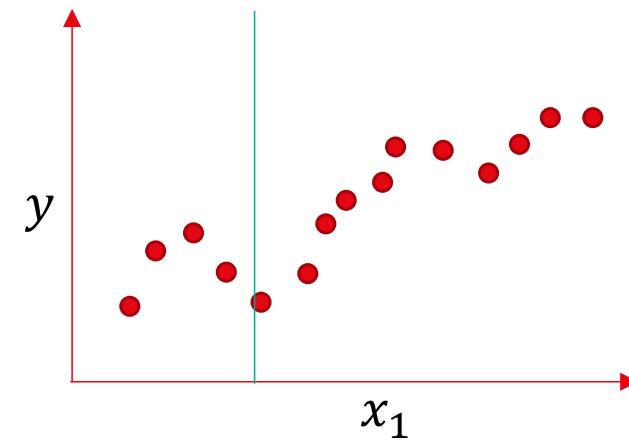
With \bar{y}_{R_j} being mean response for training samples in region R_j

All samples in the green part will be Predicted as \bar{y}_{R_1}

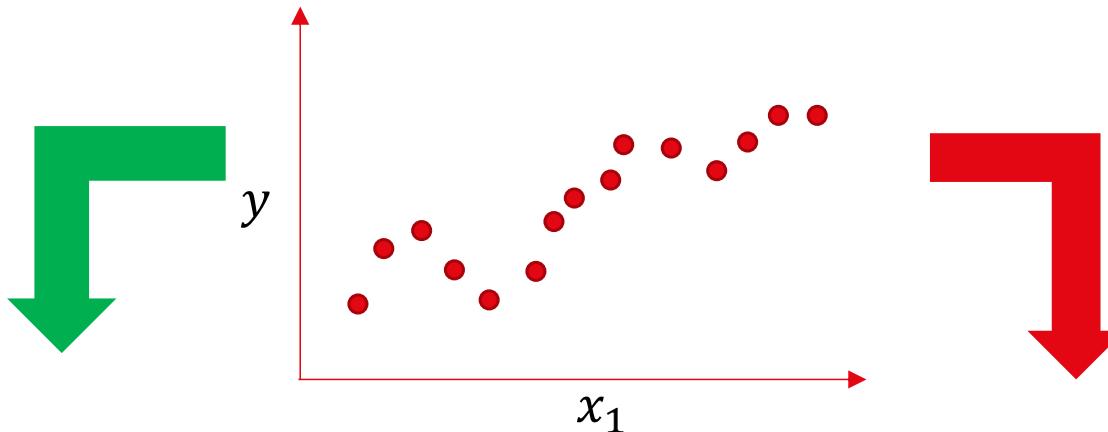
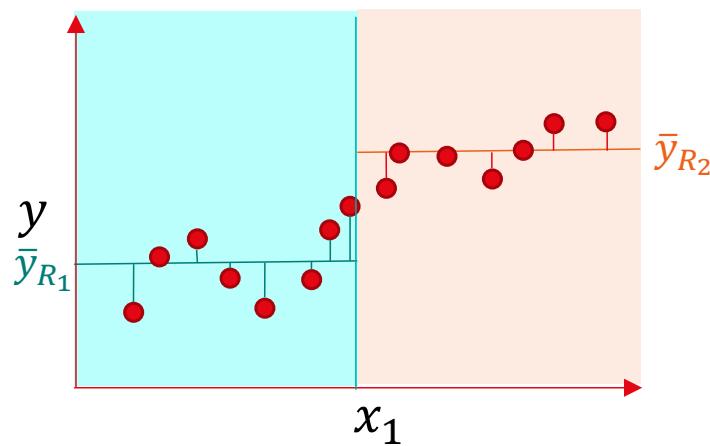
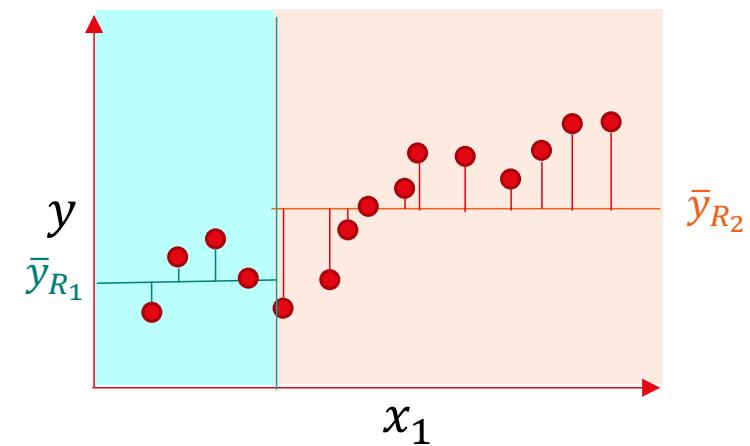


All samples in the orange part will be Predicted as \bar{y}_{R_2}

Example of 2 different splits



Example of 2 different splits



How to construct regions?

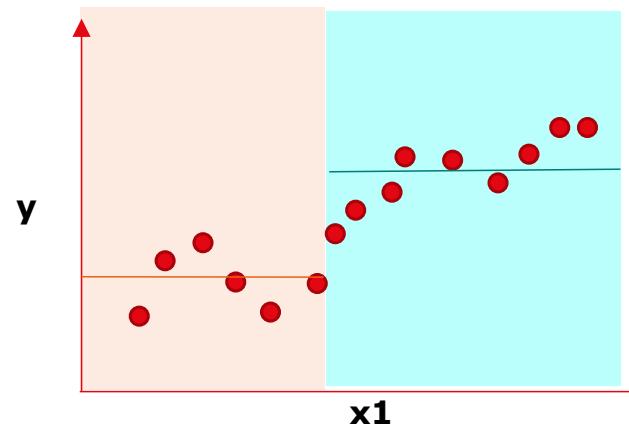
- Recursive binary splitting: Top-down, greedy approach
 - Start at top of tree, successively split predictor space
 - Best split is made at the current step
 - Not looking forward, to find a split that at future step might give a better result
 - Finish when reaching a stopping condition (e.g., each leaf has fewer than some fixed number of instances)
- Why not to consider every possible partition of the feature space?
 - Computationally infeasible (NP-hard)!

Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

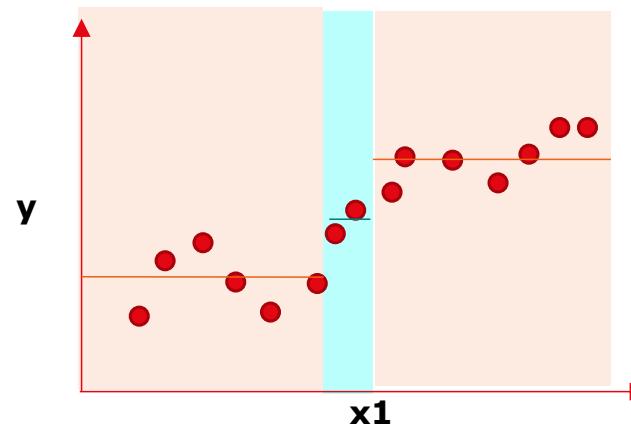


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

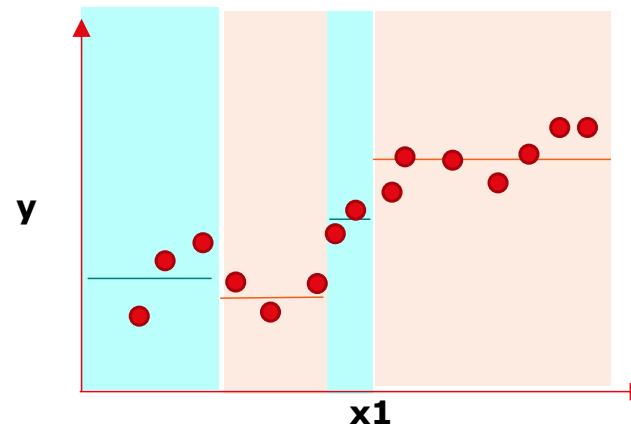


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

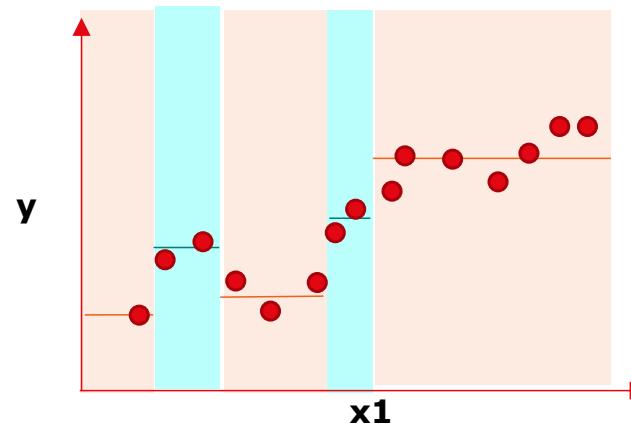


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

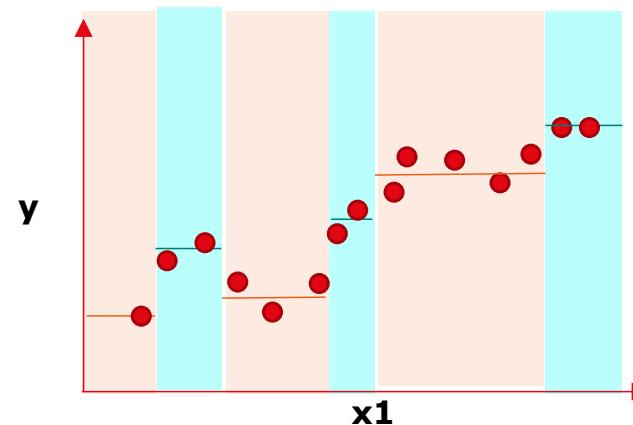


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

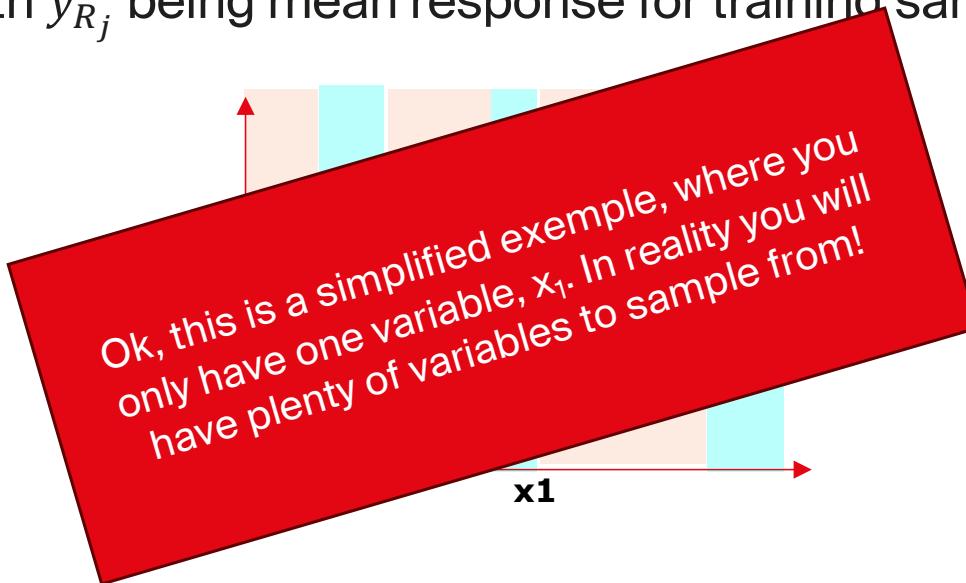


Constructing regions for a regression tree

Find the regions R_1, R_2, \dots, R_j minimizing residual sum of squares (RSS):

$$\sum_{j=1}^J \sum_{i \in R_j} (y^i - \bar{y}_{R_j})^2$$

With \bar{y}_{R_j} being mean response for training samples in region R_j

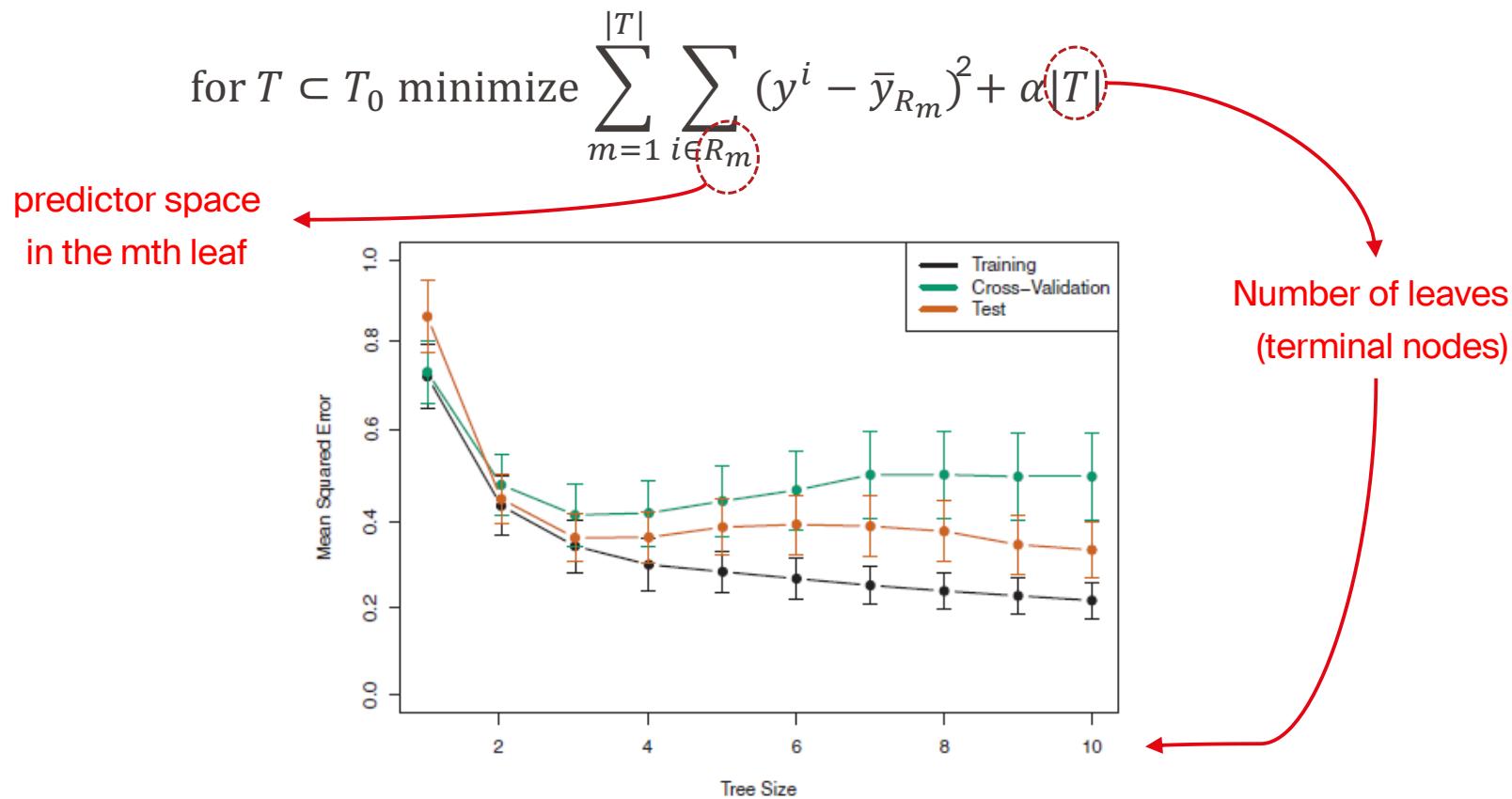


Why will this procedure (may) lead to overfitting?

- (Too) **complex tree** will be preferred
- Solution 1: **early stopping**
- Solution 2: **pruning**
-

Pruning

- First, we grow a **very large tree** T_0 , and then prune it back to obtain a **subtree**.



Bagging for Regression

From tree to forest

- A single decision tree can overfit
 - **low bias** (less assumptions, high flexibility)
 - **high variance** (data sensitivity)
- A single decision tree can suffer from **high variance (data sensitive)**
 - for different training sets, decisions can be quite different
- The concept of **bagging** is meant to **reduce** such **variance** by building a **committee of models**.
- Random forests (RF) use it.
-

Bagging

- Let's say a single decision tree has an output \hat{Y} with variance σ^2
- If we repeat the modeling with n independent trials, we get n models $\hat{Y}^1, \hat{Y}^2, \hat{Y}^3, \dots, \hat{Y}^n$ each with variance σ^2 .
- According to the central limit theorem, the variance of their average has variance σ^2/n .
- Averaging independent models **reduces variance!**

Bagging: bootstrap aggregation

- In practice, we train B different methods with subsets of the data, and then **average** them out:

$$\hat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^B \hat{f}^{*b}(x)$$

- Even more in practice, we can't have truly independent subsets
- We resample parts of the data and use them in each model training.
 - **random sampling with replacement**

Random Forests for Regression

Random Forests

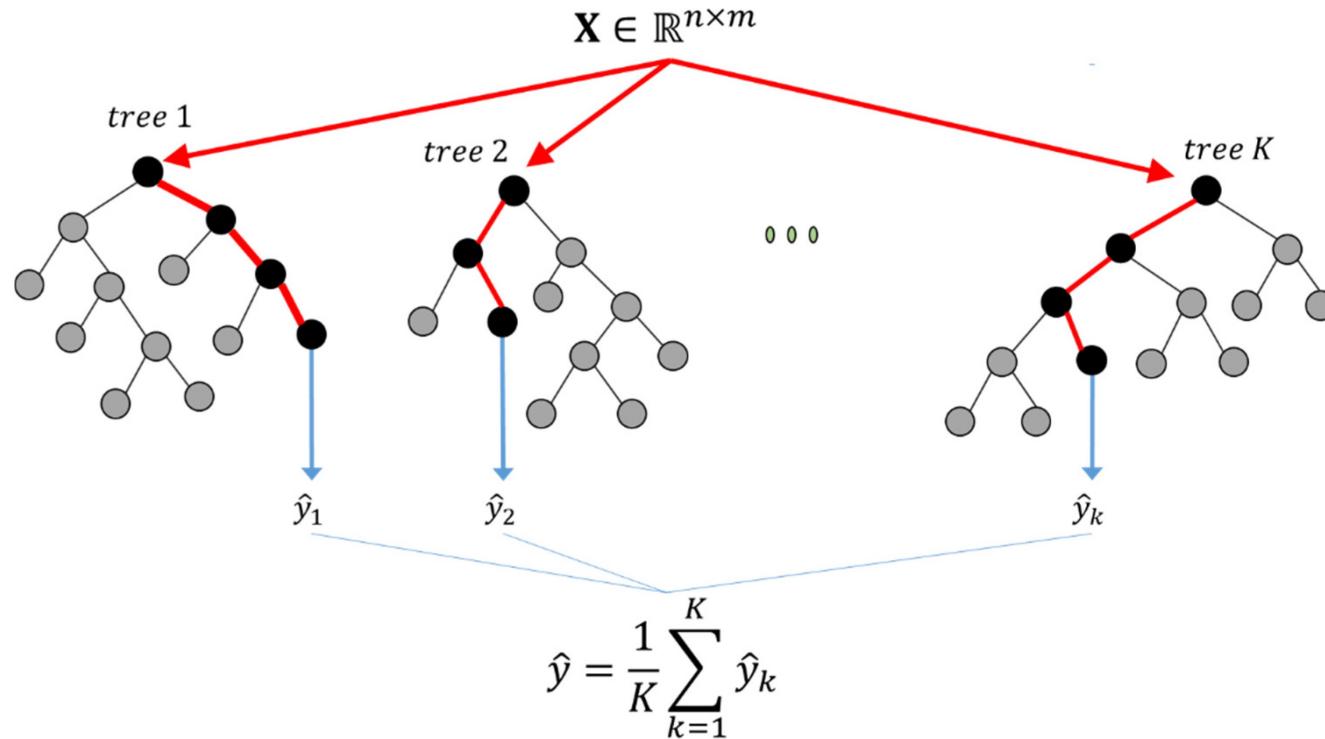
- Bagging trees with more randomization
- For each split in a tree, we also consider a **random subset of features** (typically \sqrt{p} if you have p features to start with)
- As before, we average the predictions of the B trees

$$\hat{f}_{\text{RF}}(x) = \frac{1}{B} \sum_{b=1}^B \hat{f}^{*b}(x)$$

Random Forests

- For each tree:
 - Select a subset of the data
 - For each node:
 - Select some of the variables
 - Calculate some split values for those variables
 - Select the best partition
 - Split the data points into two groups, which become new nodes
 - Predict the response for this tree
- Take the average prediction across all trees

Random Forests



In summary

- Today we saw two approaches to (non)linear regression
 - Linear regression, uni-and multivariate. The most popular,
 - but “just” linear, you need to design good nonlinear features
 - Decision trees-based regression. Nonlinear by design,
 - By partitioning the predictors space into good average approximations
 - Repeating over and over
- Remember that all these ML approaches need data to train, the more the better