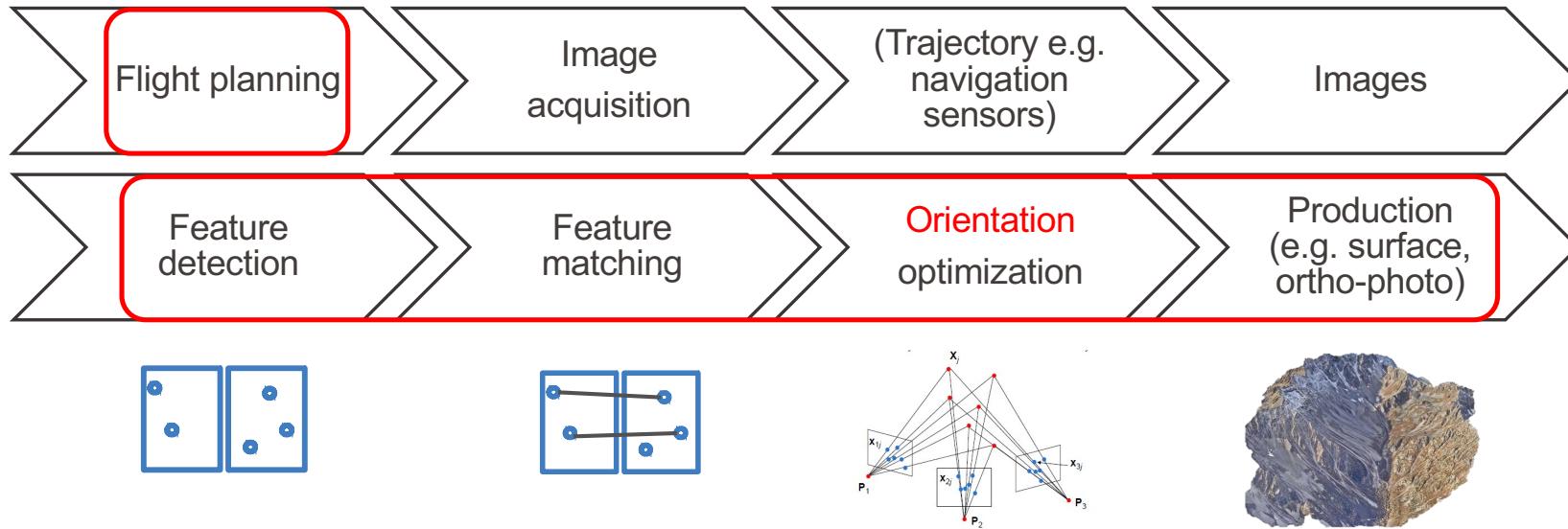


Lecture 4.1

Two View Geometry

ENV408: Optical Sensing & Modeling for Earth Observations

Jan Skaloud

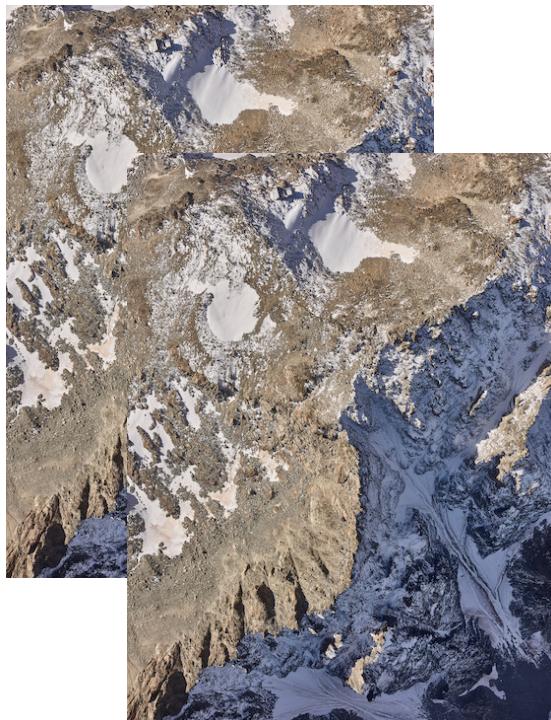


Lectures

- Image primes (L1)
- Salient *features* (L2)
- Image *orientation* (L3)
- *Optimization (calibration)* (L4)
- Mapping products (L5)

Exercises

- Image ‘corrections’ (Lab01)
- Detection & matching (Lab02)
- Approx. absolute orientation (Lab03)
- *Approx. relative orientation (Lab04)*
- Calibration, DEM, ortho-photo (Lab05)



Today

Understand how to reconstruct simultaneously **3D scene structure** and **camera pose** from multiple images

Tomorrow

Use undistorted (Lab01) matched key-points (Lab02) to **orient two images** and **triangulate key-point coordinates** in 3D.

Epipolar Geometry

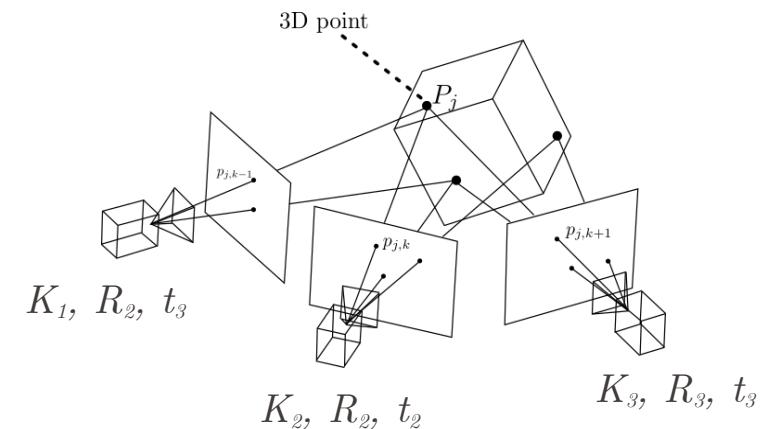
Essential and Fundamental Matrices

8 points algorithm

Two views geometry - recapitulation

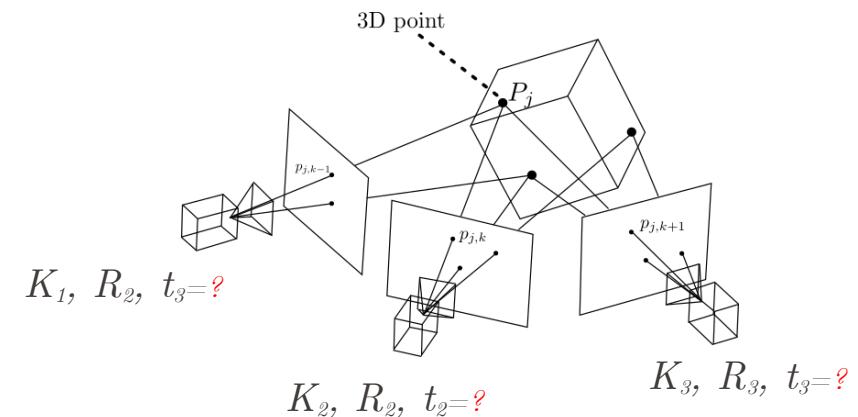
Last week: depth from **stereo vision**
 (= 3D reconstruction)

- **Assumptions:** known K_i , R_i , t_i (i.e. calibrated & oriented camera)
- **Goal:** recover the 3D structure from images



This week: Structure from motion (SfM)

- **Assumptions:** unknown K_i , R_i , t_i
- **Goal:** recover simultaneously 3D structure + camera pose



Correspondence problem

Triangulation prerequisites

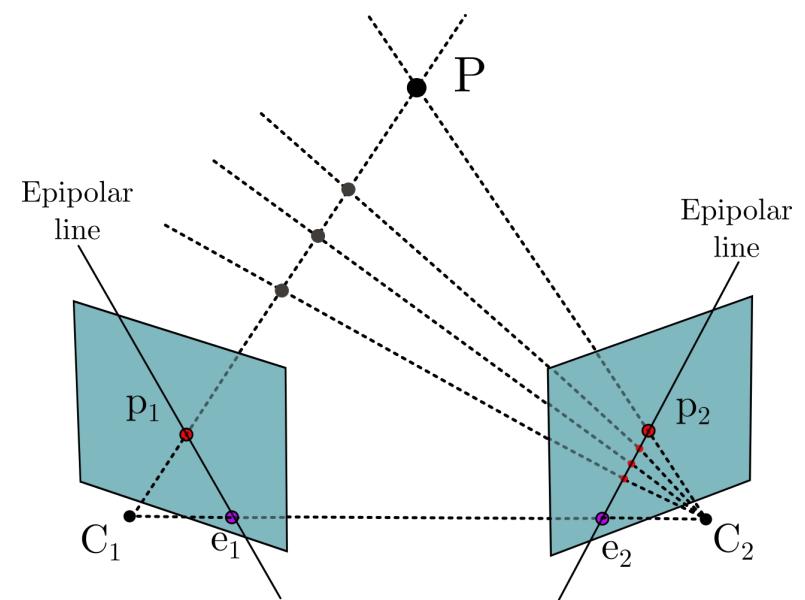
- Pose (R and t) is known (at least relatively)
- Image correspondences exist for a set of points $P_i \ i=1 \dots n$

Questions

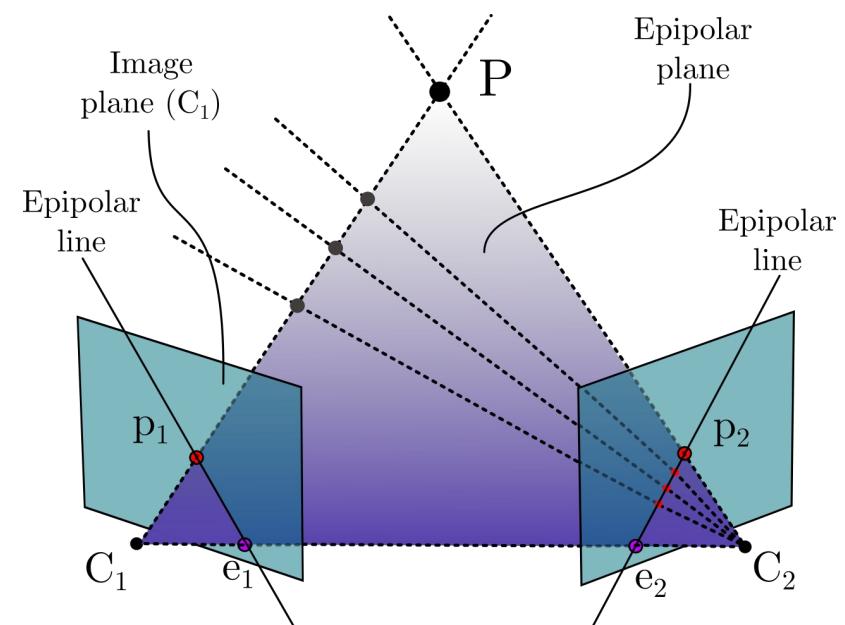
- Given a point on the left-image, p_L , where is its correspondence, p_R , on the right image?
- Note: 2D exhaustive search is very expensive (computationally)

Answer:

Potential matches have to lie on an epipolar line! (see after)



- **Epipolar plane:** 3D plane formed by C_1 , C_2 (cam. centers) & P
- **Epipoles e_1 , e_2 :** intersection of the line C_1 , C_2 with image planes
- **Epipolar line:** Intersection of epipolar plane with image plane
- **Epipolar constraint:** given P , corresponding points p_1 , p_2 must lie on their respective epipolar lines



EPFL Epipolar Constraint 1/3

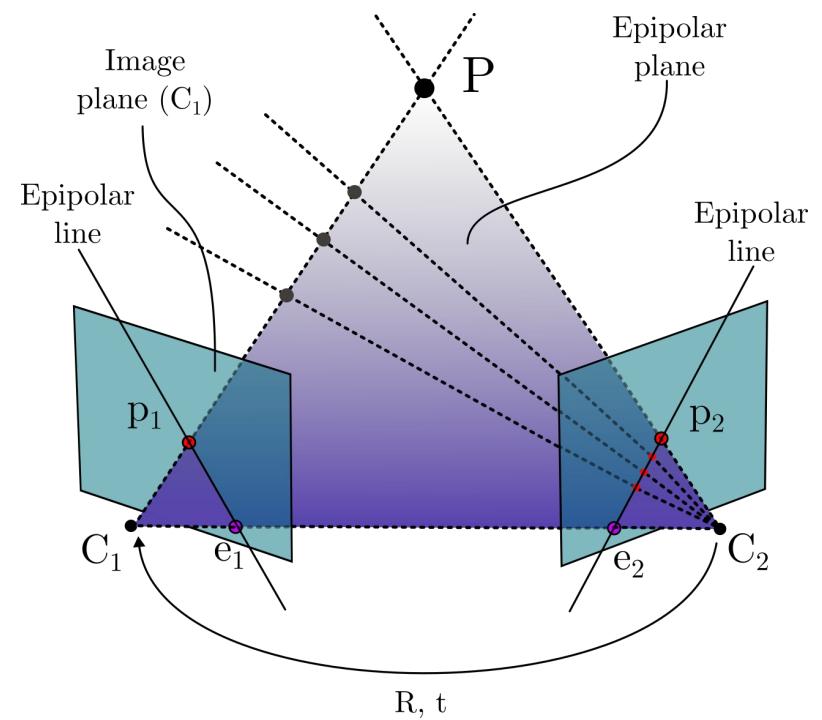
9

Formulation via epipolar lines

- R, t : rotation and translation relative from C_2 to C_1
- Point P in:
 - Camera 1 frame $\overrightarrow{C_1, P} = P_1 = \mu_1 p_1$
 - Camera 2 frame $\overrightarrow{C_2, P} = P_2 = \mu_2 p_2$

⇓

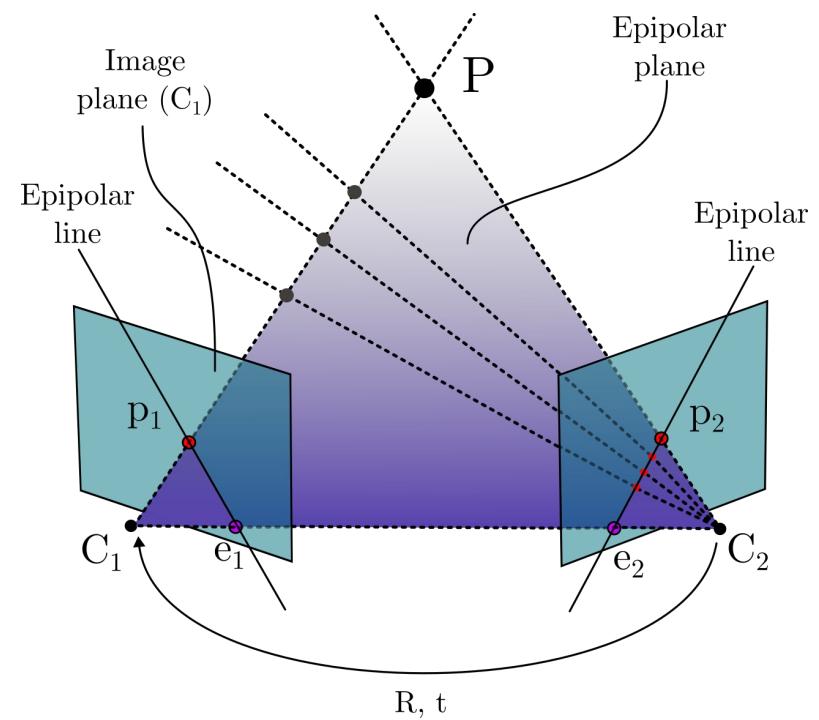
$$\mu_1 p_1 = R\mu_2 p_2 + t$$



Formulation via epipolar lines

- The 3 vectors $\overrightarrow{C_1, P_1}$, $\overrightarrow{C_2, P_2}$ and $\overrightarrow{C_1, C_2} = t$ must be coplanar
- Mathematically equivalent to null vector triple product $a \cdot (b \times c) = 0$
- This gives: $P_1 \cdot (t \times RP_2) = 0$

P_2 in camera 1
frame



EPFL Epipolar Constraint 3/3

11

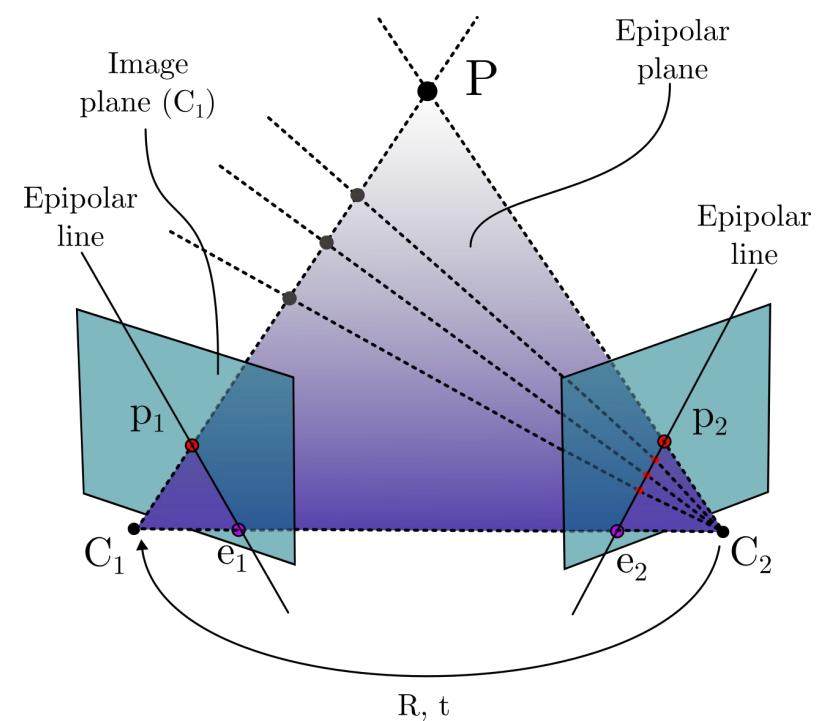
Reminder: vector cross product equivalent to skew-symmetric matrix multiplication $[t \times]$

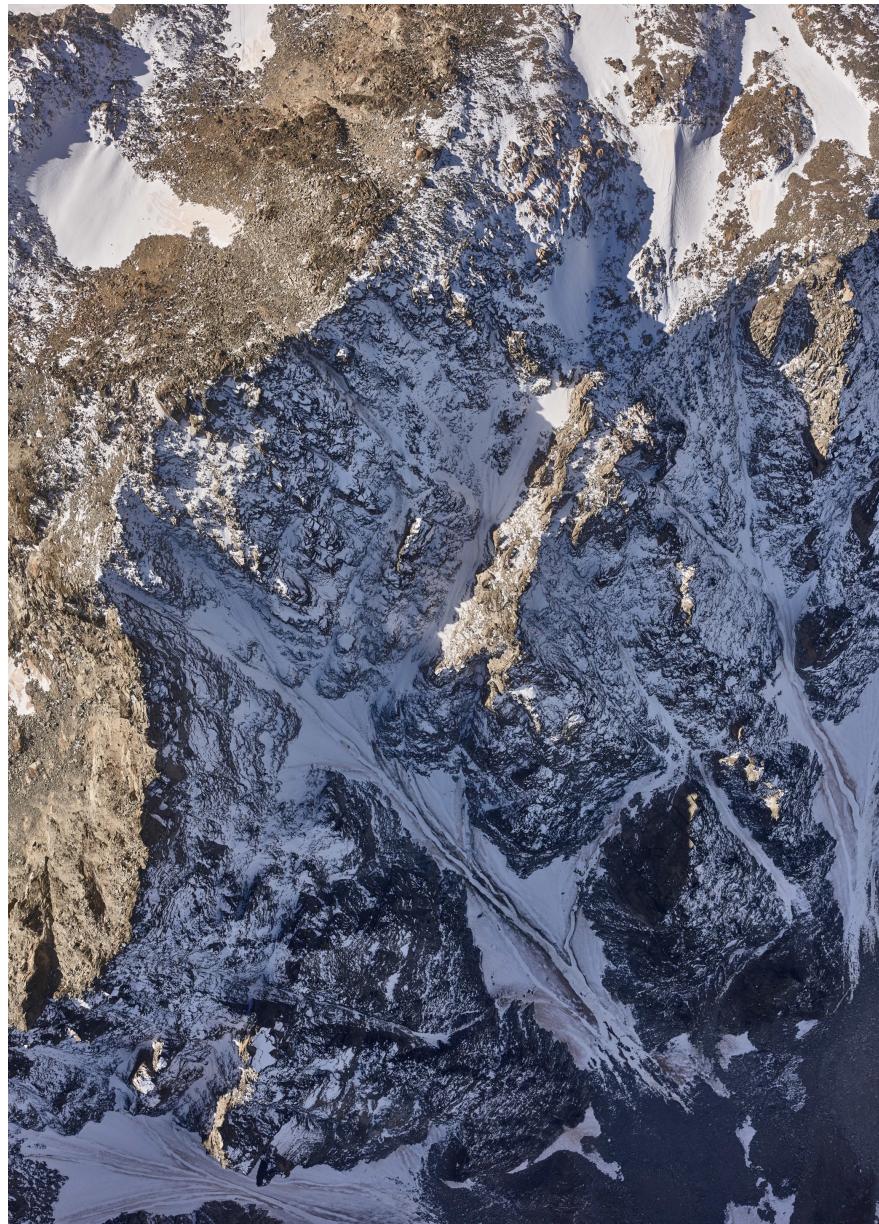
$$\begin{aligned}
 P_1 \cdot (t \times RP_2) &= 0 \\
 &\Updownarrow \\
 P_1^T [t \times] RP_2 &= 0 \\
 &\Updownarrow \\
 \text{Only vector direction counts} &\quad \leftarrow \\
 &\Updownarrow \\
 p_1^T [t \times] R p_2 &= 0
 \end{aligned}$$

Defining **Essential matrix E :**

$$E \equiv [t \times] R$$

$$p_2^T E p_1 = 0$$





Epipolar Geometry

Essential and Fundamental Matrices

8 points algorithm

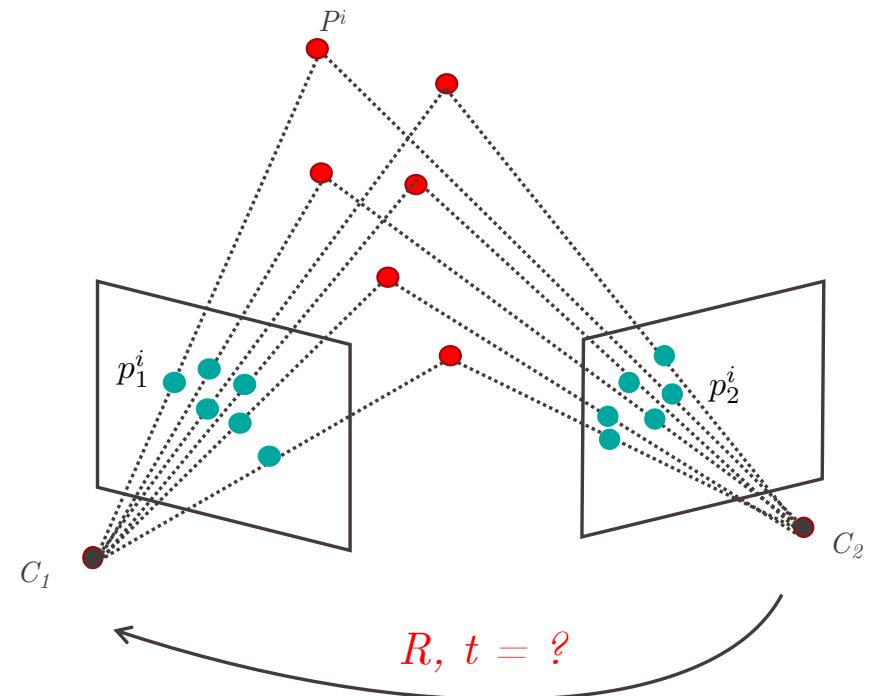
Relative orientation (SFM)

Given a set of $i = (1..n)$ point correspondences $p_1^i = (u_1^i, v_1^i)^T$, $p_2^i = (u_2^i, v_2^i)^T$ for 2 images, estimate simultaneously:

- The 3D points P^i
- The camera relative-orientation/pose (R, t)
- Camera intrinsic K_1, K_2 , satisfying:

$$\mu_1^i \begin{pmatrix} u_1^i \\ v_1^i \\ 1 \end{pmatrix} = K_1[I \mid 0] \cdot \begin{pmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{pmatrix}$$

$$\mu_2^i \begin{pmatrix} u_2^i \\ v_2^i \\ 1 \end{pmatrix} = K_2[R \mid t] \cdot \begin{pmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{pmatrix}$$



- Normalized undistorted coordinates

$$\begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = K_1^{-1} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} = K_2^{-1} \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix} \quad K = \begin{pmatrix} c & 0 & x_{PPS} + c_x \\ 0 & c & y_{PPS} + c_y \\ 0 & 0 & 1 \end{pmatrix}$$

$$x_2^T E x_1 = 0 \quad (\text{notation polycopié})$$

$$p_2^T E p_1 = 0 \quad (\text{notation slides + labs, same thing})$$

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix}^T E \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = 0$$

Essential matrix $E = [t_\times]R$

Epipolar geometry – uncalibrated camera

Without the knowledge of \mathbf{K} : p_i can only be defined by u, v since x, y are unknown

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix}^T E \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = 0$$

↓

$$\begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}^T \boxed{K_2^{-T} E K_1^{-1}} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = 0$$

Fundamental matrix $F = (K_2^T)^{-1} E K_1^{-1} \Rightarrow \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}^T \boxed{F} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = 0$

▪

Epipolar geometry – system of equations

Each pair of point correspondences $p_1 = (u_1, v_1, 1)^T$, $p_2 = (u_2, v_2, 1)^T$ provides a linear equation:

$$p_2^T E p_1 = 0 \quad E = \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix}$$

↓

$$u_2 u_1 e_{11} + u_2 v_1 e_{12} + u_2 e_{13} + v_2 u_1 e_{21} + v_2 v_1 e_{22} + v_2 e_{23} + u_1 e_{31} + v_1 e_{32} + e_{33} = 0$$

Given enough correspondences, E (or F) can be obtained

1. What is the **minimum number of correspondences** ?
2. Can R, t be recovered from E ?
3. (In more general case, can R, t, K_1, K_2 be recovered from F ?)

Epipolar geometry – inverse problem for E

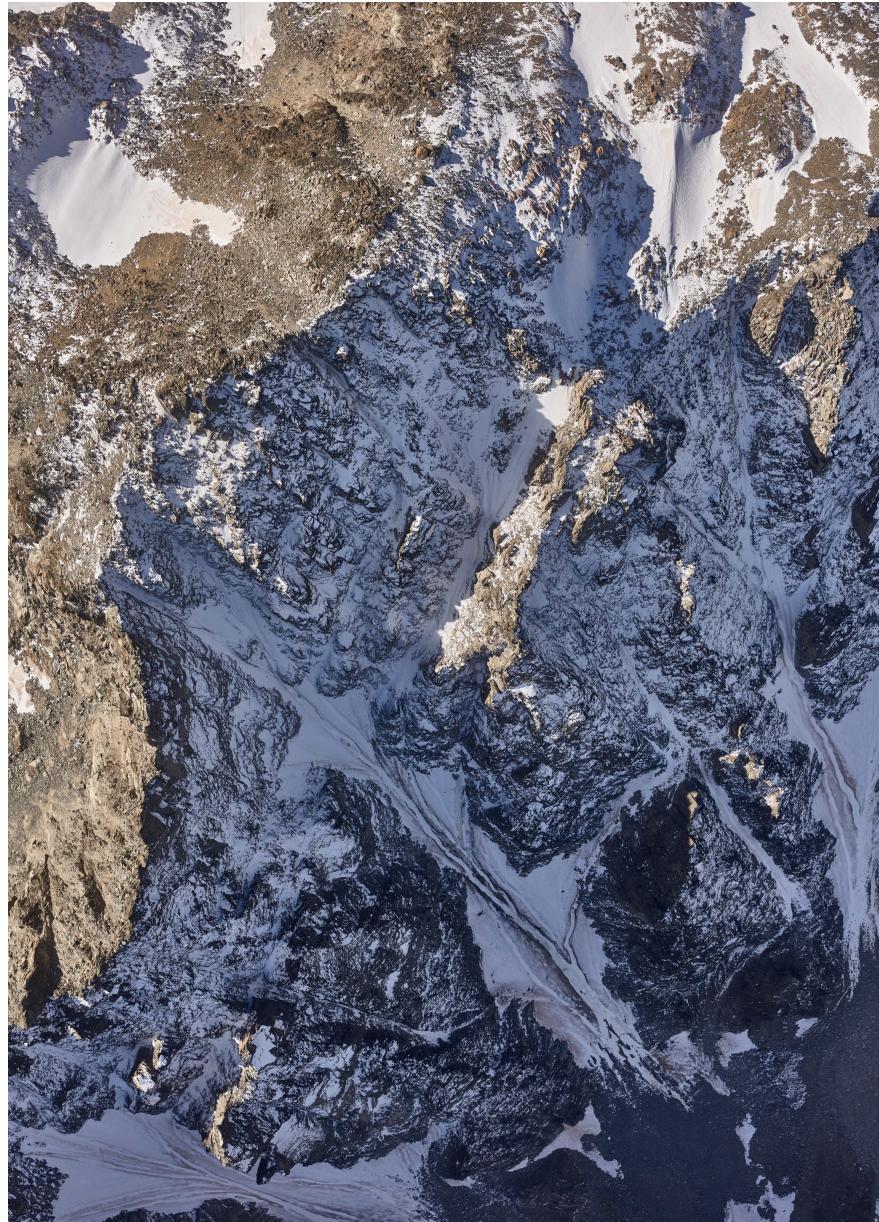
- How many knowns per n ?

- per correspondence:
 - per n :

- How many unknowns per n ?

- per correspondence:
 - general:
 - together:

- When a solution exist?



Epipolar Geometry

Essential and Fundamental Matrices

8 points algorithm

EPFL Historical development

Kruppa – Determined the min. no. of correspondences (five), 11 solutions

Demazure – Showed that there is at most 10 distinct solutions

Nister – 1st efficient and non iterative solution (basis decomposition)**

1981

1913

1996

2004

Longuet-Higgins – Easy implementation, **8-point** algorithm (NASA-rover)*

Philipp – Described and iterative algorithm to find the solutions

* H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, *Nature*, 1981

**D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, *PAMI*, 2004.

The 8-point algorithm – formation of constraints

- For 1 point, we have from $p_2^T E p_1 = 0$

$$u_2 u_1 e_{11} + u_2 v_1 e_{12} + u_2 e_{13} + v_2 u_1 e_{21} + v_2 v_1 e_{22} + v_2 e_{23} + u_1 e_{31} + v_1 e_{32} + e_{33} = 0$$

- For n points (when omitting bars)

$$\underbrace{\begin{pmatrix} u_2^1 u_1^1 & u_2^1 v_1^1 & u_2^1 & v_2^1 u_1^1 & v_2^1 v_1^1 & v_2^1 & u_1^1 & v_1^1 & 1 \\ u_2^2 u_1^2 & u_2^2 v_1^2 & u_2^2 & v_2^2 u_1^2 & v_2^2 v_1^2 & v_2^2 & u_1^2 & v_1^2 & 1 \\ \vdots & \vdots \\ u_2^n u_1^n & u_2^n v_1^n & u_2^n & v_2^n u_1^n & v_2^n v_1^n & v_2^n & u_1^n & v_1^n & 1 \end{pmatrix}}_{Q \text{ (known)}} \begin{pmatrix} e_{11} \\ e_{12} \\ e_{13} \\ e_{21} \\ e_{22} \\ e_{23} \\ e_{31} \\ e_{32} \\ e_{33} \end{pmatrix} = 0 \quad \Rightarrow \quad Q \cdot E_s = 0$$

E_s
(stacked E - unknown)

The 8-point algorithm – finding E

Minimum solution $Q \cdot E_s = 0$

- $Q_{(n \times 9)}$ - a unique (up to a scale) solution is possible if matrix rank = ?
- Each correspondence gives 1 independent equation.
- Hence, ... correspondences (non-planar) needed

Over-determined solution ($n > ?$)

- By minimizing $\|Q \cdot E_s\|^2 = E_s^T Q^T Q E_s$ subject to constraint $\|E_s\|^2 = 1$
- Solution E_s is an **eigenvector corresponding to the smallest eigen value of Q**
- Via SVD of $Q^T Q$ matrix that is in this case equivalent to SVD of Q^*

* K. Inkilä, 2005, *Homogeneous least square problem*, Photogrammetric Journal of Finland.

EPFL The 8-point algorithm – SVD of Q in Python

23

```
Q = np.zeros( (num_points, 9) )
for i in range(num_points):
    Q[i,:] = np.kron( p1[:,i], p2[:,i] ).T

_, _, Vt= np.linalg.svd(Q, full_matrices = False)
E = np.reshape(Vt[-1,:], (3,3)).T
```

■

I. Enforcing E to be in the “E-space”

- Singular value decomposition $E = U\Sigma V^T$
- “In case of no-errors”, perfect correspondences: $\Sigma = \text{diag}(\sigma, \sigma, 0)$
- Due to errors: $\tilde{E} = U \text{diag}(\sigma_1, \sigma_2, \sigma_3) V^T, \sigma_1 \geq \sigma_2 \geq \sigma_3$

- Choosing $\hat{E} = U \text{diag}(\sigma, \sigma, 0) V^T, \sigma = (\sigma_1 + \sigma_2)/2$
- ... satisfies E-space, but there could be another E leading to a smaller $\|Q \cdot E_s\|^2$
- **Python**

```
# Enforce det(E)=0 by projecting E on a set of 3x3 orthogonal matrices
U, S, Vt = np.linalg.svd(E)
S[0] = s[1] = (s[0]+s[1])/2
S[2] = 0
Ehat = U @ np.diag(S) @ Vt
```


Extracting R, t from E

II. Finding t

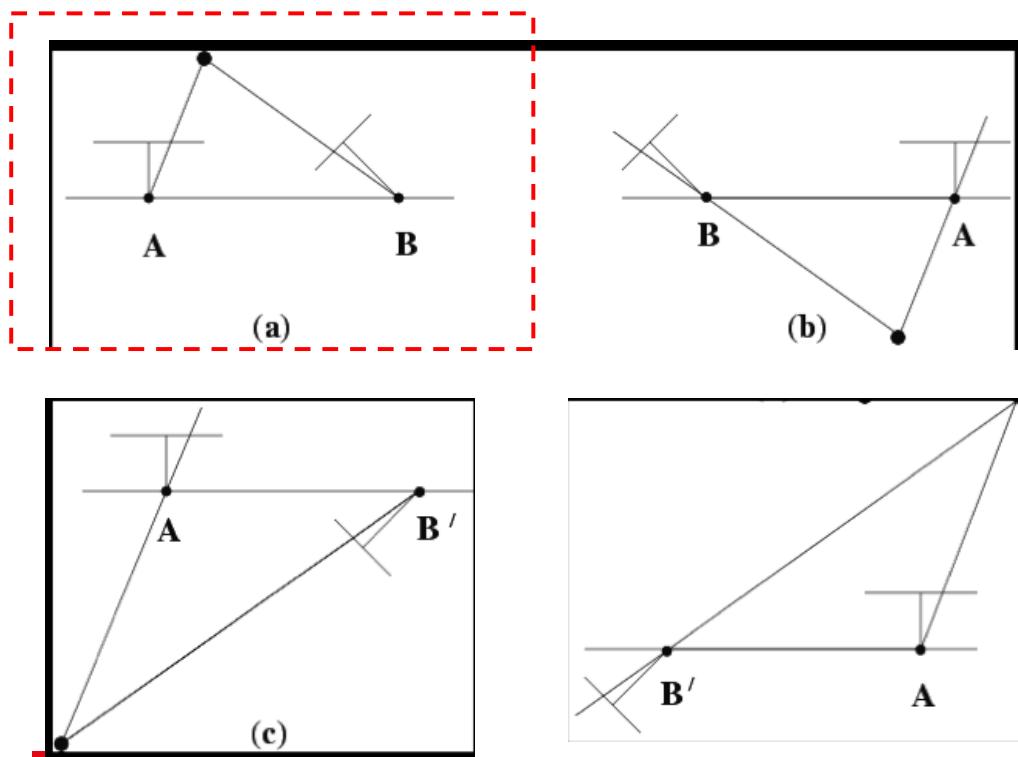
- $RR^T=1$, thus: $EE = [t_{\times}]RR^T[t_{\times}]^T = [t_{\times}][t_{\times}]^T = [t_{\times}][-t_{\times}] = -[t_{\times}]^2$
- Reminder: $[t_{\times}] = \begin{pmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{pmatrix}$ and $\|t\|_2 = 1$ (scale not recovered from E)
- Thus $-[t_{\times}]^2 = \begin{pmatrix} -t_z^2 - t_y^2 & t_x t_y & t_x t_z \\ t_x t_y & -t_z^2 - t_x^2 & t_z t_z \\ t_x t_z & t_y t_z & -t_y^2 - t_x^2 \end{pmatrix}$
- Since $\|t\|_2 = 1$, we obtain a matrix, from which diagonal we can obtain the absolute entries of t

$$-[t_{\times}]^2 = \begin{pmatrix} 1 - t_x^2 & t_x t_y & t_x t_z \\ t_x t_y & 1 - t_y^2 & t_z t_z \\ t_x t_z & t_y t_z & 1 - t_z^2 \end{pmatrix}$$

4 possible solutions for R, t

- However, the only plausible solution is the one when **P** lies in front-view of both cameras

- The are **4 possibilities** to test"



$$\hat{R} = U \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} V^T$$

$$[\hat{t}_x] = U \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Sigma U^T$$

$$[\hat{t}_x] = \begin{pmatrix} 0 & -\hat{t}_z & \hat{t}_y \\ \hat{t}_z & 0 & -\hat{t}_x \\ -\hat{t}_y & \hat{t}_x & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \hat{t}_x \\ \hat{t}_y \\ \hat{t}_z \end{pmatrix}$$

Remaining problem:

- Can R , t , K_1 , K_2 be recovered from F ?

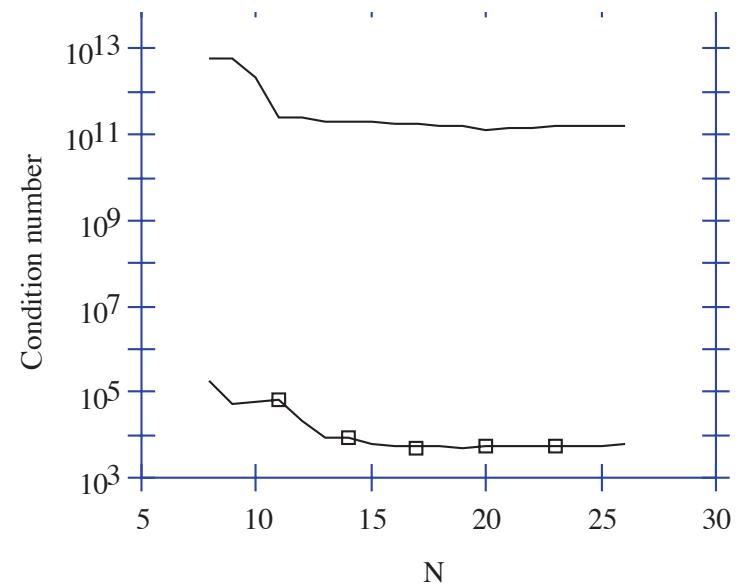
“Noise” in data

- E matrix near singular – points lying on the same 2D plane, small parallax (disparity)

Solution

- Translate all image points coordinates to a centroid
- Scale them so that the average distance from center is $\sqrt{2}$, i.e. $p_i = (1, 1, 1)$
- Improves condition number – solution stability!

Hartley, R.I., 2012: [In defense of the 8-point algorithm](#). *IEEE Trans. Pattern Analysis*, 19(6), 580-593



Understanding - self assessment

