Getting Started with R

Marc Schleiss and Alexis Berne

Laboratoire de Télédétection Environnementale,
Ecole Polytechnique Fédérale de Lausanne, Switzerland

1 INTRODUCTION

R is a high-level language and environment
for data analysis and visualization. Its applica-
tions range from elementary data handling and ex-
ploratory statistics up to more advanced topics such
as spatial statistics, multivariate statistics and gen-
eralized mixed models. Today, a large proportion
of the world’s leading statisticians use R and con-
tribute to its development. Last but not least, the
R product is completely free and multiplatform.

To run R, simply click on the R icon on your desk-
top or in the Programs menu. The first thing you see
is the version number and date of R. Before start-
ing, make sure your version is up-to-date. Below the
header you will see a blank line starting with a “>”
symbol. This is called the prompt and is basically
where you type your commands. When working, you
will sometimes see a “+” instead of “>”, meaning
that the last command you entered is incomplete. If
you press the “Esc” key or “Ctrl4+C”, the command
line “>” will reappear.

The simplest way to get help in R is to click on
the Help button on the toolbar of the RGui window.
If you work at the command line prompt, simply
type “77 followed by the name of the function
you want help with, e.g., “’read.table” to see how
to read data. Alternatively, if you do not know
the exact name of the function, you can use the
help.search() command followed by the query in
double quote, e.g., “help.search(“data input”)”.
Finally, there is tremendous amount of information
about R on the web.

http://cran.r-project.org/

If you want to install additional libraries, you
can do so by using the install.packages() command
followed by the name of the package in double
quotes, e.g., “install.packages(“gstat”)”.

2 Command line versus scripts

When writing functions and multi-line commands,
you will find it useful to use a text editor rather
than executing everything directly at the command
line. You can use R’s own built-in editor or any
other text editor of your choice. The script edi-
tor is accessible from the RGui menu bar. Click

on “File” then on New Script to open a new script.
To execute a line or a group of lines, just highlight
them and press “Ctrl+R”. Alternatively, you can
select the lines and copy-paste them into the ter-
minal. Popular alternatives to R’s built-in editor
are: “Rstudio” (http://www.rstudio.com/ide) and
“Tinn-R” (http://www.sciviews.org/Tinn-R).

3 ESSENTIALS

3.1 Value assignment

Objects obtain values using the “<-” operator.
Thus, to create a scalar constant x with value 1,
type “x <- 17. Do not use the “=" sign to avoid

confusion with the comparison operator “==

3.2 Display the value of a variable

If you want to display the value of a variable, sim-
ply type the name of this variable in the command
line and press “ENTER”. When running a script,
you can use the print() function, e.g., “print(x)” to
display the value of x.

3.3 Arithmetical operators

Basic arithmetical operators are +,—,x*,/, ".
Most common mathematical functions like “log”
(logarithm in base e), “exp” (exponential), “sqrt”
(square root) as well as trigonometric functions (sin,
cos, tan) are also implemented. The function abs()
returns the absolute value. Different integer round-
ing functions like round(), floor() and ceiling() can
also be used. Finally, integer quotients and remain-
ders are obtained by using the “%/%” and “%%”
operators.

3.4 Vectors

Vectors are variables with one or more values of
the same type. In particular, scalar variables are
vectors of length 1. Note that empty vectors have
length zero. You can either create a vector by explic-
itly giving its elements separated by commas, e.g.,
“v <-¢(1,2,3)”, or you can create them using the
sequence generator operator “v <- 1:3”. To con-
catenate two vectors v and w, simply type “c(v,w)”.
Particular elements of a vector can be accessed us-
ing square brackets. For example, “v[2]” returns the
2nd element of v. Note that several elements can be
accessed at the same time. For example, “v[1:2]”



returns the 1st and the 2nd elements of v while
“v[c(1,3)]” returns the 1st and the 3rd elements. Fi-
nally, the size of a vector can be computed by typing
“length(v)”.

3.5 Matrices

Similarly to vectors, matrices can be created
through enumeration of their individual elements:
> M <- matrix(c(1,0,0,0,2,0,0,0,3),nrow=3)
creates a 3x 3 matrix given by

100
M=10 2 0
0 0 3

where by default the elements are entered column-
wise. By typing “dim(M)” you will get the dimen-
sions of M, i.e., the number of rows and columns:
> dim(M)

1 3 3

Individual elements of a matrix can be accessed by
specifying their position using subscripts. Since ma-
trices have two dimensions, two subscripts are nec-
essary (one for the row and one for the column).

> M]JL,2]

1] o

> M[2,2]

2] 2

> Mlc(1,3),1]
3] 1 0

You can also access a full column or a full row by
omitting the corresponding subscript.

> M[1,]
1] 1 0 0
> M][2]
2] 0 2 0

Sometimes, it is useful to give names to the rows
and the columns of a matrix. This can be done us-
ing rownames() and colnames().

> colnames(M) < — c(“height”, “weight”, “age”)
You can use the names to extract a given row or a
given column.

> M][,“height”]

1 1 0 0

Finally, two matrices M and N can be multiplied by
typing “M% x %N”. Be carefull because this is not
the same than “M % N” which performs element-by-
element multiplication.

3.6 Logicals

Logical expressions evaluate either in TRUE (1)
or FALSE (0). Relational operators are given by
<, >,,==,<=,>=,! =. Logical operators are given
by 1,&,| (not,and,or). They can be applied to single
elements or to vectors:

> 3==4

[1] FALSE

> ¢(3,4)==4

2] FALSE TRUE

3.7 Vector functions

One of the great strengths of R is its ability to
evaluate functions over entire vectors, thereby avoid-
ing the need for loops and subscripts. Important
vector functions are sum, cumsum, prod, diff, match,
min, max, range, mean, median, var, sd, cor, quan-
tile, sort, which. For matrices you can use colSums,
rowSums, colMeans, rowMeans and many other...

For example, to count the number of elements
of a vector v that are smaller than 5, simply type
“sum(v < 5)”. To extract all elements of v that are
smaller than 5, type “v[which(v < 5)]”.

3.8 Character strings

In R, character strings are defined by double quo-
tation marks, ie., “s <- “hello””. The function
nchar() returns the number of characters forming
a string. The function substr() can be used to ex-
tract substrings of a specified length. For the pur-
pose of printing, you might want to suppress the
quotes that appear around strings by default. This
can be done using the noquote() function. If you
want to concatenate two strings sl and s2, simply
write “paste(sl,s2,sep="")" where “sep” gives the
character used to separate the two strings. Note that
by default, the separator is a single blank space.

3.9 Data frames

Reading and handling data is one of the most
important issues when dealing with R. By default,
R handles most of its data in objects called data
frames. A data frame is an object with rows and
columns (like a matrix). But unlike matrices which
can only contain numbers, data frames can contain
any type of objects like character strings, logicals,
dates and times and of course numbers. The key
thing about working effectively with data frames is
to become completely at ease with using subscripts.
In R, subscripts appear in square brackets []. Since
a data frame is a two dimensional object with rows
and columns, the rows are referred to by the first
subscript and the colums by the second. Hence
“data[3,5]” returns the value on row 3 and column
5. To select all the entries in the 3rd row, type
“data[3,]”.



3.10 Input/Output

To read data from an external text or excel file
using R, simply type “read.table(file_name)”. If the
file is not located in the current working directory,
you will have to specify its absolute path. Make
sure the file name is enclosed in double quotes, e.g.,
“c:\\abe.txt” with the correct extension and always
use double backslash \\ rather than \ in the file path
definition. When writing directly in the command
line, you can use “read.table(file.choose())” which
allows you to select the desired file by opening a
browser window. Hint: If you work frequently in
the same path you can define it as your current
working directory using the setwd() function, e.g.,
“setwd(“c:\\abc”)”.

It is often useful to generate numbers with R and
to save them somewhere else. To do this, you can
use the write() function. Be careful if you want to
save a table or a matrix because write() transposes
the rows and columns.

4 PLOTS

Generating plots with R is very easy and straight-
forward. The plot() command allows to create
traditional two variables scatterplots. Some extra
functions named text(), points(), lines(), abline(),
rect() can be used to add text, points, lines or rect-
angles to an existing plot. The following examples
should illustrate this procedure.

Example 1: two variable plots

For this example, we use a standard data set
called “hills” which is included in the very popular
“MASS” package.

> library(MASS)

> attach(hills)

The data set consists of record times in 1984 for 35
Scottish hill races. There are three main variables
for each race: “dist” (distance in miles), “climb”
(total height gained during the race in feet) and
“time” (record time in minutes).

To plot the time with respect to the distance type:
> plot(dist,time)

Note that by default the axes of the plot are labeled
with the variable names, unless you choose to
override these with “xlab” and “ylab”. To add a
line with intercept -4.8 and slope 8.3, type

> abline(-4.8,8.3,col="“red”)

Additional points can be added using the points()
function. To change the type of points (dots,
crosses, circles, ...), you can use the “pch” option.
Several points can be added by specifying a vector
of coordinates. The “1” option allows to draw lines

between the points.

> points(mean(dist),mean(time),pch=3)

> points(c(20,25),¢(100,125),1”)

To add some text to your graph, simply use the
text() function. The “cex” option allows to change
the size of the text.

> text(10,175,“hello” ,cex=1.5)

If you typed all the commands above, here is what
you should obtain:

time
150 200
L 1

100
I

50

Of course, there are many other useful graphical
parameters and functions available. Please read
the “help(par)” and “help(plot)” to get a list of
graphical options available for your plots.

Example 2: histograms

Histograms are the most common plots used to
show the frequency distribution of a given variable.
They are excellent for showing the mode, the spread
and the symmetry of a data set. To display a
histogram, you can use the hist() function.

> library(MASS)

> attach(hills)

> hist(climb)

You should always specify the break points on the x
axis yourself. Unless you do this, the hist function
may not take your advice about the number of bars
or the width of the bars.

> hist(climb,breaks=seq(250,7750,250))

Histogram of climb

H{HTHT [1[T] ]

T T 1
0 2000 4000 6000 8000

Frequency

climb

By default, hist() shows the individual counts (in



each class) of your variables. If you rather want to
plot the empirical density (total area equal to 1),
you can do that by using the “freq” option.

> hist(climb,freq=FALSE)

Example 3: plot into a file

By default, all plots are displayed in what is called a
“graphical device”. All devices are associated with
a name (e.g. “X11” or “postscript”) and numbered
from 1 to 63. The function dev.new() can be used
to open a new graphical device. Once a device has
been opened, it is placed into a circular list. The
functions dev.next() and dev.prev() can be used to
select the next or the previous device. The function
dev.off() shuts off an open device. By default, R
opens and closes the devices automatically. But
sometimes it happens that a device stays open
(e.g. after an incorrect call of plot) and you will
have to shut it down manually. This is particularly
important when plotting into a file instead of the
screen. The default device for generating plots
is “X11” (the screen). Unless specified, all the
plots will appear on the screen and will not be
saved. If you want to create a png, an eps or a
pdf file out of your plot, you have to specify it by
writing “png(file_name)”, “postscript(file_name)”
or “pdf(filename)” where the name of your file
must be given in double quotes with the correct
extension, e.g., pdf(“C:\\abc\\picture.pdf”). Next
time the plot() function is called, nothing appears
on the screen. Instead, a file is generated in the
specified directory. Additional points or lines can
be added to the plot until the current device is shut
down.

pdf(“C:\\abc\\picture.pdf”)

plot(x,y)

points(p,q)

vV VVVYV

dev.off()

5 THE GSTAT PACKAGE

There are numerous packages and libraries for
spatial statistics and analysis in R but gstat
(http://www.gstat.org) is THE reference for calcu-
lation, fitting and visualization of direct and cross-
variograms. It can deal with a large number of
practical issues like change of support (block krig-
ging), simple/ordinary/universal (co)krigging, fast
local neighborhood selection and efficient simula-
tion of large correlated random fields. Most com-
monly used functions in gstat are called variogram,
fit.variogram, vgm, krige and predict.gstat. Please

read the help for more information on how to use
these functions.

6 ADVANCED FEATURES

Like many other high-level languages, R allows
you to write your own functions and routines. The
syntax for writing a function is

function <- name(argument list){body}

The argument list is a comma-separated list of
formal arguments, i.e., a symbol, a variable, a func-
tion or a statement of the form symbol=expression.
The body can be any valid R expression or set of R
expressions. At the end of the body, the statement
return() is used to return a value or an object. The
following examples should help:

Example 1:

function < - is.odd(n){
if(n%%2==0){return(FALSE) }
else{return(TRUE)}

}

Example 2:
function < - inverse_string(s){
n <- nchar(s)
inv <- substr(s,n,n)
for(i in 1:(n-1))
inv <- paste(inv,substr(n-i,n-i),sep=*%")
}

return(inv)

}

Once a function has been created, it can be
used like any other built-in function, simply by
calling its name and giving its arguments.

> is.odd(7)

[1] TRUE

> is.odd(6)

[2] FALSE

> inverse_string(“hello”)

[3] “olleh”

Finally, R provides a number of flow control state-
ments which are very useful when programming your
own functions. The most commonly used are “if...
else” statements. To create loops, you can use “for”,
“while” or “repeat” statements. To break out of a
loop, use the “break” statement. To continue with
the next iteration, use “next”. To stop the script,
use “stop()”. Interested readers are invited to read
the help for more information on these flow control
statements.



