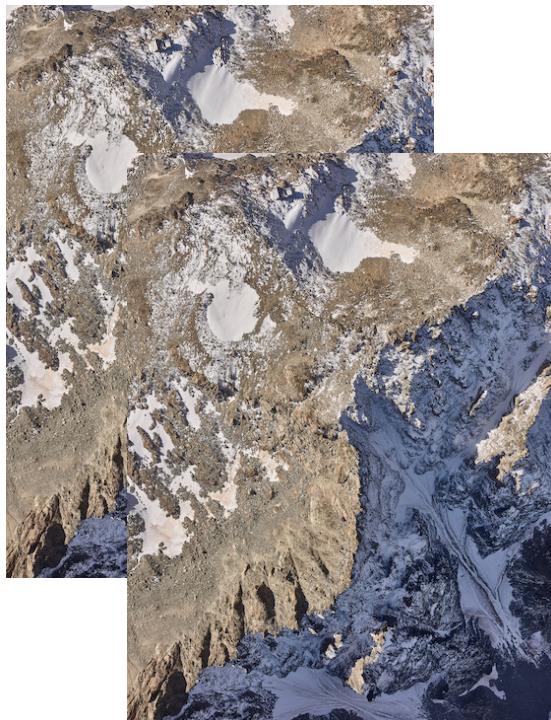


Lecture 4

Stereo Vision

ENV408: Optical Sensing & Modeling for Earth Observations

Jan Skaloud



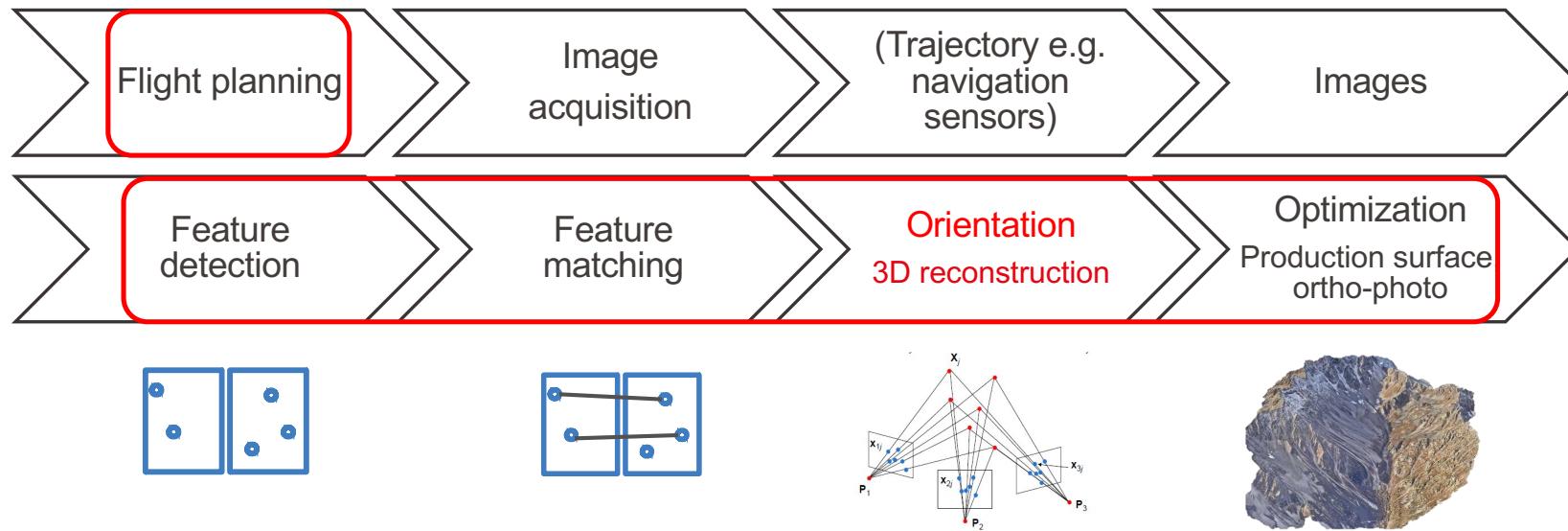
Today

Understand how to reconstruct simultaneously **3D scene structure** and **camera pose** from two + multiple images

Tomorrow

Use undistorted (Lab01) matched key-points (Lab02) to **orient relatively two images** and **triangulate key-point coordinates in 3D**.

Apply solution of absolute orientation (Lab03) to express the scene in **world coordinates**.



Lectures

- Image primes (L1)
- Salient *features* (L2)
- Image *orientation* (L3)
- **Stereo vision (L4)**
- Many photos, mapping products (L5)

Exercises

- Image 'corrections' (Lab01)
- Detection & matching (Lab02)
- Approx. absolute orientation (Lab03)
- **Approx. relative orientation (Lab04)**
- Optimization, DEM, ortho-photo (Lab05)

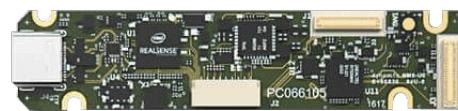
Stereo vision - principle

Triangulation (depth)

Stereo vision (pose & depth)

Examples

- Short-base stereo cameras



- Motion-based stereo

stereo-pair

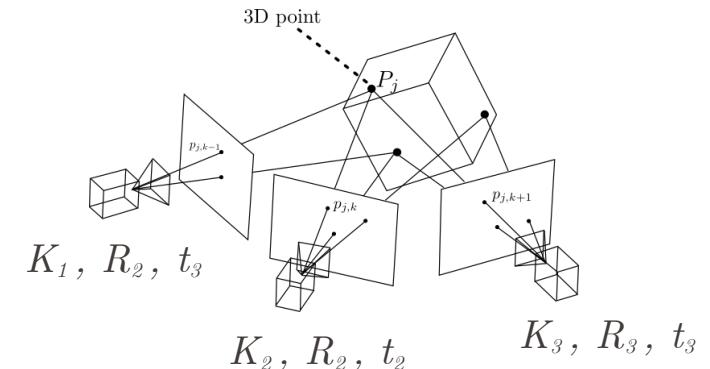
monocular

A. Depth from stereo vision (3D reconstruction)

Goal: recover the 3D structure from images

Assumption: **known** K_i, R_i, t_i (i.e. camera calibrated & oriented)

- simpler, we start with it

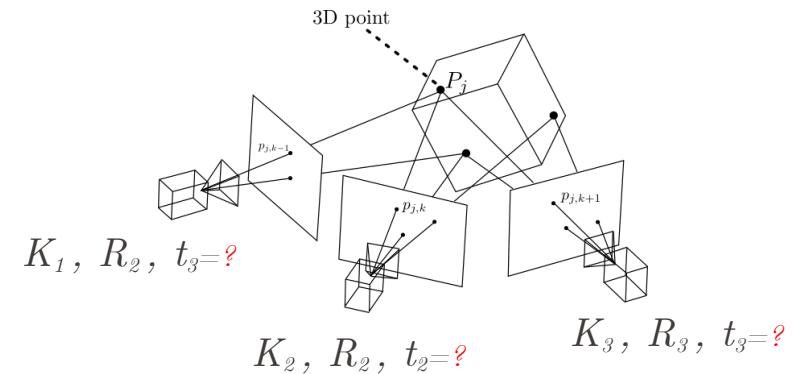


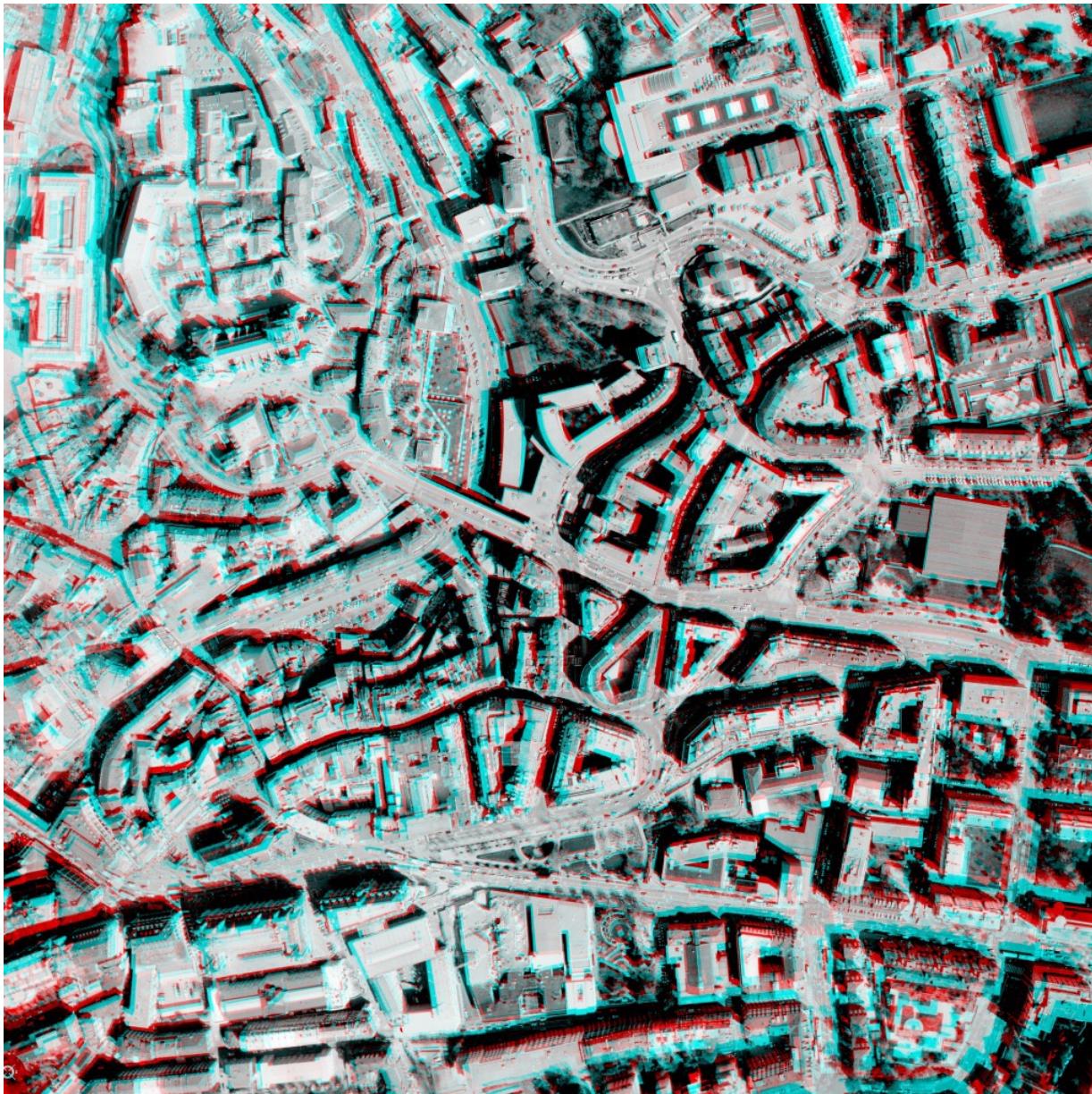
B. Structure from motion (SFM)

Goal: recover simultaneously scene structure (3D) and camera pose (up to scale)

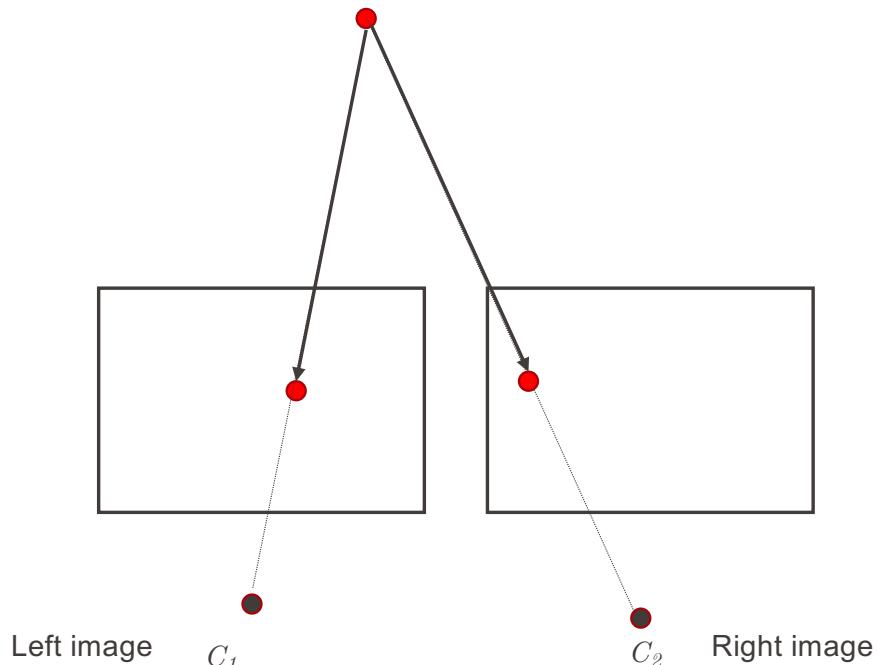
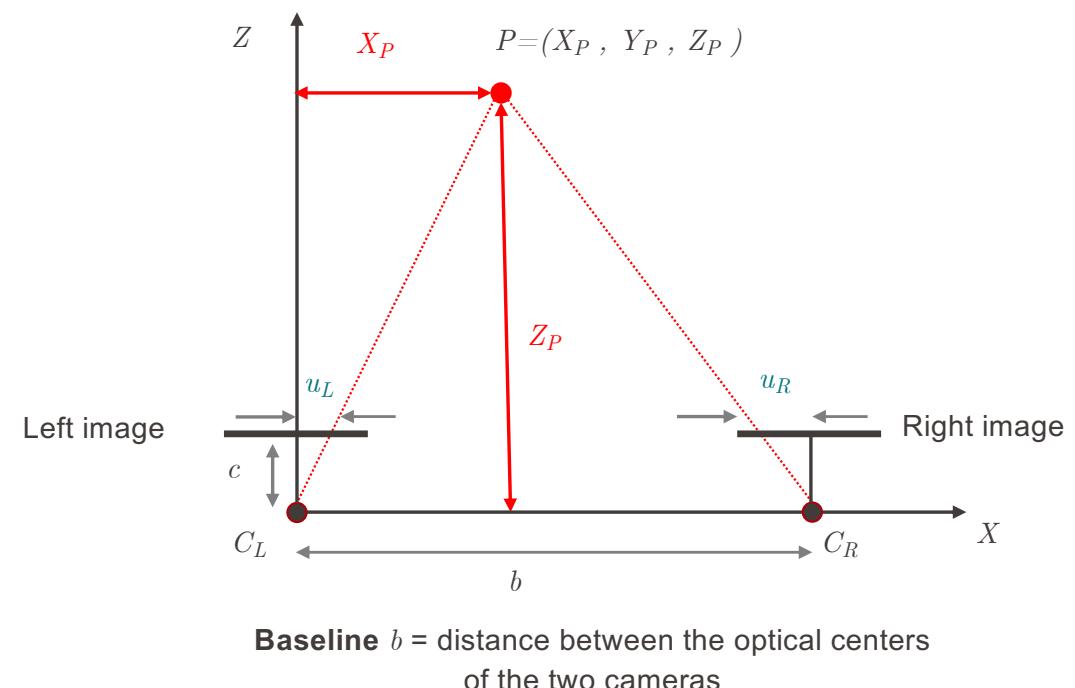
Assumption: **unknown** K_i, R_i, t_i

- once we know how to determine the depth in the previous part, we show how to solve also this problem



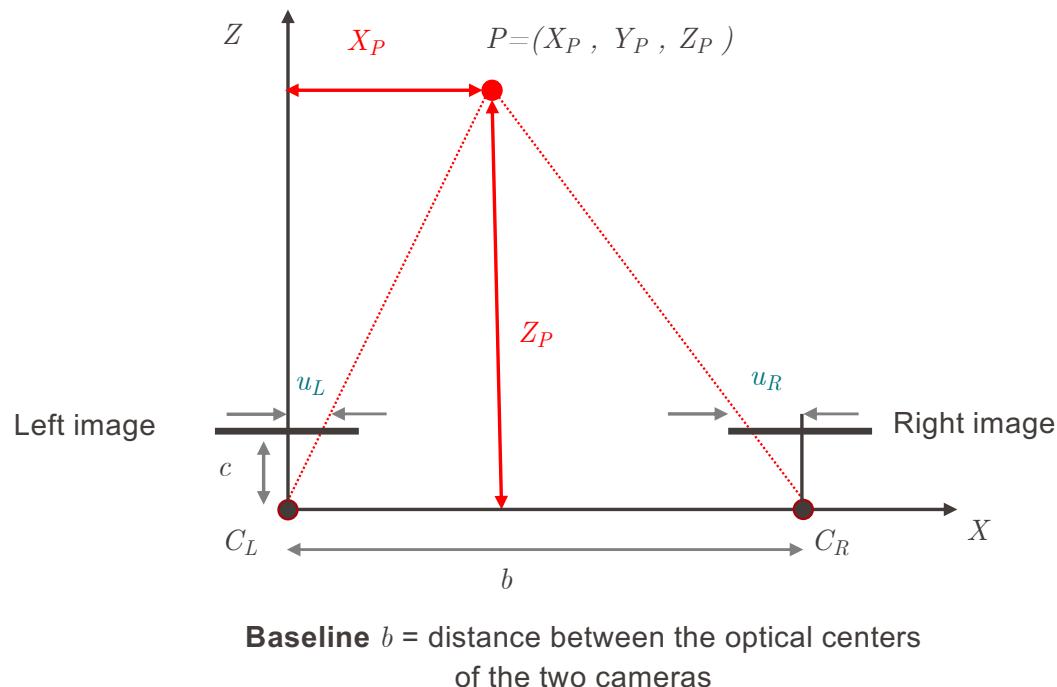


- Aligned (on x-axis) identical cameras



Stereo vision – simplified case

- Aligned (on x-axis) identical cameras (top view)



$$\left. \begin{array}{l} \frac{c}{Z_p} = \frac{u_L}{X_P} \\ \frac{c}{Z_p} = \frac{-u_R}{b-X_P} \end{array} \right\} Z_p = \frac{b \cdot c}{u_L - u_R}$$

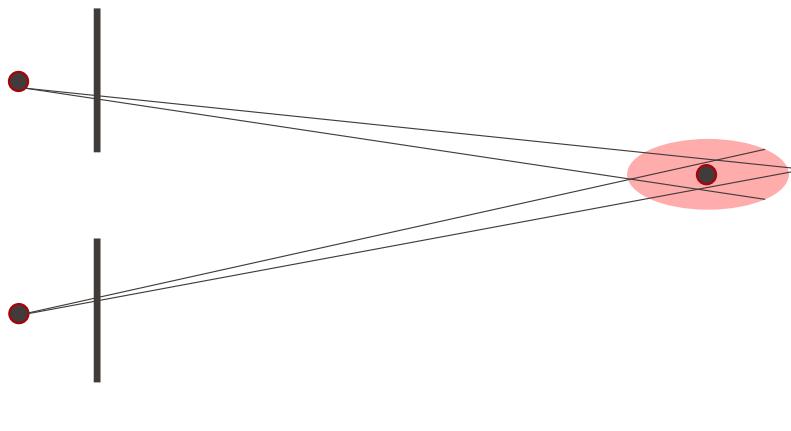
$(u_L - u_R)$ is a **disparity**, a difference in the location of a 3D point on two image planes

Q: What is the disparity of a point in infinity?

Q: What is the maximum disparity of a stereo camera?

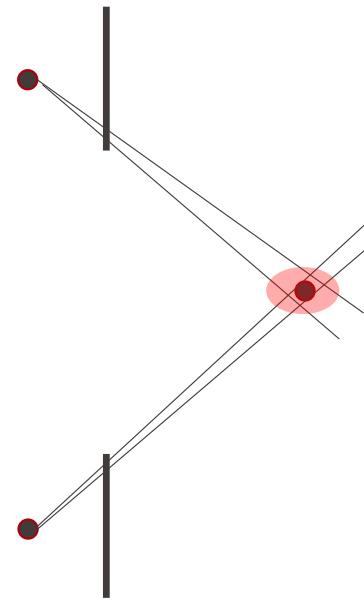
Short baseline

- Small error in image obs. => **large error in depth**
- Close objects are observable
- Automated matching easier (less change)



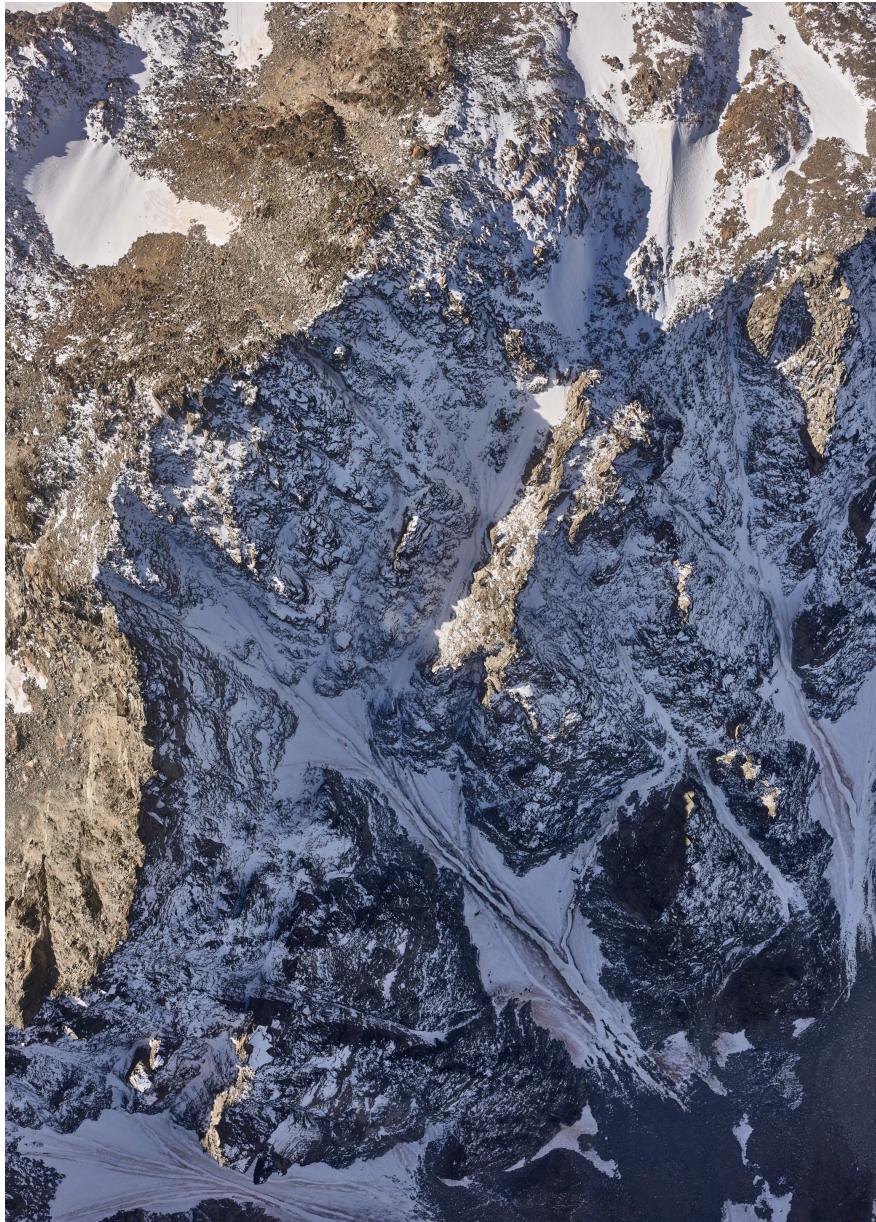
Large baseline

- **Smaller error in depth**
- Close objects are *not observable*
- *Challenging automated matching* for closer objects



Q: How to increase the accuracy (of object determination)?

Q: How to compute depth uncertainty (as a function of disparity)?



Stereo vision - principle

Triangulation (depth)

Stereo vision (pose and depth)

Stereo vision – general case

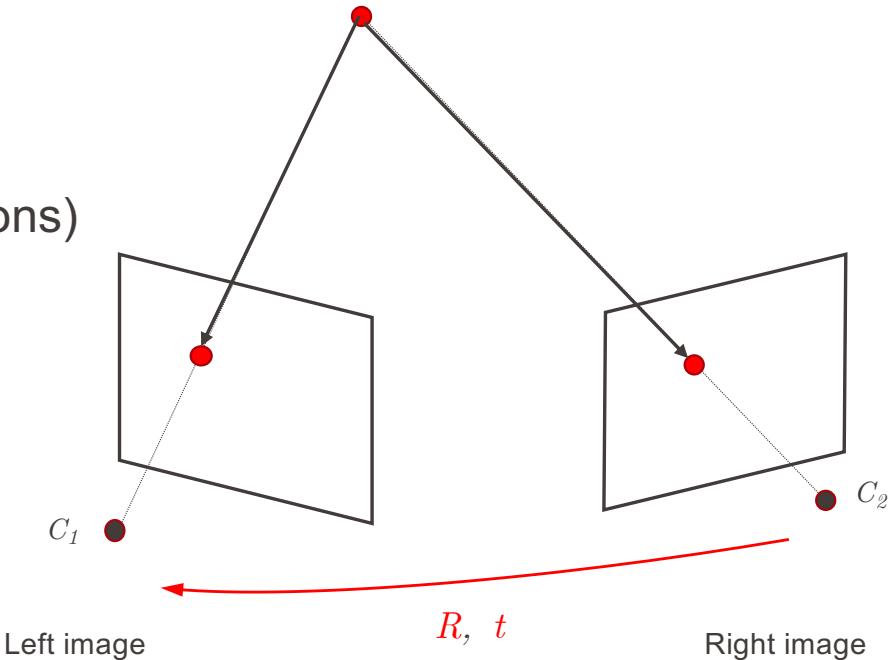
- I. Cameras are not identical (in a fixed system)
- II. Cameras are not aligned (at least horizontally)

Usage of stereo camera requires:

- Relative pose*
- Intrinsic param.** (c , x_0 , y_0 , lens distortions)

- Approach:
 - 1st : camera calibration
 - 2nd: How to get R , t ?

(later in Lecture 4 and [Lab 04](#))



* pose = position + attitude = exterior orientation (EO) or extrinsic parameters

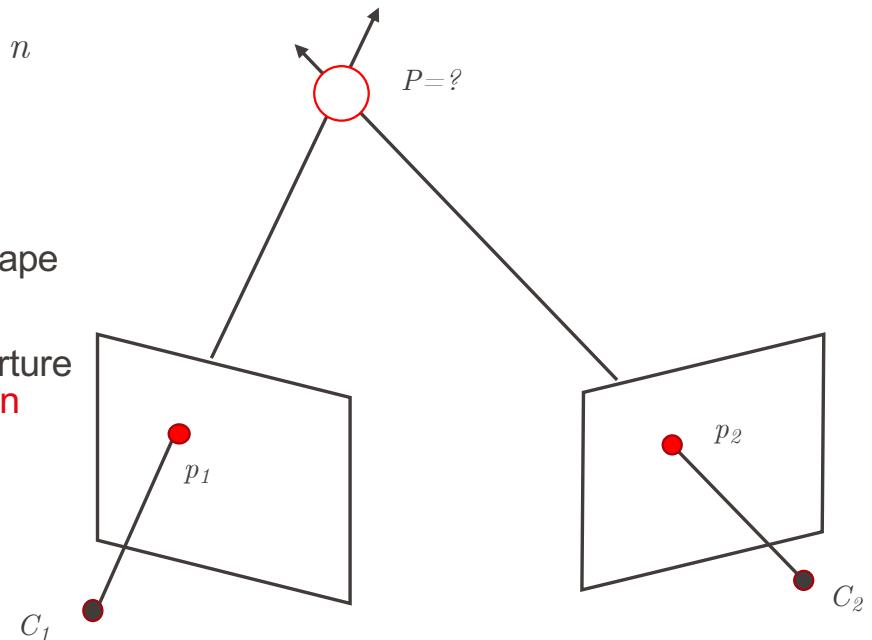
** intrinsic parameters = interior orientation (IO)

Prerequisites

- Pose (R, t) is known (at least relatively)
- Image correspondences exist for a set of points P_i , $i=1 \dots n$

Goal

- **Intersect correspondences** p_1 & p_2 spatially to recover 3D shape (coordinates of P)
- With noisy observations and imperfect modelling (e.g. departure from colinearity) the intersection is not perfect - **search first an approximation**.



Cross product of two vectors (a, b)

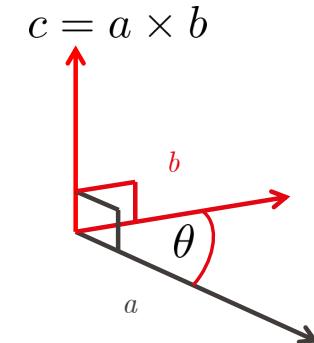
Gives a third vector (c) that is perpendicular to (both of) them:

$$c \cdot a = 0$$

$$c \cdot b = 0$$

The vector cross product can be expressed as a product of a *skew-symmetric matrix* $[]_\times$:

$$c = a \times b = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = [a_\times] b$$



For parallel vectors (a, b) their cross product = ?

Approach

- Create a system of equations for the left and right cameras
- Solve it

Left camera

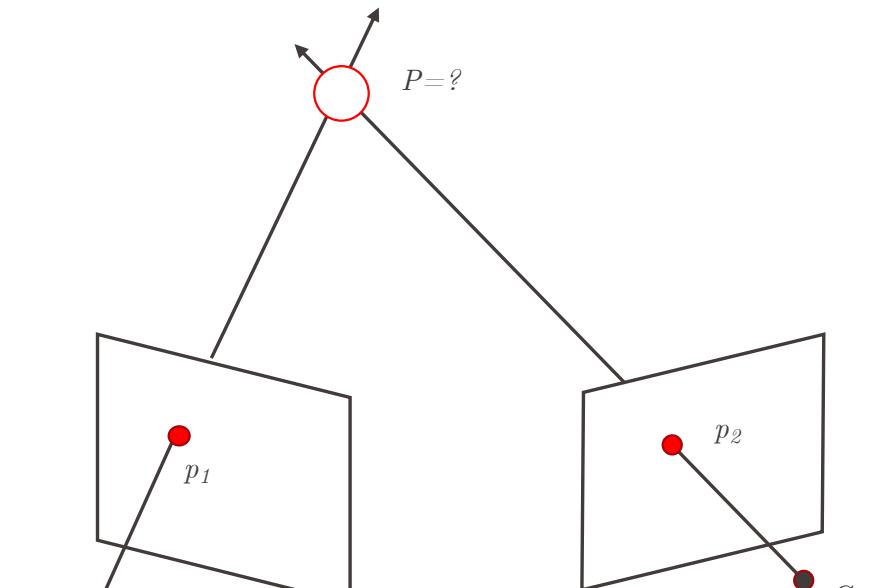
(Often) assumed to represent a mapping (world) frame

$$\mu_1 \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = K_1 [I \mid 0] \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Right camera

(Often) expressed relatively to left camera

$$\mu_2 \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix} = K_2 [R \mid t] \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$



Left camera frame considered as a mapping (world) frame

▪

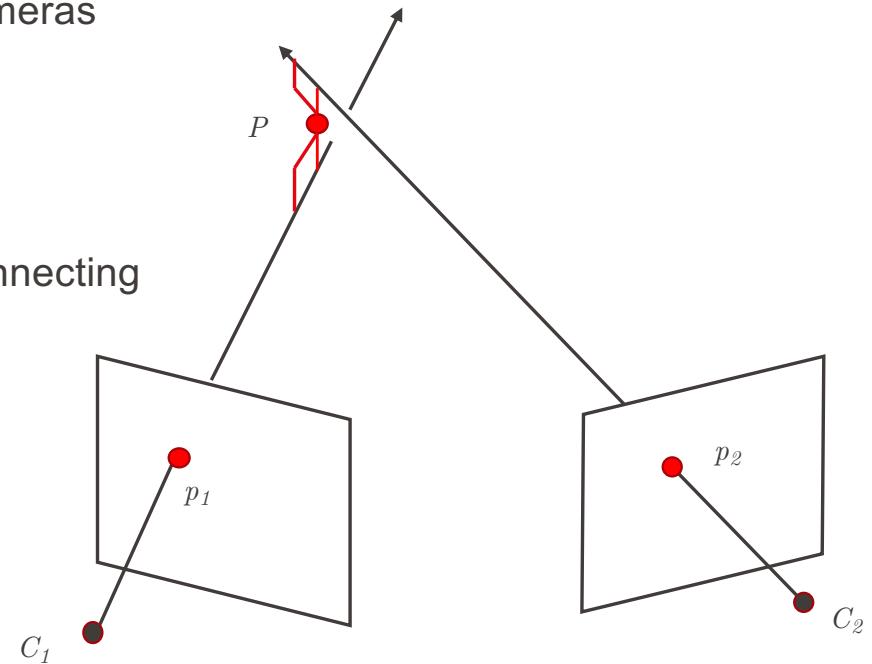
Q: How to modify the 2nd equations if the right image is taken by displacing the left camera?

Approach

- Create a system of equations for the left and right cameras
- Solve it (**system of homogeneous equations**)

Solution (SVD)

- P is found as a mid point of the shortest segment connecting both spatial lines.



Left camera frame considered as
mapping /world frame

Left camera

$$\mu_1 \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = \underbrace{K_1[I \mid 0]}_{\Pi'_1} \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \implies \mu_1 p_1 = \Pi'_1 \cdot P \implies p_1 \times \mu_1 p_1 = p_1 \times \Pi'_1 \cdot P \implies 0 = [p_1]_{\times} \cdot \Pi'_1 \cdot P$$

Right camera

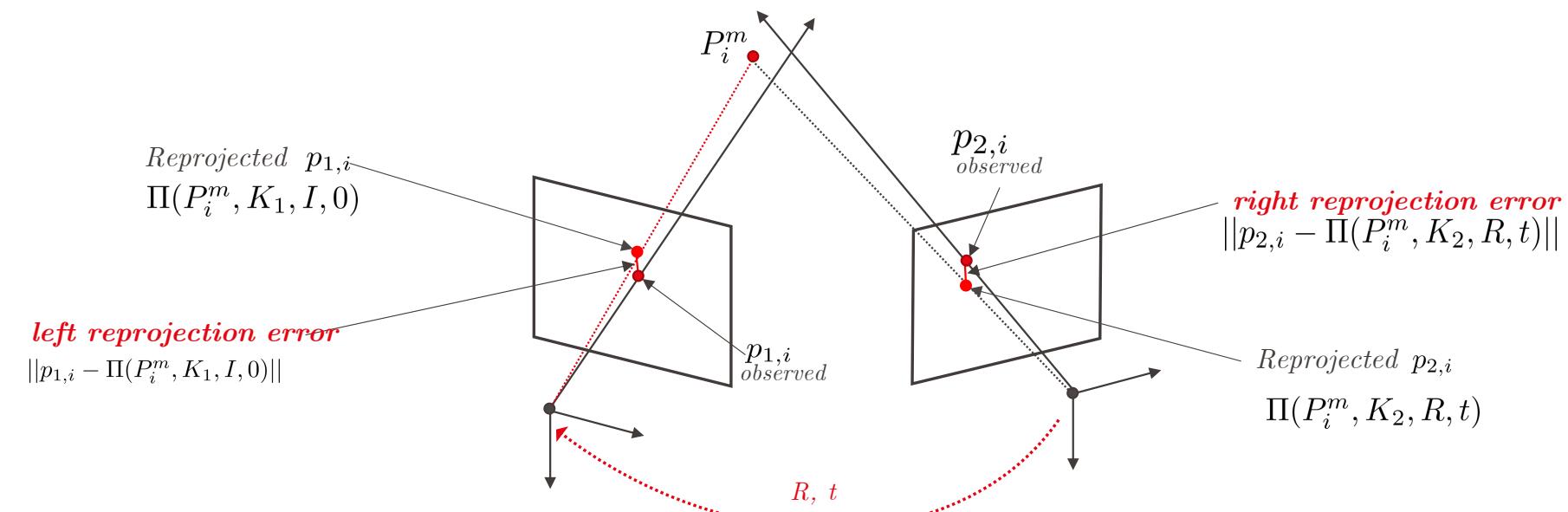
$$\mu_2 \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix} = \underbrace{K_2[R \mid t]}_{\Pi'_2} \cdot \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} \implies \mu_2 p_2 = \Pi'_2 \cdot P \implies p_2 \times \mu_2 p_2 = p_2 \times \Pi'_2 \cdot P \implies 0 = [p_2]_{\times} \cdot \Pi'_2 \cdot P$$

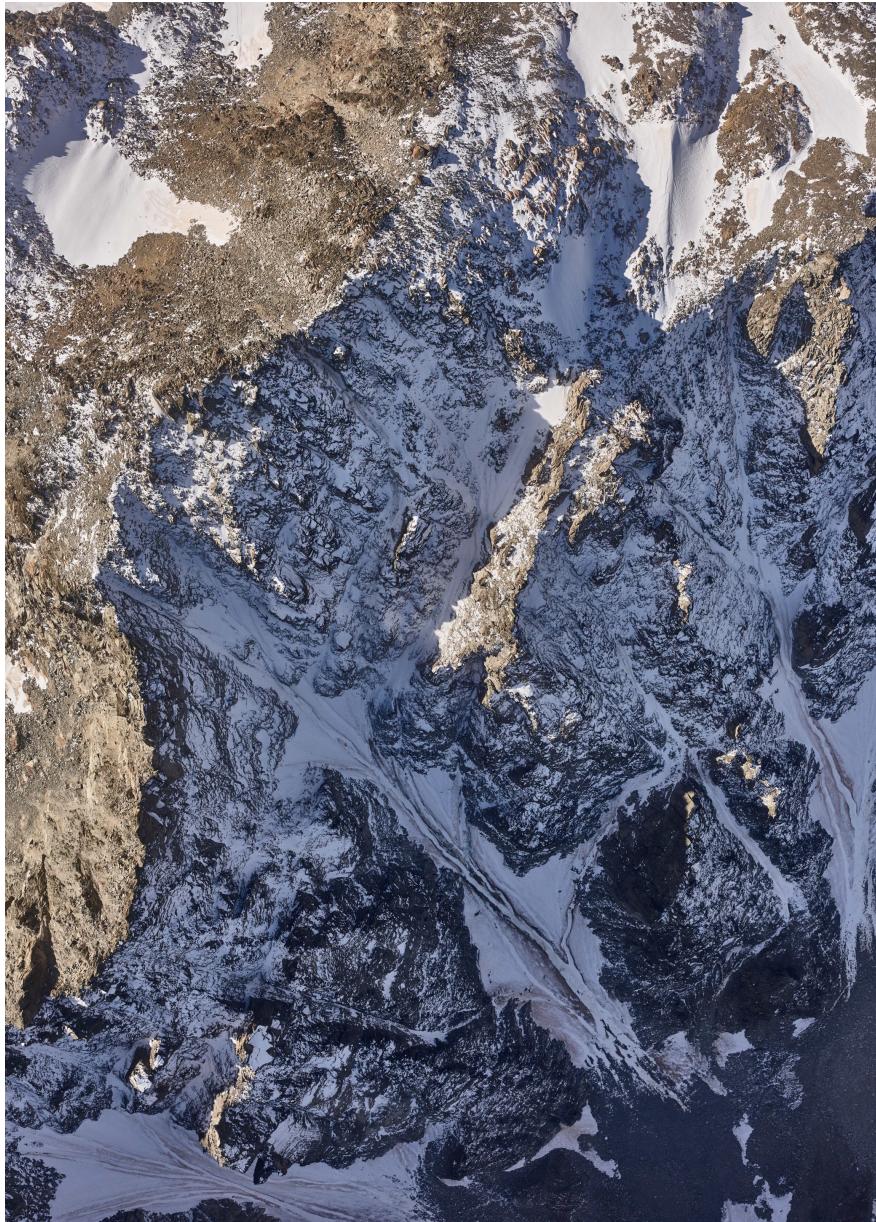
A system of homogenous equations
 P can be determined using SVD (similarly to DLT, Lab 03)
 [more details in Lab04 handout]

The coordinates of points are:

- first **initiated** by the linear (LS) approximation
- then **refined** via (iterative) non-linear **optimization**

$$\operatorname{argmin}_P \sum_{i=1}^n \|p_{1,i} - \Pi(P_i^m, K_1, I, 0, \cdot)\|^2 + \|p_{2,i} - \Pi(P_i^m, K_2, R, t, \cdot)\|^2$$





Stereo vision (pose & depth)

Epipolar Geometry

Essential and Fundamental Matrices

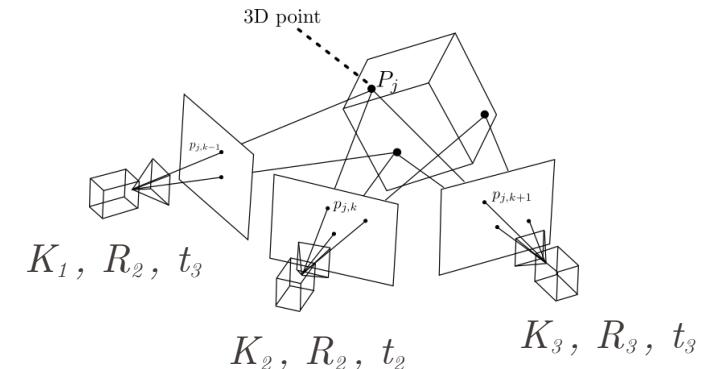
8 points algorithm

✓ A. Depth from stereo vision (3D reconstruction)

Goal: recover the 3D structure from images

Assumption: **known** K_i, R_i, t_i (i.e. camera calibrated & oriented)

- simpler, we start with it

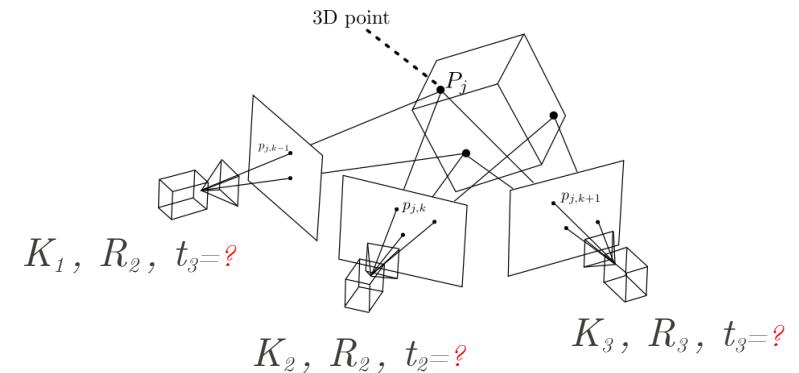


B. Structure from motion (SFM)

Goal: recover simultaneously scene structure (3D) and camera pose (up to scale)

Assumption: **unknown** K_i, R_i, t_i

- if we can triangulate!
- let's see what is common on 2 images (epipolar geometry)
- let's put it all together & solve it !



Correspondence problem

Prerequisites

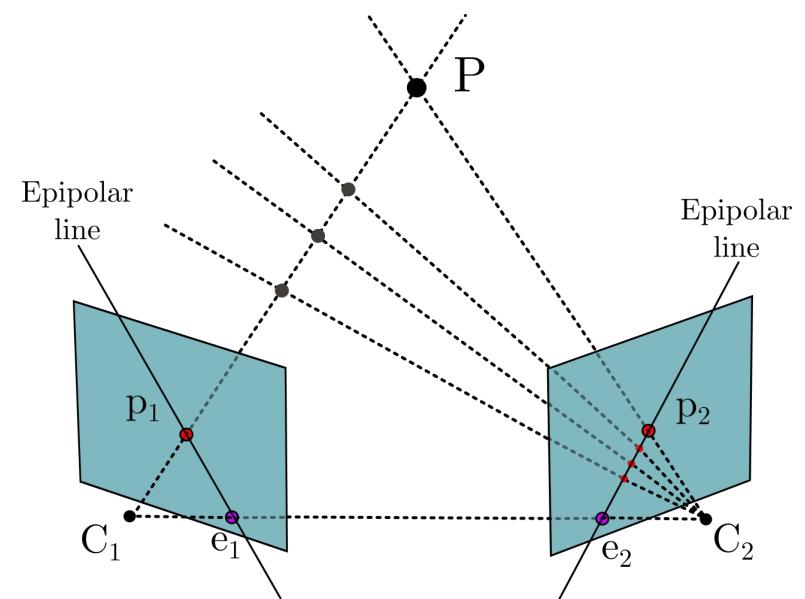
- Assume that pose (R and t) is known (at least relatively)
- **Image correspondences exist** for a set of points $P_i \ i=1 \dots n$

Questions

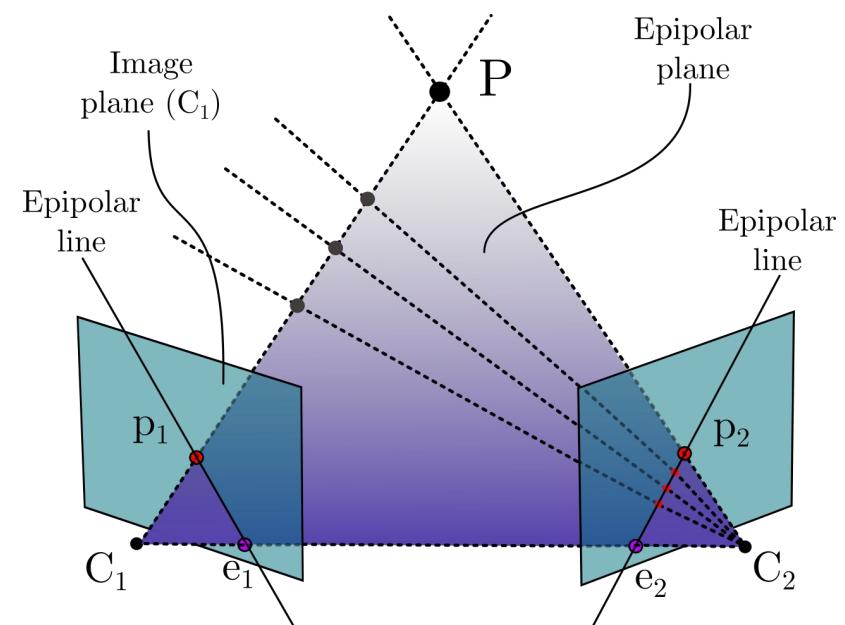
- Given a point on the left-image, p_L , where is its **correspondence**, p_R , on the right image?
- Note: 2D exhaustive search is very expensive (computationally)

Answer:

Potential matches have to lie on an epipolar line! (see after)



- **Epipolar plane:** 3D plane formed by C_1 , C_2 (cam. centers) & P
- **Epipoles e_1 , e_2 :** intersection of the line C_1 , C_2 with image planes
- **Epipolar line:** Intersection of epipolar plane with image plane
- **Epipolar constraint:** given P , corresponding points p_1 , p_2 must lie on their respective epipolar lines

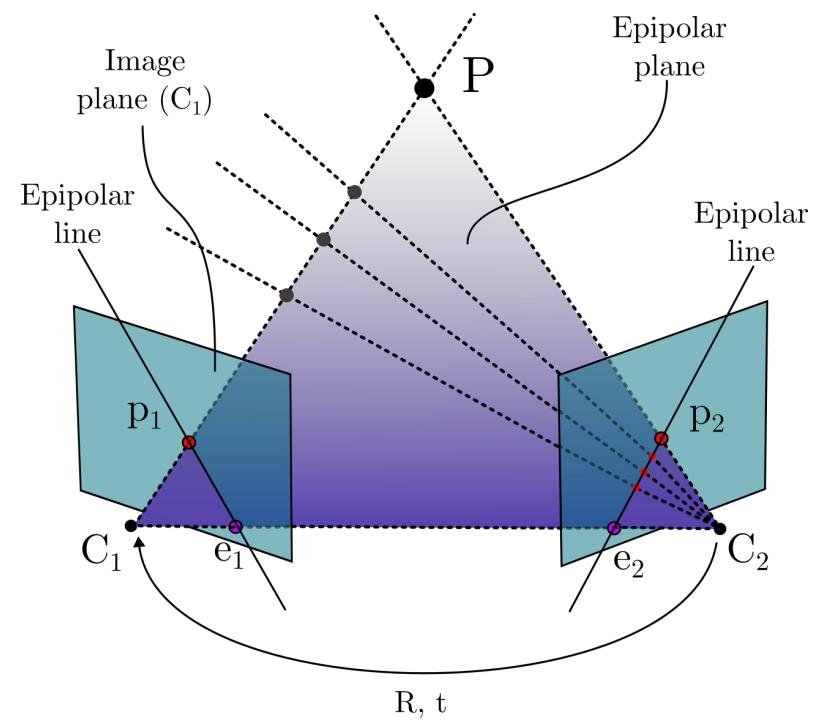


Formulation via epipolar lines

- R, t : rotation and translation relative from C_2 to C_1
- Point P in:
 - Camera 1 frame $\overrightarrow{C_1, P} = P_1 = \mu_1 p_1$
 - Camera 2 frame $\overrightarrow{C_2, P} = P_2 = \mu_2 p_2$

⇓

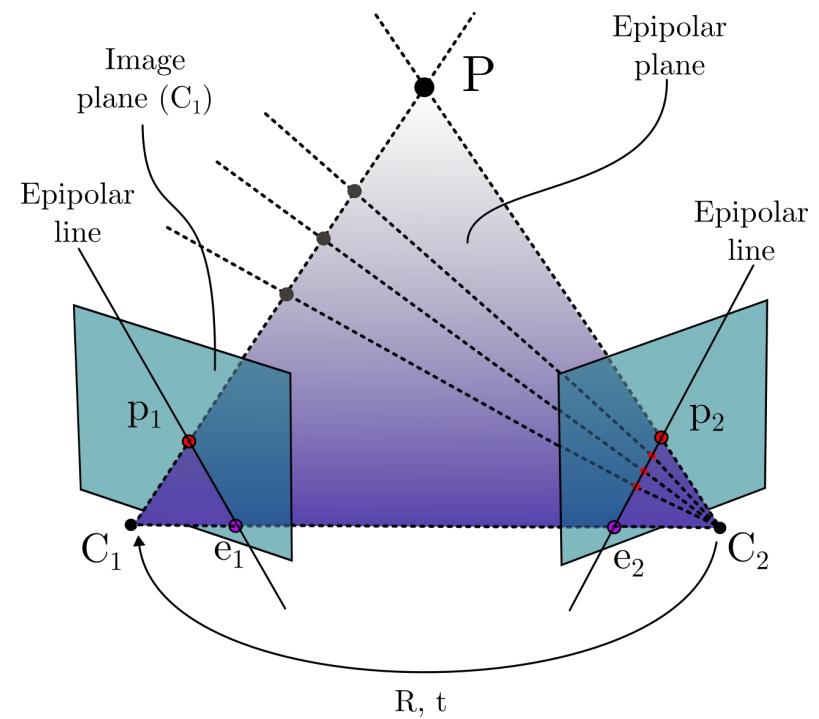
$$\mu_1 p_1 = R\mu_2 p_2 + t$$



Formulation via epipolar lines

- The 3 vectors $\overrightarrow{C_1, P_1}$, $\overrightarrow{C_2, P_2}$ and $\overrightarrow{C_1, C_2} = t$ must be coplanar
- This constraint is mathematically equivalent to null vector triple product $a \cdot (b \times c) = 0$
- This gives: $P_1 \cdot (t \times RP_2) = 0$

$\underbrace{\phantom{P_2 \text{ in camera 1 frame}}}_{P_2 \text{ in camera 1 frame}}$



EPFL Epipolar Constraint 3/3

28

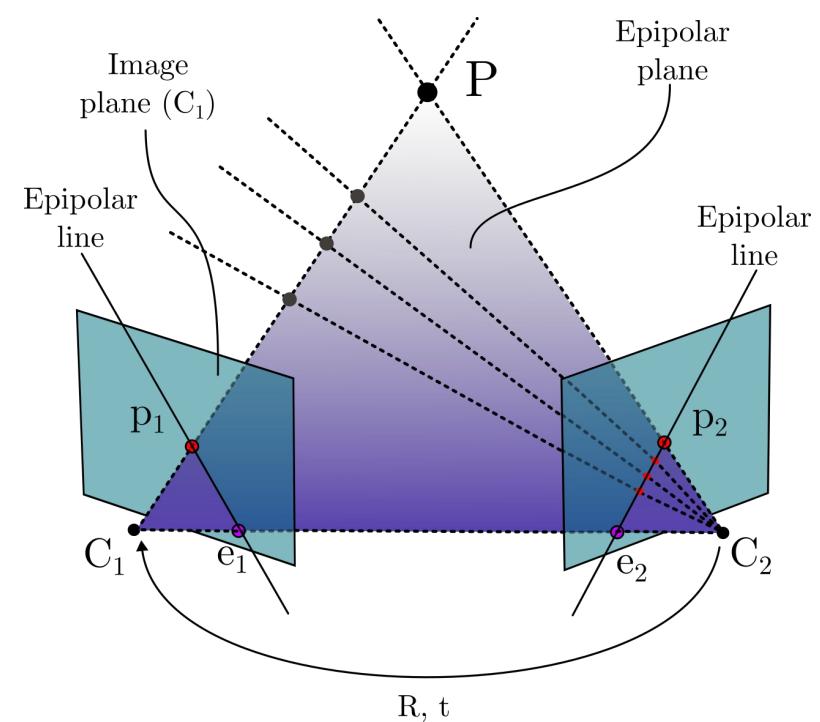
Reminder: vector cross product equivalent to skew-symmetric matrix multiplication $[t \times]$

$$\begin{aligned}
 P_1 \cdot (t \times RP_2) &= 0 \\
 &\Updownarrow \\
 P_1^T [t \times] RP_2 &= 0 \\
 &\Updownarrow \\
 \text{Only vector direction counts} &\quad \leftarrow \\
 &\Updownarrow \\
 p_1^T [t \times] R p_2 &= 0
 \end{aligned}$$

Defining **Essential matrix E :**

$$E \equiv [t \times] R$$

$$p_2^T E p_1 = 0$$





Stereo vision (pose & depth)

Epipolar Geometry

Essential and Fundamental Matrices

8 points algorithm

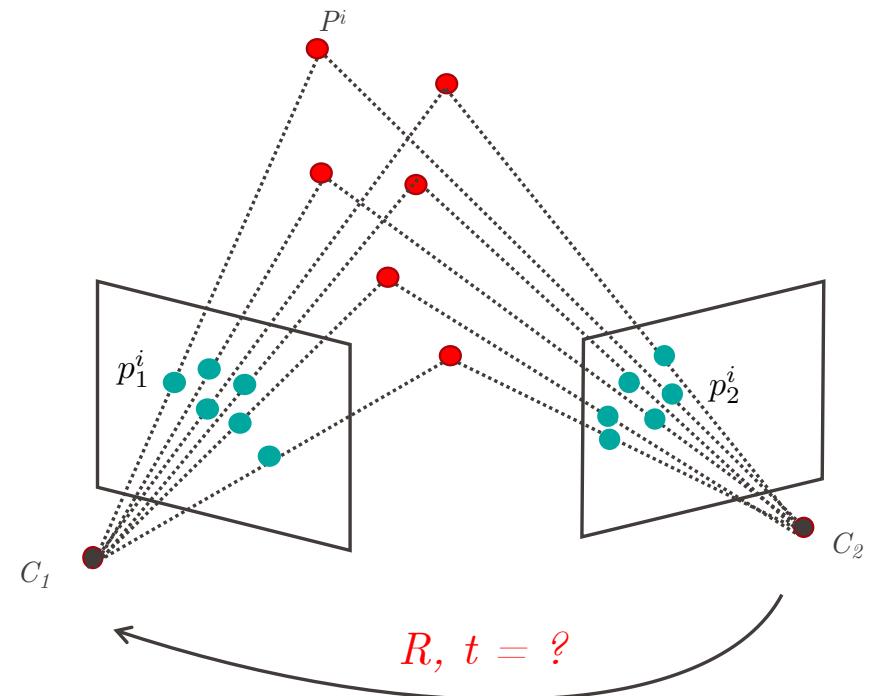
Relative orientation (SFM)

Given a set of $i = (1, \dots, n)$ point correspondences $p_1^i = (u_1^i, v_1^i)^T$, $p_2^i = (u_2^i, v_2^i)^T$ for 2 images, estimate simultaneously:

- The 3D points P^i
- The camera relative-orientation/pose (R, t)
- Camera intrinsic K_1, K_2 , satisfying:

$$\mu_1^i \begin{pmatrix} u_1^i \\ v_1^i \\ 1 \end{pmatrix} = K_1[I \mid 0] \cdot \begin{pmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{pmatrix}$$

$$\mu_2^i \begin{pmatrix} u_2^i \\ v_2^i \\ 1 \end{pmatrix} = K_2[R \mid t] \cdot \begin{pmatrix} X^i \\ Y^i \\ Z^i \\ 1 \end{pmatrix}$$



- Normalized undistorted coordinates

$$\begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = K_1^{-1} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} \quad \begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix} = K_2^{-1} \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix} \quad K = \begin{pmatrix} c & 0 & x_{PPS} + c_x \\ 0 & c & y_{PPS} + c_y \\ 0 & 0 & 1 \end{pmatrix}$$

$x_2^T E x_1 = 0$ (notation of complementary reading / book chapter)

$p_2^T E p_1 = 0$ (notation slides + labs, same thing)

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix}^T E \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = 0$$

Essential matrix $E = [t_\times]R$

Epipolar geometry – uncalibrated camera

Without the knowledge of \mathbf{K} : p_i can only be defined by u, v since x, y are unknown

$$\begin{pmatrix} x_2 \\ y_2 \\ 1 \end{pmatrix}^T E \begin{pmatrix} x_1 \\ y_1 \\ 1 \end{pmatrix} = 0$$

↓

$$\begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}^T \boxed{K_2^{-T} E K_1^{-1}} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = 0$$

Fundamental matrix $F = (K_2^T)^{-1} E K_1^{-1} \Rightarrow \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix}^T \boxed{F} \begin{pmatrix} u_1 \\ v_1 \\ 1 \end{pmatrix} = 0$

▪

Epipolar geometry – system of equations

Each pair of point correspondences $p_1 = (u_1, v_1, 1)^T$, $p_2 = (u_2, v_2, 1)^T$ provides a linear equation:

$$p_2^T E p_1 = 0 \quad E = \begin{pmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \\ e_{31} & e_{32} & e_{33} \end{pmatrix}$$

↓

$$u_2 u_1 e_{11} + u_2 v_1 e_{12} + u_2 e_{13} + v_2 u_1 e_{21} + v_2 v_1 e_{22} + v_2 e_{23} + u_1 e_{31} + v_1 e_{32} + e_{33} = 0$$

Given enough correspondences, E (or F) can be obtained.

We will investigate the following questions :

1. What is the **minimum number of correspondences** ?
2. Can R, t be recovered from E ?
3. (In more general case, can R, t, K_1, K_2 be recovered from F ?)

Epipolar geometry – inverse problem for E

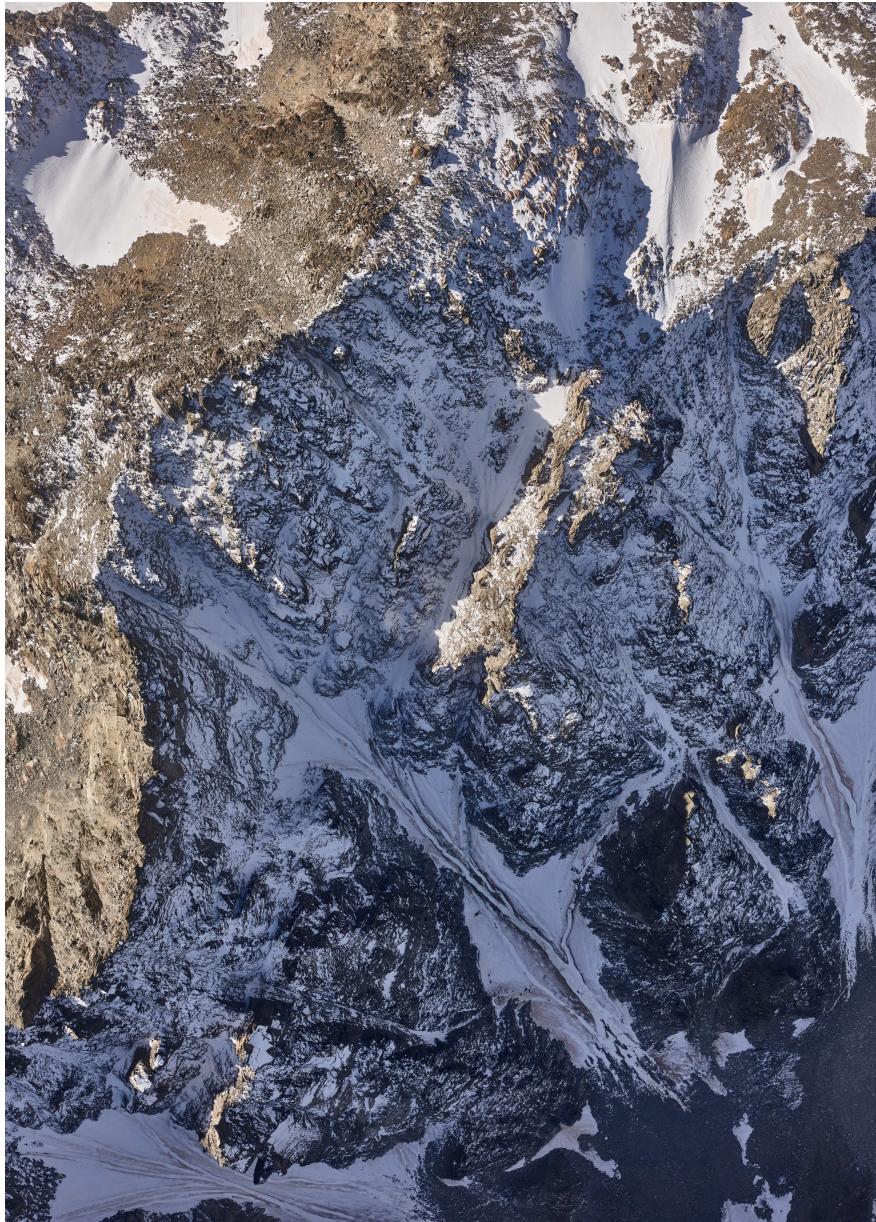
- How many knowns per n ?

- per correspondence:
 - per n :

- How many unknowns per n ?

- correspondences:
 - general:
 - together:

- When a solution exist?



Stereo vision (pose & depth)

Epipolar Geometry

Essential and Fundamental Matrices

8 points algorithm

EPFL Historical development

Kruppa – Determined the min. no. of correspondences (five), 11 solutions

Demazure – Showed that there is at most 10 distinct solutions

Nister – 1st efficient and non iterative solution (basis decomposition)**

1981

1913

1996

2004

Longuet-Higgins – Easy implementation, **8-point** algorithm (NASA-rover)*

Philipp – Described and iterative algorithm to find the solutions

* H. Christopher Longuet-Higgins, A computer algorithm for reconstructing a scene from two projections, *Nature*, 1981

**D. Nister, An Efficient Solution to the Five-Point Relative Pose Problem, *PAMI*, 2004.

The 8-point algorithm – formation of constraints

- For 1 point, we have from $p_2^T E p_1 = 0$

$$u_2 u_1 e_{11} + u_2 v_1 e_{12} + u_2 e_{13} + v_2 u_1 e_{21} + v_2 v_1 e_{22} + v_2 e_{23} + u_1 e_{31} + v_1 e_{32} + e_{33} = 0$$

- For n points (when omitting bars)

$$\underbrace{\begin{pmatrix} u_2^1 u_1^1 & u_2^1 v_1^1 & u_2^1 & v_2^1 u_1^1 & v_2^1 v_1^1 & v_2^1 & u_1^1 & v_1^1 & 1 \\ u_2^2 u_1^2 & u_2^2 v_1^2 & u_2^2 & v_2^2 u_1^2 & v_2^2 v_1^2 & v_2^2 & u_1^2 & v_1^2 & 1 \\ \vdots & \vdots \\ u_2^n u_1^n & u_2^n v_1^n & u_2^n & v_2^n u_1^n & v_2^n v_1^n & v_2^n & u_1^n & v_1^n & 1 \end{pmatrix}}_{Q \text{ (known)}} \begin{pmatrix} e_{11} \\ e_{12} \\ e_{13} \\ e_{21} \\ e_{22} \\ e_{23} \\ e_{31} \\ e_{32} \\ e_{33} \end{pmatrix} = 0 \quad \Rightarrow \quad Q \cdot \text{vec}(E) = 0$$

vec(E) - unknown

The 8-point algorithm – finding E

Minimum solution $Q \cdot \text{vec}(E) = 0$

- $Q_{(n \times 9)}$ - a unique (up to a scale) solution is possible if matrix **rank = ?**
- Each correspondence gives 1 independent equation.
- Hence, ... correspondences (non-planar) are needed.

Over-determined solution ($n > ?$)

- By minimizing $\|Q \cdot \text{vec}(E)\|^2 = (\text{vec}(E))^T \cdot Q^T Q \cdot \text{vec}(E)$
- Subject to constraint $\|\text{vec}(E)\|^2 = 1$
- Solution $\text{vec}(E)$ is an **eigenvector corresponding to the smallest eigen value of Q**
- Via SVD of $Q^T Q$ matrix that is in this case equivalent to SVD of Q^* (+ see the lecture 3 and Lab03)
- Implementation hints: see *slides in appendix and Lab04 handout*

* K. Inkilä, 2005, *Homogeneous least square problem*, *Photogrammetric Journal of Finland*.

I. Enforcing E to be in the “E-space”

- Singular value decomposition $E = U\Sigma V^T$
- “In case of no-errors”, perfect correspondences: $\Sigma = \text{diag}(\sigma, \sigma, 0)$
- Due to errors: $\tilde{E} = U \text{diag}(\sigma_1, \sigma_2, \sigma_3) V^T, \sigma_1 \geq \sigma_2 \geq \sigma_3$
- Choosing $\hat{E} = U \text{diag}(\sigma, \sigma, 0) V^T, \sigma = (\sigma_1 + \sigma_2)/2$
- ... satisfies E-space, but there could be another E leading to a smaller $\|Q \cdot \text{vec}(E)\|^2$
- **Python** ... see appendix and Lab04 handout for hints

Extracting R, t from E

II. Finding t

- $RR^T=1$, thus: $EE = [t_{\times}]RR^T[t_{\times}]^T = [t_{\times}][t_{\times}]^T = [t_{\times}][-t_{\times}] = -[t_{\times}]^2$
- Reminder: $[t_{\times}] = \begin{pmatrix} 0 & -t_z & t_y \\ t_z & 0 & -t_x \\ -t_y & t_x & 0 \end{pmatrix}$ and $\|t\|_2 = 1$ (scale is not recovered from E)
- Thus $-[t_{\times}]^2 = \begin{pmatrix} -t_z^2 - t_y^2 & t_x t_y & t_x t_z \\ t_x t_y & -t_z^2 - t_x^2 & t_z t_z \\ t_x t_z & t_y t_z & -t_y^2 - t_x^2 \end{pmatrix}$
- Since $\|t\|_2 = 1$, we obtain a matrix, from which diagonal we can obtain the absolute entries of t

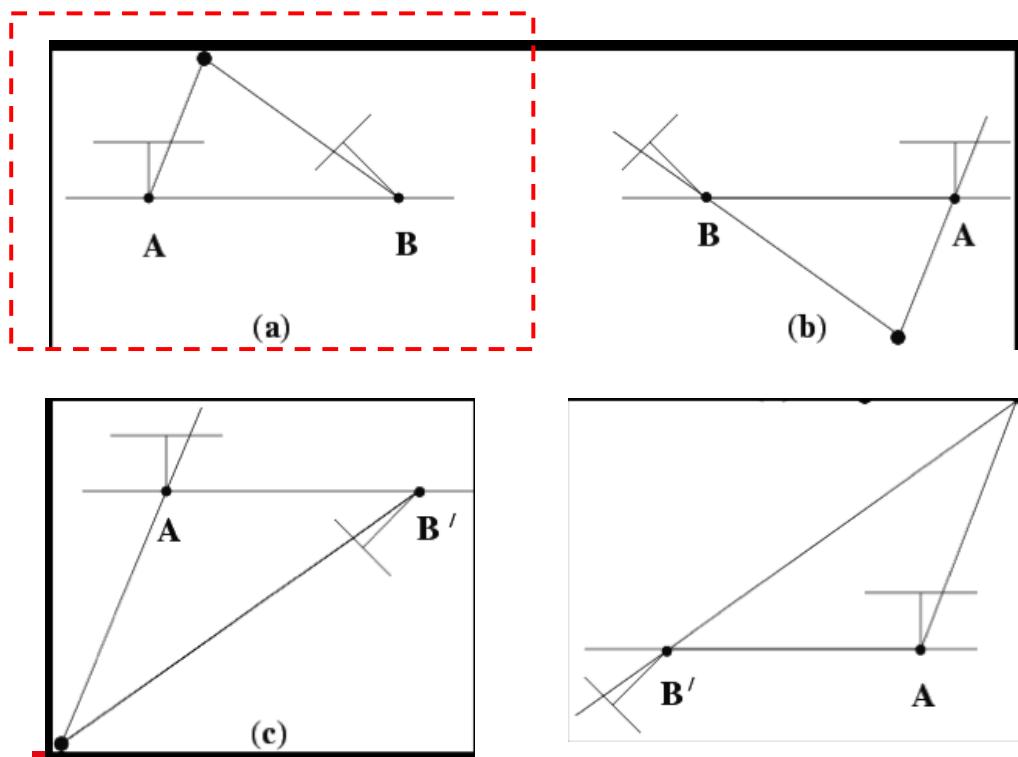
$$-[t_{\times}]^2 = \begin{pmatrix} 1 - t_x^2 & t_x t_y & t_x t_z \\ t_x t_y & 1 - t_y^2 & t_z t_z \\ t_x t_z & t_y t_z & 1 - t_z^2 \end{pmatrix}$$

4 possible solutions for R, t

Proof in Appendix

- However, the only plausible solution is the one when **P** lies in front-view of both cameras

- The are **4 possibilities** to test"



$$\hat{R} = U \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} V^T$$

$$[\hat{t}_x] = U \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Sigma U^T$$

$$[\hat{t}_x] = \begin{pmatrix} 0 & -\hat{t}_z & \hat{t}_y \\ \hat{t}_z & 0 & -\hat{t}_x \\ -\hat{t}_y & \hat{t}_x & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \hat{t}_x \\ \hat{t}_y \\ \hat{t}_z \end{pmatrix}$$

Remaining problem:

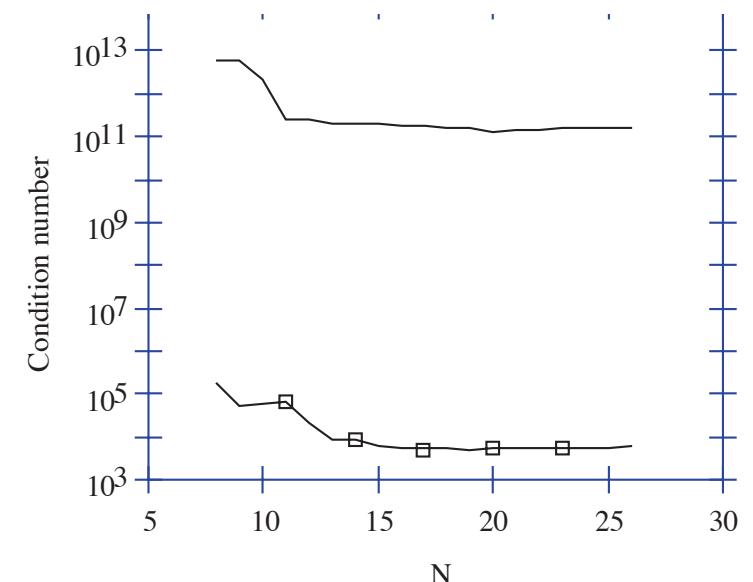
- Can R , t , K_1 , K_2 be recovered from F ?

“Noise” in data

- E matrix near singular – points lying on the same 2D plane, small parallax (disparity)

Solution

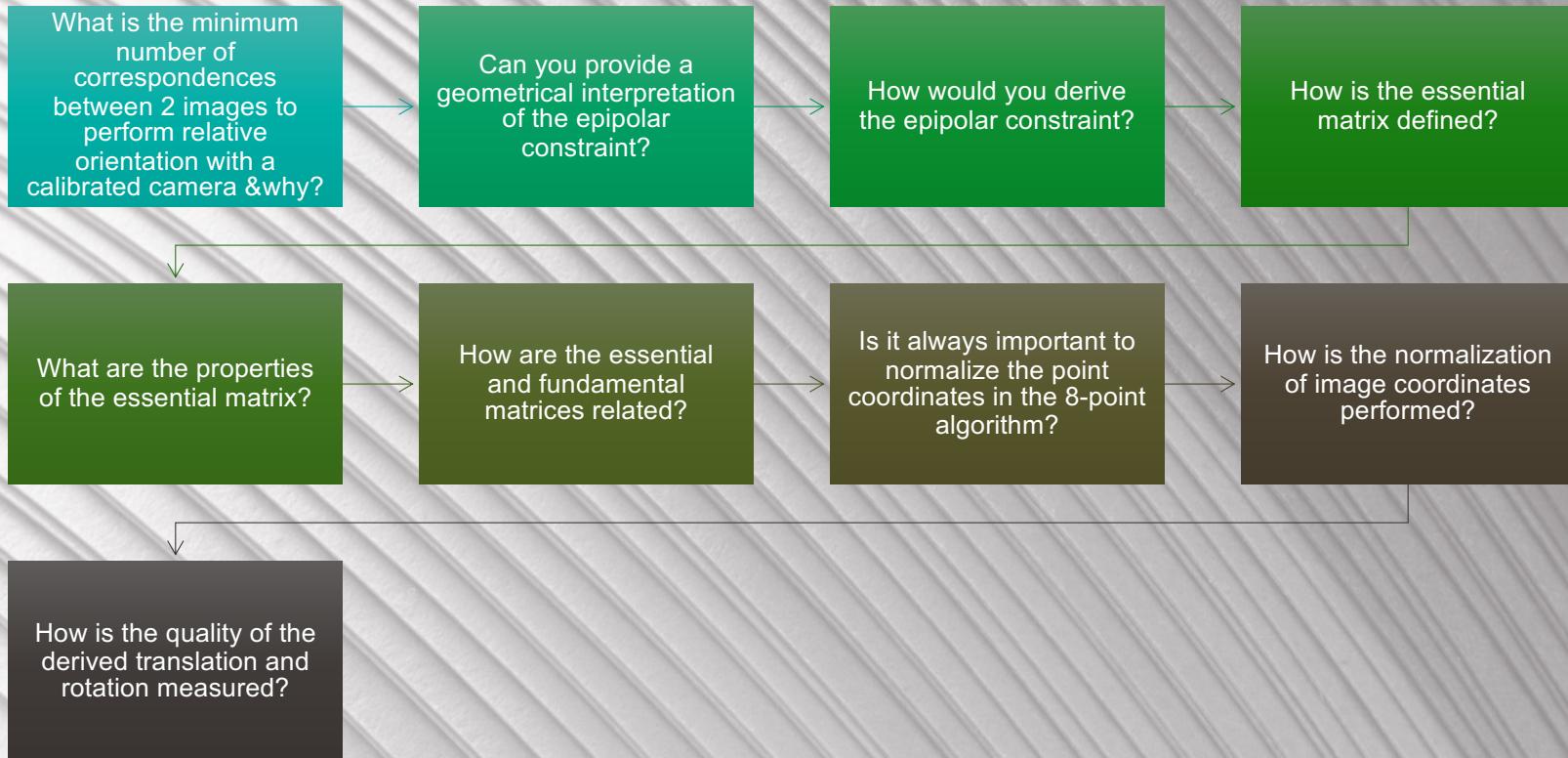
- Translate all image points coordinates to a centroid
- Scale them so that the average distance from center is $\sqrt{2}$, i.e. $p_i = (1, 1, 1)$
- Improves condition number – solution stability!



Hartley, R.I., 2012: **In defense of the 8-point algorithm.** *IEEE Trans. Pattern Analysis*, 19(6), 580-593

- What is the difference between structure from motion (SFM) and 3D reconstruction?
- How do you define disparity in a *simple* case?
- How do you define disparity in a *general* case?
- How to express / derive the mathematical relation between the depth, disparity, baseline and camera constant?
- How to apply error propagation to express uncertainty of depth?
- How to analyze the effect of short or large base-line?
- What is the closest depth observable by a stereo camera?
- How to compute mathematically the intersection of two lines (linear approx.)?

Understanding - self assessment 2/2



Short-base stereo cameras

- Ideal triangulation < 10 m
- Global shutter, onboard processing
- Integrated IMU, other sensors
- (visual odometry, SLAM, ROS ready)

<https://www.intelrealsense.com>

<https://www.stereolabs.com>

Mobile mapping stereo cameras

- Ideal triangulation < 50 m or laser-color
- Global shutter
- Integrated IMU, GNSS, other sensors
- Services, e.g. <https://www.inovitas.ch>
- Products, e.g. <https://www.igi-systems.com/streetmapper.html>

Triangulation – expressed in Python

Per point $p1(3,i)$, $p2(3,i)$ correspondences and projections $Pi1(3,4)$, $Pi2(3,4)$

#1) Build matrix of linear homogeneous system of equations

```
A1 = skewSymMtrx(p1[:, i]) @ Pi1
A2 = skewSymMtrx(p2[:, i]) @ Pi2
A = np.r_[A1, A2]
```

#2) Solve the homogeneous system of equations

```
_, _, v = np.linalg.svd(A, full_matrices=False)
P[:, i] = v.T[:, -1]
```

#3) De-homogenize (P is expressed in homogeneous coordinates)

```
P /= P[3, :]
```

EPFL The 8-point algorithm – SVD of Q in Python

50

```
Q = np.zeros( (num_points, 9) )
for i in range(num_points):
    Q[i,:] = np.kron( p2[:,i], p1[:,i] ).T

_, _, Vt= np.linalg.svd(Q, full_matrices = False)
E = np.reshape(Vt[-1,:], (3,3)).T
```

■

- # Enforce $\det(E)=0$ by projecting E on a set of 3×3 orthogonal matrices
- $U, S, Vt = np.linalg.svd(E)$
- $S[0] = s[1] = (s[0]+s[1])/2$
- $S[2] = 0$
- $Ehat = U @ np.diag(S) @ Vt$

4 possible solutions for R, t - the proof

- Recall that $\Sigma = \text{diag}(1, 1, 0)$ in $E = U\Sigma V^T$
- Defining

$$R_z(\pi/2) = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- The relative rotation is

$$R = UR_z^T V^T$$

- The relative translation (unitary scale) is

$$[t_x] = UR_z^T \Sigma U^T$$

- As the same is valid for $R_z(-\pi/2)$ there are 4 possible solutions: 2 permutations of

$$R_z(\pm\pi/2) = \begin{pmatrix} 0 & \mp 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Proof

$$\begin{aligned} E &= [t_x] R = UR_z \Sigma U^T UR_z^T V^T \\ &= UR_z \Sigma R_z^T V^T = U\Sigma V^T \end{aligned}$$

- as $R_z \Sigma$ is a skew-symmetric

- and $R_z \Sigma = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- R is orthogonal (product of 3 orthogonal matrices) if $[t_x]^T = -[t_x]$ then

$$E = -E$$

$$\det(R) = -1$$