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Keypoint detection

and matching

EPFL, spring semester
2025https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html. Photo and doll created by Olha Mishkina

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html


Why image matching?

When we acquire series of images 
(e.g. with a drone) and want to 

§ Create a mosaic

§ Reconstruct a 3D surface

§ Make 3D point measurements

§ Identify and track moving objects

§ Align different bands/ sensors acquired 

at different times
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Meng et al., JAG, 2021

Paperswithcode.com



How does image 
matching work?

§ AIM: Identify and uniquely match identical object features in two or 
more images of the object

§ Here

• Green points are 
    correct matches

• Red points are 
    misses
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Sarlin et al., CVPR, 2019



How? (in non-technical terms)
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https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/01/09/wxbs-in-simple-terms.html

Let’s say you have found the picture on the left and 

would like to take the same image in summer.

How would you do it?

What if you cannot take 
the image with you?



How? (in non-technical terms)
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https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/01/09/wxbs-in-simple-terms.html

1. Identify salient objects and features in the images  

("trees", "statues", “tip of the tower”, etc).

2. Describe the objects and features, taking into 

account their neighbourhood: “statue with a blue 
left ear".

3. Match: establish potential correspondences 
between features in the different images, based 

on their descriptors.
4. Estimate in which direction one should move the 

camera to align the objects and features.



Given two images to 
be matched
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https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73



Detect some keypoints
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https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73



And find a way to 
match them!
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https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73



The recipe is simple
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1. Compute interest points/regions in all images independently
2. For each interest point/region compute a descriptor of their neigborhood

(local patch).

3. Establish tentative correspondences between interest points based on 
their descriptors.

4. Robustly estimate geometric relation between two images based on 

tentative correspondences with RANSAC.

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/02/11/WxBS-step-by-step.html



Why so difficult?

Matching is inherently ill posed, a unique 
and univoque solution might not exist, due 
to: 

§ Occlusions
§ Several candidates for a match
§ Noise in the image
§ Changes in acquisition conditions (day/night, 

intensity)
§ Changes in the object in between acquisition
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Redzic et al., DEXA 2010



1.
Detect keypoints: 
interest points / regions 
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https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73



Interest operators 
extracting keypoints

§ Algorithms that extract distinctive image points (keypoints)
§ These points are potential suitable candidates for matching

§ Good characteristics:
• Individuality = locally unique, distinct from background
• Invariant to geometric and radiometric distortions
• Robust to noise
• Rare = globally unique

§ These keypoints are extracted on each image separately
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Interest operators 
extracting keypoints
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§ We want keypoints that are unique and invariant

§ Unique: they happen rarely in the image
§ Invariant: if you shift or rotate the image, they are 

still the same

§ Blue patch: you move it around, it looks the same
§ Black patch: on an edge, if you move it horizontally it 

looks the same
§ Red patch: corner, anywhere you move it, it looks 

different à Good keypoint!

https://docs.opencv.org/4.x/df/d54/tutorial_py_features_meaning.html



Simple interest 
operators
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§ How to find them?
§ We use criteria within an interest window to see how 

“interesting” the center pixel is

§ A first try could be the local variance (in a M x M window)

Not good, 
§ No geometric meaning
§ All edges would seem interesting



Self-similarity and local 
values comparison criteria

SS
M

EO
 c

ou
rs

e,
 2

6 
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO
  

15

§ We could look at patch similarity across the image, i.e. 
the cross-correlation function

[What is the cross-correlation function?]

take each patch and slide it over the image. Every time, you 
calculate the similarity with the area it is superimposed to:
• if the patch is unique, you will have only one maximum (patch 

with itself, max similarity), 
• if it repeats across image, there will be multiple areas with high 

similarity, so not interesting.

= 0.1



Self-similarity and local 
values comparison criteria
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§ We could look at patch similarity across the image, i.e. 
the cross-correlation function

[What is the cross-correlation function?]

take each patch and slide it over the image. Every time, you 
calculate the similarity with the area it is superimposed to:
• if the patch is unique, you will have only one maximum (patch 

with itself, max similarity), 
• if it repeats across image, there will be multiple areas with high 

similarity, so not interesting.

= 0.7



The Harris detector (1)
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§ Now let’s take this idea of comparing 
patches, but locally.

§ Moving a patch around could give us a 
good impression of whether we are in a 
corner region

Strongly inspired by: https://www.cs.cornell.edu/courses/cs4670/2016sp/lectures/lec10_features2_web.pdf



The Harris detector (2)
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§ Now let’s take this idea of comparing 
patches, but locally.

§ Moving a patch around could give us a 
good impression of whether we are in a 
corner region

§ We can calculate the sum of squared 
differences for a location (x,y) after shifting 
by w = (u,v): 



The math behind (for your curiosity)

§ We want to assess E(u,v) for small motions
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This is a Sobel
filter, for example

Corners and edges are 
1st order gradients



The math behind (for your curiosity)

§ Coming back to the original equation:
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The math behind (for your curiosity)
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The Harris detector (3)
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§ Using Taylor expansion, this is equivalent to

Often a Gaussian weight 
= distance from central pixel

v
u

E

For a single pixel, 2 x 2 matrix



The Harris detector (4)
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§ E(u,v) = const   is locally quadratic
§ It can be approximated by an ellipse, 

a.k.a each color ring in
§ An ellipse can be decomposed into its 

• eigenvectors (x) : orientation vectors
• eigenvalues (l) : length of the axis



The Harris detector (4)
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§ E(u,v) = const   is locally quadratic
§ It can be approximated by an ellypse, 

a.k.a each color ring in
§ An ellipse can be decomposed into its 

eigenvectors (x) and eigenvalues (l)
§ Since [u,v] are basis vectors of the 

space (=the xy axis), M is the ellipse.

§ The axes of the ellipse are thus the 
eigenvectors of M and the scale of the 
axes the eigenvalues



The Harris detector (4)
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§ Using the two eigenvalues, 
we can characterise the 
“edge-iness”



The Harris detector (5)
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Final touch,

In 1988, Harris and Stephens merged all this into a single index, called the Harris detector

It uses the ingredients above to create a unified, simple to compute index

Given

The Harris detector is:

<latexit sha1_base64="lzK65b3QGfcq7NLcYKPSe9Qj6X4="></latexit>

R = detM � ↵trace(M)2 = �1�2 � ↵(�1 + �2)
2



The Harris detector (5)
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<latexit sha1_base64="lzK65b3QGfcq7NLcYKPSe9Qj6X4="></latexit>

R = detM � ↵trace(M)2 = �1�2 � ↵(�1 + �2)
2



You can compute the 
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) 
that you can decompose in two eigenvalues

§ But the Harris detector does not need the 
eigenvalues, only the determinant and trace!

•  

•  

§ In that case, M is (2*height_image, 
2*width_image)

§ So you can compute the Harris detector for 
the whole image in one go by summing and 
substracting the whole block matrices!
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You can compute the 
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) 
that you can decompose in two eigenvalues

§ If you consider the whole image, M is  of size          
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images, 
multiplied by blur kernels g()

 

age in one go by summing and 
substracting the whole block 
matrices!
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You can compute the 
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) 
that you can decompose in two eigenvalues

§ If you consider the whole image, M is  of size          
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images, 
multiplied by blur kernels g()

 

age in one go by summing and 
substracting the whole block 
matrices!
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You can compute the 
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) 
that you can decompose in two eigenvalues

§ If you consider the whole image, M is  of size          
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images, 
multiplied by blur kernels g()

 

age in one go by summing and 
substracting the whole block 
matrices!
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You can compute the 
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) 
that you can decompose in two eigenvalues

§ If you consider the whole image, M is  of size          
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images, 
multiplied by blur kernels g()

 

age in one go by summing and 
substracting the whole block 
matrices!
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You can compute the 
Harris detector fast!
§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) that 
you can decompose in two eigenvalues

§ If you consider the whole image, M is 
(2*height_image, 2*width_image)

§ This matrix is made of the gradient images, 
multiplied by blur kernels g() 

§ The Harris detector can be implemented without 
the need for eigen decomposition, only the 
determinant and trace of M!

 
 

§ So you can compute the Harris detector for the 
whole image in one go by summing/substracting 
the gradient imagesand substracting the whole
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<latexit sha1_base64="mNHubrOnhSvKRDpAZ1Q5CfKb+ns="></latexit>

det


A B
C D

�
= AD �BC

<latexit sha1_base64="nRSlvFKkESHZFIxY5siac28KigA=">AAACM3icbVDLahsxFNWkzaPKy0mX2YiahEDAzJiQZBNwHouQVQq1E/AMRiPfsYU1mkG6EzCD/ymb/kgWgdJFS+k2/1DZnkXzOCA4nHMfuifOlbTo+z+8hQ8fF5eWVz7R1bX1jc3a1nbHZoUR0BaZysxdzC0oqaGNEhXc5QZ4Giu4jUcXU//2HoyVmf6G4xyilA+0TKTg6KRe7RoNF8BCBQl2aRjDQOqSG8PHk1KICT1je+ychSG9cOSShqD7lU1DIwdDjNgpOzu4pJT2anW/4c/A3pKgInVS4aZXewz7mShS0CgUt7Yb+DlGbjxKocAtKCzkXIz4ALqOap6CjcrZzRO265Q+SzLjnkY2U//vKHlq7TiNXWXKcWhfe1PxPa9bYHISlVLnBYIW80VJoRhmbBog60sDAtXYES6MdH9lYshdiuhinoYQvD75Lek0G8FRo/n1sN46r+JYITvkC9knATkmLXJFbkibCPJAnsgv8tv77v30/nh/56ULXtXzmbyA9/wPdmmnCQ==</latexit>

trace


A B
C D

�
= A+D



You can compute the 
Harris detector fast!
§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) that you can 
decompose in two eigenvalues

§ If you consider the whole image, M is (2 x height_image, 2 x 
width_image)

§ This matrix is made of the gradient images, multiplied by blur 
kernels g() 

§ The Harris detectorcan be implemented without the need for 
eigen decomposition, only the determinant and trace of M!

 

§ So you can compute the Harris detector for the whole image in 
one go by summing/substracting the gradient imagesand 
substracting the whole
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<latexit sha1_base64="mNHubrOnhSvKRDpAZ1Q5CfKb+ns="></latexit>

det


A B
C D

�
= AD �BC

<latexit sha1_base64="nRSlvFKkESHZFIxY5siac28KigA="></latexit>

trace


A B
C D

�
= A+D



2.
Compute a descriptor of 
the neighborhood of the 
keypoint
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https://www.pexels.com/photo/black-and-green-toucan-on-tree-branch-17811/
https://medium.com/@vad710/cv-for-busy-developers-describing-features-49530f372fbb



Now that we have 
corners, what?
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§ We want to describe the content of the image at that location
§ Taking the example of the beginning they could be textual 

descriptions (“a statue”, “a red flag”) that could help us matching 
corresponding objects in different images

§ In image matching, we use image features, e.g. grayscale gradients, 
particular patterns, etc.

§ We need to find features that are
• Unique (so we can find a clear match in the other image)
• Invariant to scaling and rotation
• Invariant to color deformations (atmospheric conditions, illumination, etc)



Why invariance?

§ We want patches centered on the same keypoint of different images 
to have high similarity between each other

§ We need to find the right function of the pixel values, a descriptor
§ What we want:

SS
M

EO
 c

ou
rs

e,
 2

6 
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO
  

37

High similarity!
Low similarity!



Why invariance?

§ We want patches centered on the same keypoint of different images 
to have high similarity between each other

§ Similarity is a measure of feature distance between the patches being 
considered. For instance a Gaussian distance, an Euclidean, ...
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Why invariance?

§ We want patches centered on the same keypoint of different images 
to have high similarity between each other

§ Similarity is a measure of feature distance between the patches being 
considered. For instance a Gaussian distance, an Euclidean, ...

§ But we have images that are distorted, at different scales, etc! So the 
features we use to describe the patch are important!

§ Example:
• If we take the grayvalues directly as features and we rotate the image, the same patch will have very 

low similarity
• If we sort the values, the feature is rotation invariant
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Original -90°

Pixel by pixel Euclidean distance: 507.28!!
Sorted values pixel by pixel distance: 0



But a description 
should be invariant AND 
discriminative

§ If we sort, our distance 
becomes rotation invariant (the 
two maps in the right column are the same)

§ But we have less 
discrimination, since we 
destroyed all image structure
• many more patches look similar (the 

right column is more blue)

• The original distance map (top left) is 
better (it just doesn’t work as soon as we 
have differences, bottom left)

SS
M

EO
 c

ou
rs

e,
 2

6 
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO
  

41

Comparing original 
pixel values, no rotation
invariance

Comparing sorted 
pixel values, rotation 
invariance, but poor 
discrimination



But a description 
should be invariant AND 
discriminative

§ If we sort, our distance 
becomes rotation invariant (the 
two maps in the right column are the same)

§ But we have less 
discrimination, since we 
destroyed all image structure
• many more patches look similar (the 

right column is more blue)

• The original distance map (top left) is 
better (it just doesn’t work as soon as we 
have differences, bottom left)
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Comparing original 
pixel values, no rotation
invariance

Comparing sorted 
pixel values, rotation 
invariance, but poor 
discrimination



But a description 
should be invariant AND 
discriminative

§ If we sort, our distance 
becomes rotation invariant (the 
two maps in the right column are the same)

§ But we have less 
discrimination, since we 
destroyed all image structure
• many more patches look similar (the 

right column is more blue)

• The original distance map (top left) is 
better (it just doesn’t work as soon as we 
have differences, bottom left)
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Comparing original 
pixel values, no rotation
invariance

Comparing sorted 
pixel values, rotation 
invariance, but poor 
discrimination



A good feature descriptor works 
across scales and orientations: SIFT

§ A very popular one is the Scale-Invariant Feature Transform (SIFT)
§ Invented by David Lowe in 1999
§ Still probably the most used one around
§ Was patented until 2020.
§ Emulated implementations are around.

§ SIFT includes two steps: 
• keypoint detection (you can use your own, e.g. the Harris detector) 
• keypoint description = extract meaningful features

§ We will go through both, since the detection is crucial for scale 
invariance
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1.bis
Back to detecting 
keypoints: SIFT
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https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73



SIFT, phase 1
Detection

§ Let’s say we want to find good keypoints for this image 
§ SIFT first creates a pyramid of images at different levels of blurring
§ We use Gaussian convolutions (green arrow)
§ After some convolutions (here 3) we downsample and start over (blue arrow)
§ Each row of 6 is called an octave (it doubles the blur in the image)
§ All images are [0-1] normalised.
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http://weitz.de/sift/index.html



SIFT, phase 1
Detection
§ By doing so, we built a scale-space
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SIFT, phase 1
Detection
§ By doing so, we built a scale-space
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SIFT, phase 1
Detection
§ To find the keypoints, we look for points that change a lot across 

scales and/or levels of detail
§ To do so, we calculate the difference of Gaussians, the difference 

between the pixel values of the left and right images of the previous 
slide

    (they were Gaussian 
    blurred version of 
    each octave, 
    remember?)
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SIFT, phase 1
Detection
§ To find the keypoints, we look for points that change a lot across 

scales and/or levels of detail
§ To do so, we calculate the difference of Gaussians, the difference 

between the pixel values of the left and right images of the previous 
slide
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substraction



We detect interesting keypoints 
by looking at the DoG
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We detect interesting keypoints 
by looking at the DoG
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§ Keypoints are found by comparing the DoG values across nearby pixels, in scale space (we 
don’t compare across octaves).

§ We have 26 neighbors (green dots). 
§ A maximum (resp. minimum) is the point with DoG value larger (resp. smaller) than all its 

neighbors

DoG for each octave / level of blur Each pixel in a DoG map gets compared
to neighbors in the same map and the one 
at the smaller and larger level of blur.
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We detect interesting keypoints 
by looking at the DoG
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§ Keypoints are found by comparing the DoG values across nearby pixels, in detail space (we don’t 
compare across octaves).

§ We have 26 neighbors (green dots on previous slide). 
§ A maximum (resp. minimum) is the point with DoG value larger (resp. smaller) than all its neighbors

PS: it’s not so simple. 
there are several extra 
steps to remove spurious 
maxima (flat points, edges) 
looking at  local curvature 



Last thing: assign the 
main orientation

§ For each detected point, we compute the main orientation of the 
gradients in the image.

§ This will impact the features detected later on.

§ Note: one keypoint can have more than one main direction (see next 
slides). In this case, it is used as multiple keypoints with different 
orientations (with same location and scale)
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Last thing: assign the 
main orientation

§ First we compute for every keypoint the 
magnitude (m) and orientation (q) of the 
gradients of every pixel in the 
surroundings.

§ We use the formulas below, where L is 
the Gaussian blurred image:
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Last thing: assign the 
main orientation

§ First we compute for every keypoint the 
magnitude (m) and orientation (q) of the 
gradients of every pixel in the 
surroundings.

§ We make an histogram out of it. 
• We make 36 bins, each one accounting for 

10°
• We add in the specific bin a value 

proportional to the magnitude for each pixel.

E.g. if a pixel has a 18.79° orientation and 
magnitude “10”, we add 10 in the 10°-20° 
bin.

§ All orientations above 80% are 
considered a main direction.
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2.bis
the descriptor of SIFT
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https://www.pexels.com/photo/black-and-green-toucan-on-tree-branch-17811/
https://medium.com/@vad710/cv-for-busy-developers-describing-features-49530f372fbb



Ready to compute 
descriptors!

§ Recall: the descriptors describe what is giong on in the direct 
surroundings of the keypoint.

§ It’s a kind of a fingerprint for each keypoint that we will use later to 
match.

§ We need : the location, scale and orientation of each keypoint.

§ It needs to be unique and easy to calculate.
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We take each keypoint .
§ We first break the neighborhood 

around the keypoint into a 16 x 16 
window
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Let’s zoom in this 
one for a sec.



§ We first break the neighborhood 
around the keypoint into a 16 x 16 
window

§ Within each 4 x 4 sub-window, a 
histogram of 8 bins (44° each) 
orientations and magnitudes 
recorded (like in the previous step!)
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§ We first break the neighborhood 
around the keypoint into a 16 x 16 
window

§ Within each 4 x 4 sub-window, a 
histogram of 8 bins (44° each) 
orientations and magnitudes 
recorded (like in the previous step!)

§ To enforce rotation invariance, the 
keypoint’s main orientation is
substracted from the orientations
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What is the effect of 
substracting the main 
orientation?
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Visualising like 
histograms

§ We first break the neighborhood 
around the keypoint into a 16 x 16 
window

§ Within each 4 x 4 sub-window, a 
histogram of 8 bins (44° each) 
orientations and magnitudes 
recorded (like in the previous step!)

§ To enforce rotation invariance, the 
keypoint’s main orientation is
substracted from the orientations

§ Each radial plot corresponds to a
histogram…
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The SIFT descriptor

§ We first break the neighborhood 
around the keypoint into a 16 x 16 
window

§ Within each 4 x 4 sub-window, a 
histogram of 8 bins (44° each) 
orientations and magnitudes 
recorded (like in the previous step!)

§ Each bin of each histogram
becomes a feature, so 8 x 16  =128 
features!

§ To achieve illumination invariance, 
all features with big numbers are 
clipped. E.g. everything larger than
20% is clipped to 20%.
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The SIFT descriptor

§ There are more tweaks on the 
descriptor, which I omit here.

§ In the end, the patch is described
by the 128-dimensional vector, 
which has all the information about 
• location, 
• scale, 
• orientation and 
• magnitude gradients 

in the patch.
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SIFTi =
128



3. 4.
Establish 
correspondences and 
make them robust with 
RANSAC
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https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73



Time to match!

§ Now we have, for each image, 
• A set of keypoints
• Each one with a 128-dimensional vector describing it.
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https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

128



The simplest strategy to match is a 
“best match”

§ Calculate distance between the SIFT features.
§ Each keypoint from image “I” is matched with the one of image “J “ 

showing the smallest distance in the SIFT features
§ A keypoint i from the set kI will be matched with the keypoint j from 

the set kJ  as follows: 

§ d (.,.) is a distance, e.g. Euclidean.
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<latexit sha1_base64="jy10Jrw+5W3ziX3IAwddvaIkJzY=">AAACF3icbZDLSgMxFIYz9VbrrerSTbAIFaTMFFGXRUHUVcXeoFOHTJq2aTOZIclIyzBv4cZXceNCEbe6821M21lo6w+Bj/+cw8n53YBRqUzz20gtLC4tr6RXM2vrG5tb2e2dmvRDgUkV+8wXDRdJwignVUUVI41AEOS5jNTdwcW4Xn8gQlKfV9QoIC0PdTntUIyUtpxswUaiC22PcifqQ5tyOHBuYtjODx16H91dX1bio6HTT/DQyebMgjkRnAcrgRxIVHayX3bbx6FHuMIMSdm0zEC1IiQUxYzEGTuUJEB4gLqkqZEjj8hWNLkrhgfaacOOL/TjCk7c3xMR8qQcea7u9JDqydna2Pyv1gxV56wVUR6EinA8XdQJGVQ+HIcE21QQrNhIA8KC6r9C3EMCYaWjzOgQrNmT56FWLFgnheLtca50nsSRBntgH+SBBU5BCVyBMqgCDB7BM3gFb8aT8WK8Gx/T1pSRzOyCPzI+fwA51562</latexit>

arg min
j2kJ

d(xSIFT
i , xSIFT

j )



Sorting out for ex-
aequos

§ This strategy can work poorly if there are repetitive structure in 
images

§ All these keypoints in J will score similarly
§ A solution is to compare the best and 2nd match and keep the match 

only if the first leads to a much smaller distance than the second (= 
unique match). 

§ A division is what you need: if the result is close to 1, you discard the 
match. If it’s small, you keep.
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<latexit sha1_base64="KFOytC8tyGwfspCK+33ABZLk2qA=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiuCpJEXVZdOOygr1Am5bJZNIOnUzCzEQoQ1ZufBU3LhRx6zO4822ctFlo6w8DH/85hzPn9xNGpXKcb6u0srq2vlHerGxt7+zu2fsHbRmnApMWjlksuj6ShFFOWooqRrqJICjyGen4k5u83nkgQtKY36tpQrwIjTgNKUbKWEP7uB8KhHUw1O5AS5VlWc71geaB4aFddWrOTHAZ3AKqoFBzaH/1gxinEeEKMyRlz3US5WkkFMWMZJV+KkmC8ASNSM8gRxGRnp6dkcFT4wQwjIV5XMGZ+3tCo0jKaeSbzgipsVys5eZ/tV6qwitPU56kinA8XxSmDKoY5pnAgAqCFZsaQFhQ81eIx8jkokxyFROCu3jyMrTrNfeiVr87rzauizjK4AicgDPggkvQALegCVoAg0fwDF7Bm/VkvVjv1se8tWQVM4fgj6zPH8k3mfo=</latexit>

d1st

d2nd



Sorting out for ex-
aequos

§ Red: keypoints without a 
good match (comparing 1st 
and 2nd result)

§ Blue: “good” matches, but 
including points matches to 
the wrong keypoint in the 
other image
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https://people.cs.umass.edu/~elm/Teaching/ppt/370/370_10_RANSAC.pptx.pdf



Sorting out for ex-
aequos

§ We can use an algorithm so 
sort out outliers, a favourites’ 
choice is RANSAC
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https://people.cs.umass.edu/~elm/Teaching/ppt/370/370_10_RANSAC.pptx.pdf

1.   For
2.      Select four feature pairs
3.      Compute the homography H 
          (the transform from one image plane to another)
4.      Compute inliers (matches that lie 

within the distance of the homography)

6.  Keep the largest set of inliers
7.   Re-compute the homography H with all inliers

<latexit sha1_base64="nY1kNFIwgB+wc/HhdFKtWR+a2oU=">AAAB/3icbVDLSsNAFJ3UV62vquDGzWARKkhJiqgLF0U3XVawD2hDmEwm7djJJMxMpCV24a+4caGIW3/DnX/jpM1CWw9cOJxzL/fe40aMSmWa30ZuaXlldS2/XtjY3NreKe7utWQYC0yaOGSh6LhIEkY5aSqqGOlEgqDAZaTtDm9Sv/1AhKQhv1PjiNgB6nPqU4yUlpzigVceOfen9ZFDT+AV7JFIUpYaJbNiTgEXiZWREsjQcIpfPS/EcUC4wgxJ2bXMSNkJEopiRiaFXixJhPAQ9UlXU44CIu1kev8EHmvFg34odHEFp+rviQQFUo4DV3cGSA3kvJeK/3ndWPmXdkJ5FCvC8WyRHzOoQpiGAT0qCFZsrAnCgupbIR4ggbDSkRV0CNb8y4ukVa1Y55Xq7Vmpdp3FkQeH4AiUgQUuQA3UQQM0AQaP4Bm8gjfjyXgx3o2PWWvOyGb2wR8Ynz9XFJUK</latexit>

d(xj , Hxi) < ✏
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Sorting out for ex-
aequos

§ Red: keypoints without a 
good match (comparing 1st 
and 2nd result)

§ Yellow: correct good 
matches

§ Blue: wrong “good” 
matches
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Summing up

§ Today we have learned about:

• Why we need image 
matching

• The steps of image matching

• One simple corner detector: 
Harris

• A complex keypoint detector 
+ feature descriptor: SIFT

• How to match the two 
images.
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https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html. Photo and doll 
created by Olha Mishkina

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html

