

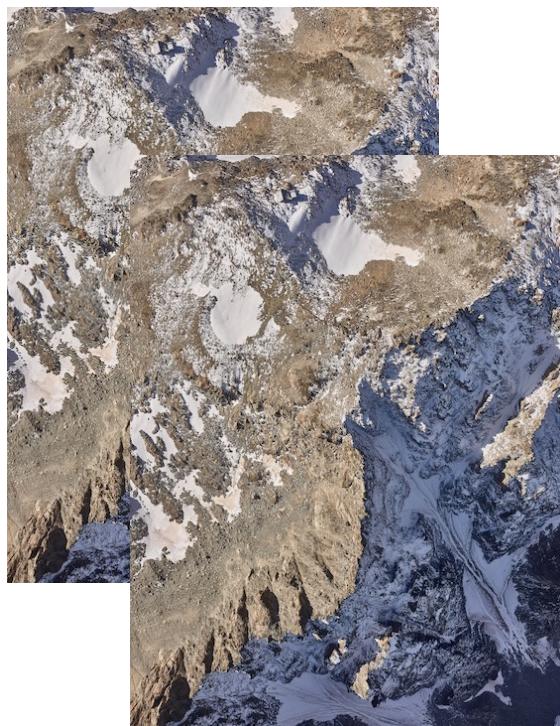
Lecture 07

Two View Geometry

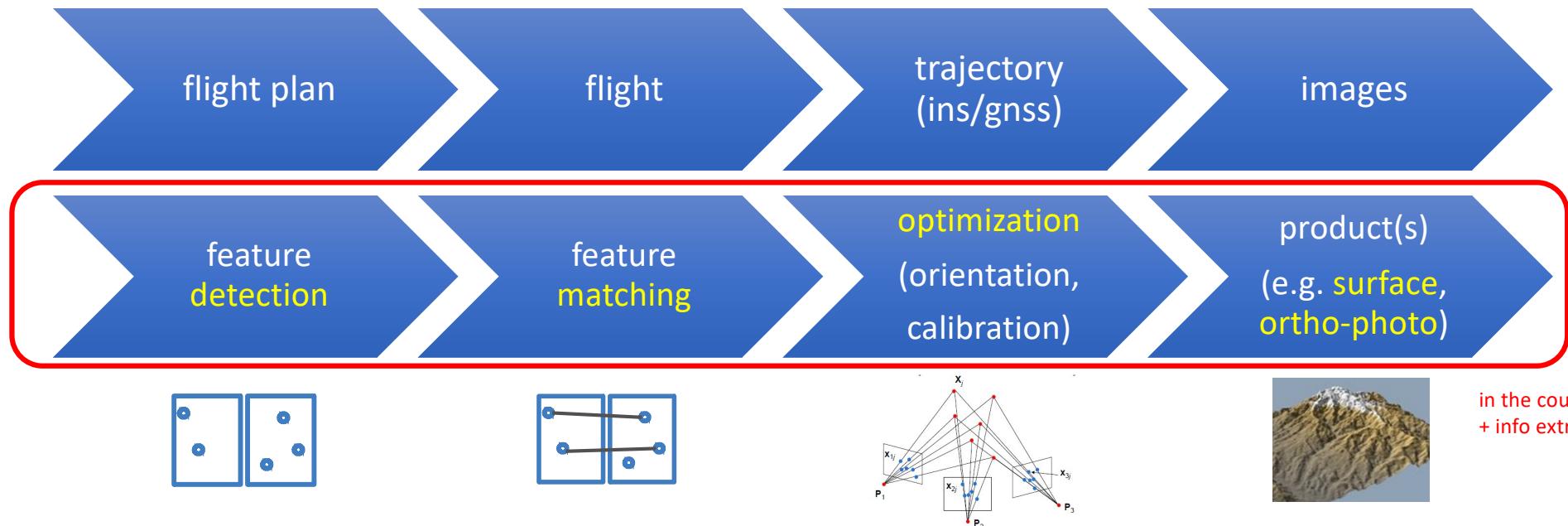
ENV408: Optical Sensing & Modeling for Earth Observations

Jan Skaloud

Ex 4 – Relative orientation



- Tomorrow: use matched key-points (Ex.2) corrected for image distortion (Ex.1) to orient two images (relative pose, rel. EO p.) and triangulate key-point coordinates in 3D.
- Today: understand how to reconstruct simultaneously **3D scene structure** and **camera pose** (up to scale) from multiple images.



- Lectures
 - Image primes (L1)
 - Salient features (L2)
 - Image orientation (L3)
 - Multiple views, optimization (L4)
 - Mapping products (L5)

- Exercises
 - Image ‘corrections’ (Ex1)
 - Detection & matching (Ex2)
 - Absolute pose (Ex3)
 - Relative pose (Ex4)
 - Calibration, DEM, ortho-photo (Ex5)

Outline

- Epipolar geometry
- Essential and fundamental matrices
- 8-point algorithm

Terminology - Computer Vision (CV)

- Structure from motion (SFM) – pose, 3D, calib.
- Multiple view geometry (matching + SFM)
- Optimization

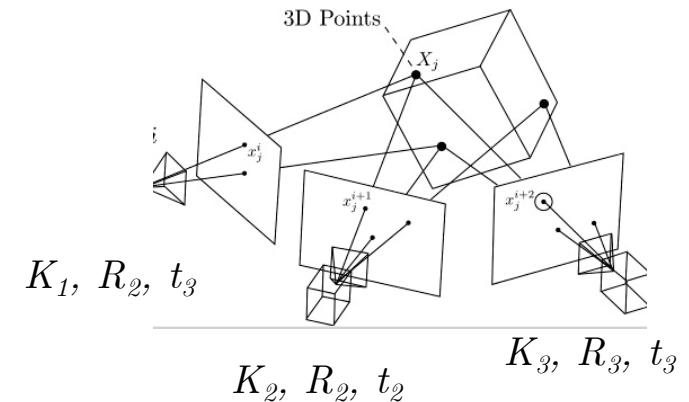
Terminology - Photogrammetry

- Relative orientation (with calibration)
- Triangulation, scene reconstruction
- Bundle adjustment

Two or Multiple view geometry - recapitulation

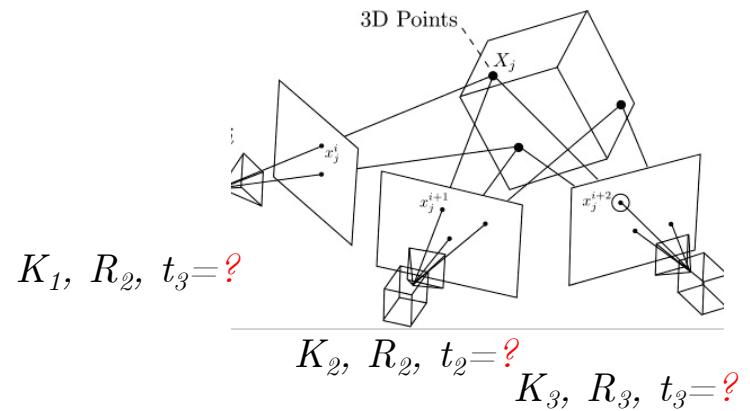
Depth from stereo vision (3D reconstruction)

- Assumptions: camera calibrated & oriented (i.e. **known** K_i, R_i, t_i)
- **Goal:** recover the 3D structure from images



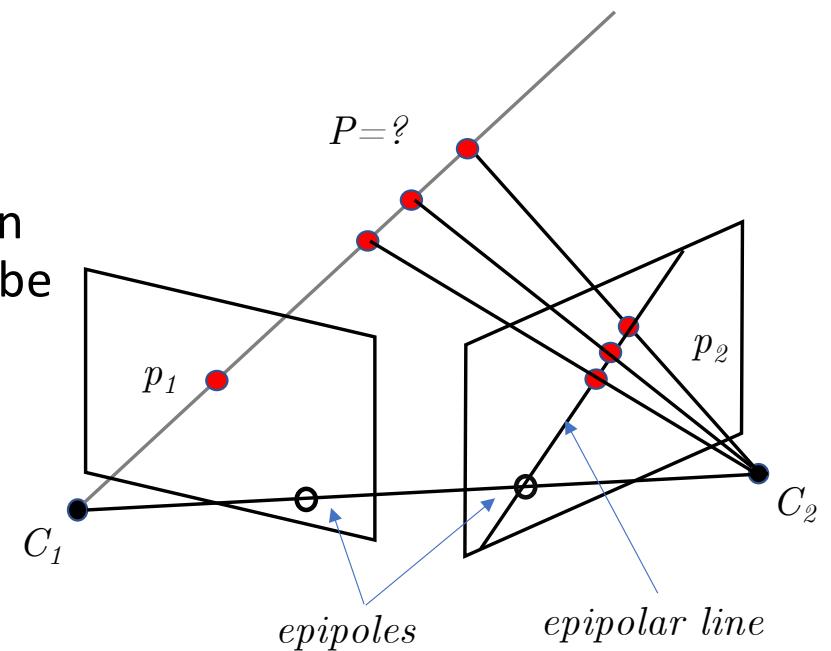
Structure from motion (SfM)

- Assumptions: **unknown** K_i, R_i, t_i
- **Goal:** recover simultaneously scene structure (3D) and camera pose (up to scale)



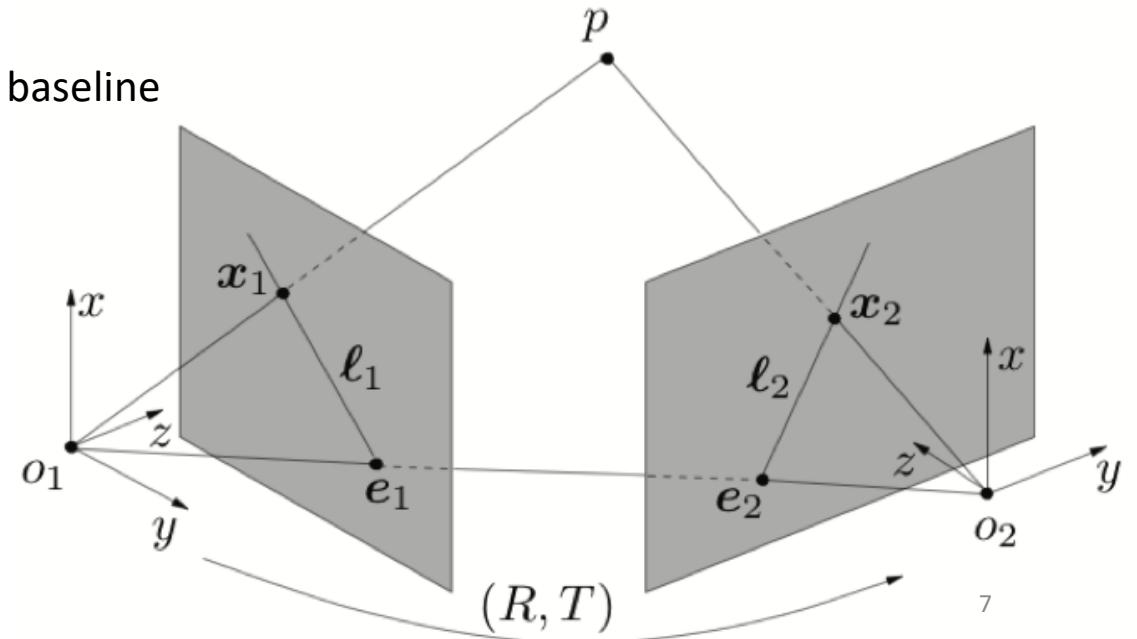
Correspondence problem

- Triangulation prerequisites
 - the pose (R and t) is known (at least relatively)
 - **Image correspondences exist** for a set of points $P_i \ i=1 \dots n$
- Problem
 - Given a point on the left-image, p_L , how can its **correspondence**, p_R , on the right image be determined?
 - 2D exhaustive search is very expensive (computationally)
 - Potential matches have to lie on the corresponding epipolar line!



Coplanarity constraint (epipolar geometry)

- Camera centers and one image point defines: **epipolar plane**
- Intersection of epipolar plane with 2 image planes are: **epipolar lines**
- **Epipolar constraint:** a fact that corresponding point lies on epipolar line
- Formulation:
 - via epipolar lines
 - Coplanarity between image vectors and baseline



Coplanarity constraint (epipolar geometry)

- The 3 vectors t, x_1, x_2 , must be coplanar
- Volume of parallelepiped spanned by them (vector triple product) = 0
- Considering skew-symmetric matrix $[t \times]$ and:

$$X_1 = \mu_1 x_1, \quad X_2 = \mu_2 x_2$$

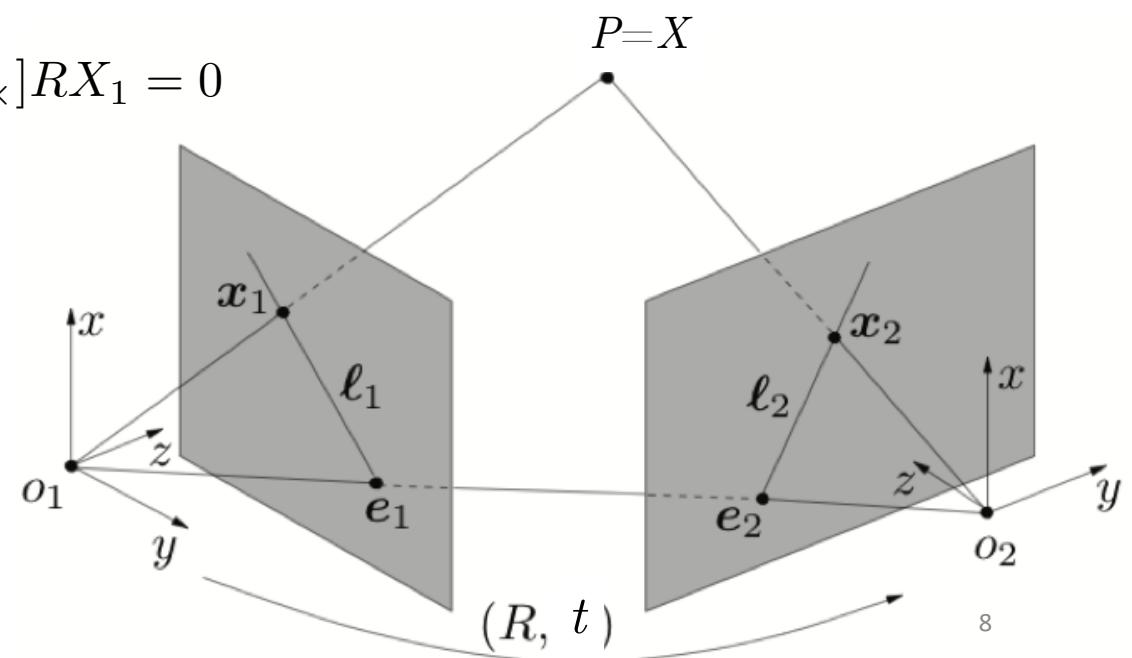
$$X_2 \cdot ([t \times] R X_1) = X_2^T ([t \times] R X_1) = X_2^T [t \times] R X_1 = 0$$

$$x_2^T [t \times] R x_1 = 0$$

$$x_2^T E x_1 = 0$$

with

$$E = [t \times] R$$



Outline

- Epipolar geometry
- Essential and fundamental matrices
- 8-point algorithm

Terminology - Computer Vision (CV)

- Structure from motion (SFM) – pose, 3D, calib.
- Multiple view geometry (matching + SFM)
- Optimization

Terminology - Photogrammetry

- Relative orientation (with calibration)
- Triangulation, scene reconstruction
- Bundle adjustment

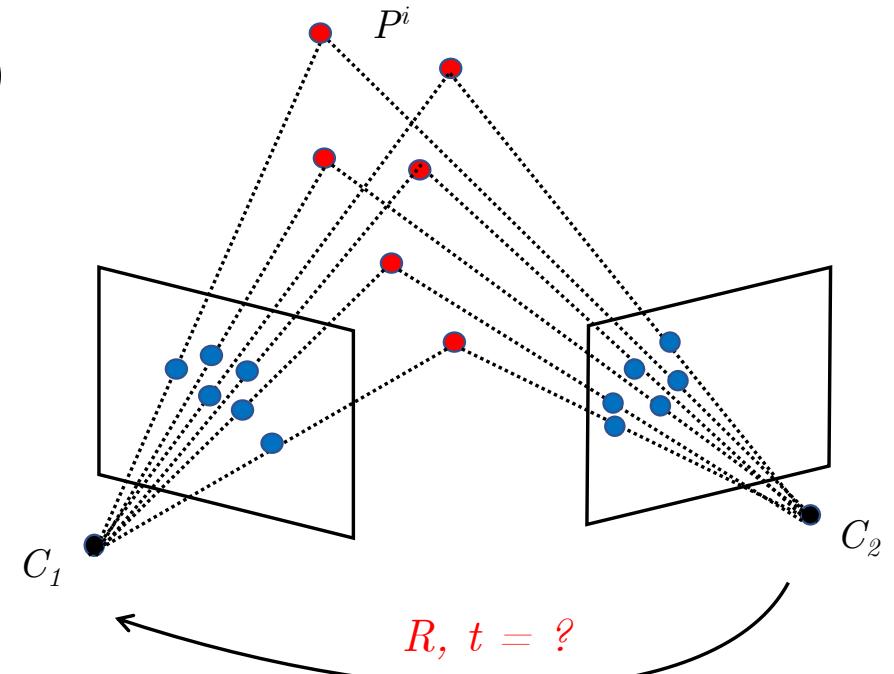
Relative orientation (Structure from Motion-SFM)

Given a set of $i = (1..n)$ point correspondences for 2 images, $p_1^i = (u_1^i, v_1^i)$, $p_2^i = (u_2^i, v_2^i)$
estimate simultaneously:

- The 3D points P^i
- The camera relative-orientation/pose (R, t)
- Camera intrinsic K_1, K_2 , satisfying:

$$\mu_1^i \begin{pmatrix} u_1^i \\ v_1^i \\ 1 \end{pmatrix} = K_1[I \mid 0] \cdot \begin{pmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{pmatrix}$$

$$\mu_2^i \begin{pmatrix} u_2^i \\ v_2^i \\ 1 \end{pmatrix} = K_2[R \mid t] \cdot \begin{pmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{pmatrix}$$



Epipolar geometry – calibrated camera

- Normalized coordinates

$$\begin{pmatrix} \bar{u}_1 \\ \bar{v}_1 \\ 1 \end{pmatrix} = K_1^{-1} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} \bar{u}_2 \\ \bar{v}_2 \\ 1 \end{pmatrix} = K_2^{-1} \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix} \quad K = \begin{pmatrix} c_u & 0 & u_0 \\ 0 & c_v & v_0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_2^T E x_1 = 0 \quad (\text{notation polycopié})$$

$$p_2^T E p_1 = 0 \quad (\text{same thing})$$

$$\boxed{\begin{pmatrix} \bar{u}_2 \\ \bar{v}_2 \\ 1 \end{pmatrix}^T E \begin{pmatrix} \bar{u}_1 \\ \bar{v}_1 \\ 1 \end{pmatrix} = 0}$$

Essential matrix $E = [t_\times]R$

Epipolar geometry – uncalibrated camera

- Previously

$$\begin{pmatrix} \bar{u}_1 \\ \bar{v}_1 \\ 1 \end{pmatrix} = K_1^{-1} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \bar{u}_2 \\ \bar{v}_2 \\ 1 \end{pmatrix} = K_2^{-1} \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}$$

$$p_2^T E p_1 = 0$$

- Without the knowledge of K

$$\begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}^T \boxed{K_2^{-T} E K_1^{-1}} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = 0$$

$$\begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}^T F \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = 0$$

- Fundamental matrix

$$F = (K_2^T)^{-1} E K_1^{-1}$$

Epipolar geometry – system of equations

Each pair of point correspondences $\bar{p}_1 = (\bar{u}_1, \bar{v}_1, 1)^T$, $\bar{p}_2 = (\bar{u}_2, \bar{v}_2, 1)^T$ provides a linear equation*:

$$p_2^T E p_1 = 0 \quad E = \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix}$$

$$\bar{u}_2 \bar{u}_1 e_{11} + \bar{u}_2 \bar{v}_1 e_{12} + \bar{u}_2 e_{13} + \bar{v}_2 \bar{u}_1 e_{21} + \bar{v}_2 \bar{v}_1 e_{22} + \bar{v}_2 e_{23} + \bar{u}_1 e_{31} + \bar{v}_1 e_{32} + e_{33} = 0$$

Given ‘enough’ correspondences, E (or F) can be obtained

- What is the minimum number of correspondences ?
- Can R, t be recovered from E ?
- (In more general case, can R, t, K_1, K_2 be recovered from F ?)

* Omitting the bar symbol over p

Epipolar geometry – inverse problem for E

- How many knowns per n ?
 - per correspondence:
 - per n :
- How many unknowns per n ?
 - per correspondence:
 - general:
 - together:
- When a solution exist?

The 8-point algorithm – formation of constraints

- If for 1 point, we have from $p_2^T E p_1 = 0$

$$\bar{u}_2 \bar{u}_1 e_{11} + \bar{u}_2 \bar{v}_1 e_{12} + \bar{u}_2 e_{13} + \bar{v}_2 \bar{u}_1 e_{21} + \bar{v}_2 \bar{v}_1 e_{22} + \bar{v}_2 e_{23} + \bar{u}_1 e_{31} + \bar{v}_1 e_{32} + e_{33} = 0$$

- For n points (when omitting bars)

$$\begin{pmatrix} u_2^1 u_1^1 & u_2^1 v_1^1 & u_2^1 & v_2^1 u_1^1 & v_2^1 v_1^1 & v_2^1 & u_1^1 & v_1^1 & 1 \\ u_2^2 u_1^2 & u_2^2 v_1^2 & u_2^2 & v_2^2 u_1^2 & v_2^2 v_1^2 & v_2^2 & u_1^2 & v_1^2 & 1 \\ \vdots & \vdots \\ u_2^n u_1^n & u_2^n v_1^n & u_2^n & v_2^n u_1^n & v_2^n v_1^n & v_2^n & u_1^n & v_1^n & 1 \end{pmatrix} \begin{pmatrix} e_{11} \\ e_{12} \\ e_{13} \\ e_{21} \\ e_{22} \\ e_{23} \\ e_{31} \\ e_{32} \\ e_{33} \end{pmatrix} = 0 \quad Q \cdot E_s = 0$$

 Q (known)

E_s (stacked E - unknown)

The 8-point algorithm – finding E

Minimum solution $Q \cdot E_s = 0$

- $Q_{(n \times 9)}$ - a unique (up to a scale) solution is possible if matrix rank = ?
- Each correspondence gives 1 independent equation.
- Hence, ... correspondences (non-planar) needed

Over-determined solution ($n > ?$)

- By minimizing $\|Q \cdot E_s\|^2 = E_s^T Q^T Q E_s$ subject to constraint $\|E_s\|^2 = 1$
- Solution E_s is an **eigenvector corresponding to the smallest eigen value of $Q^T Q$**
- Singular value decomposition (SVD) – in Matlab:

```
[U, S, V] = svd(Q^2);
Es = V(:, 9);
E = reshape(Es, 3, 3)';
```

The 8-point algorithm – SVD of Q in Python

```
Q = np.zeros((num_points, 9))
for i in range(num_points):
    Q[i, :] = np.kron( p1[:, i], p2[:, i] ).T
_, _, Vt = np.linalg.svd(Q, full_matrices = False)
E = np.reshape(Vt[-1, :], (3, 3)).T
```

Extracting R , t from E

1) Enforcing E to be in the “E-space”

- Singular value decomposition $E = U\Sigma V^T$
- “In case of no-errors”: $\Sigma = \text{diag}(\sigma, \sigma, 0)$
- Due to errors: $\tilde{E} = U \text{diag}(\sigma_1, \sigma_2, \sigma_3) V^T, \sigma_1 \geq \sigma_2 \geq \sigma_3$
- Choosing $\hat{E} = U \text{diag}(\sigma, \sigma, 0) V^T, \sigma = (\sigma_1 + \sigma_2)/2$
- ... satisfies E-space, but there could be another E leading to a smaller $\|Q \cdot E_s\|^2$
- Python # Enforce $\det(E)=0$ by projecting E on a set of 3x3 orthogonal matrices
 - U, S, Vt = np.linalg.svd(E)
 - S[0] = s[1] = (s[0]+s[1])/2
 - S[2] = 0
 - Ehat = U @ np.diag(S) @ Vt

Extracting R , t from E

$$[t_x] = \begin{pmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{pmatrix}$$

2) Finding t

- Reconstruction of the scene can be found up to a scale factor, hence OK to use “normalized E”, where : $\|t\|_2 = 1 \implies \sigma = 1$
- Since $RR^T=1$, squaring: $EE = [t_x]RR^T[t_x]^T = [t_x][t_x]^T = [t_x][-t_x] = -[t_x]^2$

$$-[t_x]^2 = \begin{pmatrix} -t_z^2 - t_y^2 & t_x t_y & t_x t_z \\ t_x t_y & -t_z^2 - t_x^2 & t_z t_z \\ t_x t_z & t_y t_z & -t_y^2 - t_x^2 \end{pmatrix} \quad -\text{tr}([t_x]^2) = 2(t_x^2 + t_y^2 + t_z^2) = 2\|t\|_2$$

- Since $\|t\|_2 = 1$, we obtain a matrix, from which diagonal we can obtain the absolute entries of t

$$-[t_x]^2 = \begin{pmatrix} 1 - t_x^2 & t_x t_y & t_x t_z \\ t_x t_y & 1 - t_y^2 & t_z t_z \\ t_x t_z & t_y t_z & 1 - t_z^2 \end{pmatrix}$$

4 possible solutions for R, t

- Recall that $\Sigma = \text{diag}(1, 1, 0)$ in $E = U\Sigma V^T$
- Defining

$$R_z(\pi/2) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- The relative rotation is

$$R = UR_z^T V^T$$

- The relative translation (unitary scale) is

$$[t_\times] = UR_z^T \Sigma U^T$$

- As the same is valid for $R_z(-\pi/2)$ there are 4 possible solutions: 2 permutations of

$$R_z(\pm\pi/2) = \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Proof

$$\begin{aligned} E &= [t_\times]R = UR_z \Sigma U^T UR_z^T V^T \\ &= UR_z \Sigma R_z^T V^T = U\Sigma V^T \end{aligned}$$

- as $R_z \Sigma$ is a skew-symmetric

$$R_z \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- and

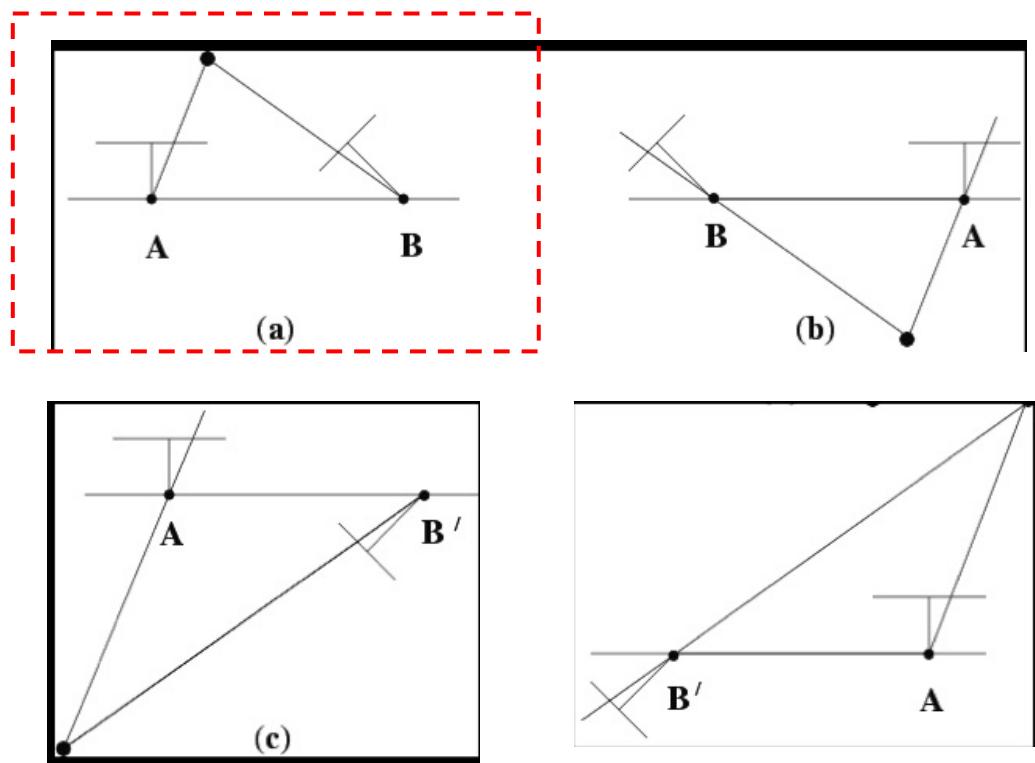
$$[t_\times]^T = -[t_\times]$$

- R is orthogonal (product of 3 orthogonal matrices) if $\det(R) = -1$ then $E = -E$

4 possible solutions for R, t

- However, the only plausible solution is the one when **P** lies in front-view of both cameras

- The 4 possibilities to test are



$$\hat{R} = U \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} V^T$$

$$[\hat{t}_x] = U \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Sigma U^T$$

$$[\hat{t}_x] = \begin{pmatrix} 0 & -\hat{t}_z & \hat{t}_y \\ \hat{t}_z & 0 & -\hat{t}_x \\ -\hat{t}_y & \hat{t}_x & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \hat{t}_x \\ \hat{t}_y \\ \hat{t}_z \end{pmatrix}$$

Remaining problem:

- Can R , t , K_1 , K_2 be recovered from F ?

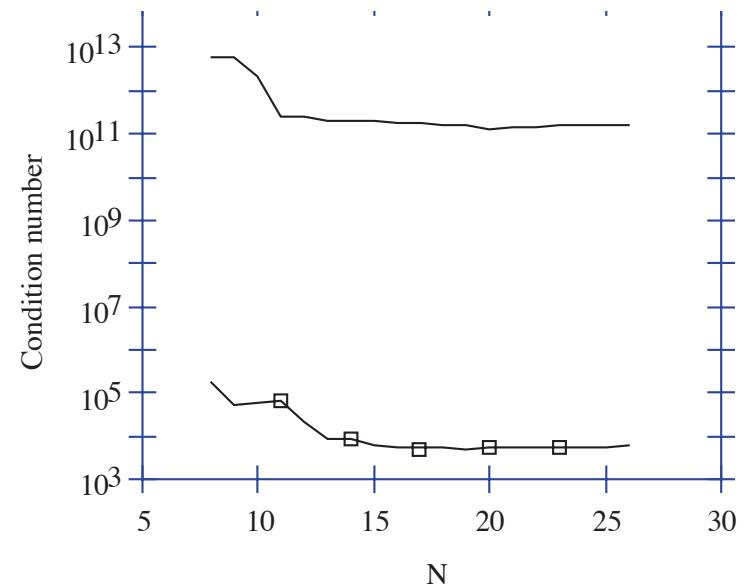
Practical challenges

“Noise” in data

- E matrix near singular – points lying on the same 2D plane, small parallax (disparity)

Solution

- Translate all image points coordinates to a centroid
- Scale them so that the average distance from center is $\sqrt{2}$, i.e. $p_i = (1, 1, 1)$
- Improvement of condition number



Hartley, R.I., 2012: **In defense of the 8-point algorithm.** *IEEE Trans. Pattern Analysis*, 19(6), 580-593

Historical development

- 1913 **Kruppa** – Determined the min. no. of correspondences (five), 11 solutions
- 1981 **Longuet-Higgins** – Easy implementation, 8-point algorithm (NASA-rover)*
- 1988 **Demazure** – Showed that there is at most 10 distinct solutions
- 1996 **Philipp** – Described and iterative algorithm to find the solutions
- 2004 **Nister** – 1st efficient and non iterative solution (basis decomposition)**

* H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, *Nature*, 1981

**D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, *PAMI*, 2004.

Understanding - self assessment

- What is the minimum number of correspondences between 2 images to perform relative orientation with a calibrated camera and why?
- Can you provide a geometrical interpretation of the epipolar constraint?
- How would you derive the epipolar constraint?
- How is the essential matrix defined?
- What are the properties of the essential matrix?
- How are the essential and fundamental matrices related?
- Is it always important to normalize the point coordinates in the 8-point algorithm?
- How is the normalization of image coordinates performed?
- How is the quality of the derived translation and rotation measured?