
Sensing and
spatial
modeling for
Earth
observation

Devis TUIA
Keypoint detection

and matching

EPFL, spring semester
2025https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html. Photo and doll created by Olha Mishkina

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html

Why image matching?

When we acquire series of images
(e.g. with a drone) and want to

§ Create a mosaic

§ Reconstruct a 3D surface

§ Make 3D point measurements

§ Identify and track moving objects

§ Align different bands/ sensors acquired

at different times

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

2

Meng et al., JAG, 2021

Paperswithcode.com

How does image
matching work?

§ AIM: Identify and uniquely match identical object features in two or
more images of the object

§ Here

• Green points are
 correct matches

• Red points are
 misses

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

3

Sarlin et al., CVPR, 2019

How? (in non-technical terms)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

4

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/01/09/wxbs-in-simple-terms.html

Let’s say you have found the picture on the left and

would like to take the same image in summer.

How would you do it?

What if you cannot take
the image with you?

How? (in non-technical terms)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

5

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/01/09/wxbs-in-simple-terms.html

1. Identify salient objects and features in the images

("trees", "statues", “tip of the tower”, etc).

2. Describe the objects and features, taking into

account their neighbourhood: “statue with a blue
left ear".

3. Match: establish potential correspondences
between features in the different images, based

on their descriptors.
4. Estimate in which direction one should move the

camera to align the objects and features.

Given two images to
be matched

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

6

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

Detect some keypoints

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

7

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

And find a way to
match them!

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

8

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

The recipe is simple

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

9

1. Compute interest points/regions in all images independently
2. For each interest point/region compute a descriptor of their neigborhood

(local patch).

3. Establish tentative correspondences between interest points based on
their descriptors.

4. Robustly estimate geometric relation between two images based on

tentative correspondences with RANSAC.

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/02/11/WxBS-step-by-step.html

Why so difficult?

Matching is inherently ill posed, a unique
and univoque solution might not exist, due
to:

§ Occlusions
§ Several candidates for a match
§ Noise in the image
§ Changes in acquisition conditions (day/night,

intensity)
§ Changes in the object in between acquisition

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

10

Redzic et al., DEXA 2010

1.
Detect keypoints:
interest points / regions

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

11

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

Interest operators
extracting keypoints

§ Algorithms that extract distinctive image points (keypoints)
§ These points are potential suitable candidates for matching

§ Good characteristics:
• Individuality = locally unique, distinct from background
• Invariant to geometric and radiometric distortions
• Robust to noise
• Rare = globally unique

§ These keypoints are extracted on each image separately

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

12

Interest operators
extracting keypoints

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

13

§ We want keypoints that are unique and invariant

§ Unique: they happen rarely in the image
§ Invariant: if you shift or rotate the image, they are

still the same

§ Blue patch: you move it around, it looks the same
§ Black patch: on an edge, if you move it horizontally it

looks the same
§ Red patch: corner, anywhere you move it, it looks

different à Good keypoint!

https://docs.opencv.org/4.x/df/d54/tutorial_py_features_meaning.html

Simple interest
operators

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

14

§ How to find them?
§ We use criteria within an interest window to see how

“interesting” the center pixel is

§ A first try could be the local variance (in a M x M window)

Not good,
§ No geometric meaning
§ All edges would seem interesting

Self-similarity and local
values comparison criteria

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

15

§ We could look at patch similarity across the image, i.e.
the cross-correlation function

[What is the cross-correlation function?]

take each patch and slide it over the image. Every time, you
calculate the similarity with the area it is superimposed to:
• if the patch is unique, you will have only one maximum (patch

with itself, max similarity),
• if it repeats across image, there will be multiple areas with high

similarity, so not interesting.

= 0.1

Self-similarity and local
values comparison criteria

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

16

§ We could look at patch similarity across the image, i.e.
the cross-correlation function

[What is the cross-correlation function?]

take each patch and slide it over the image. Every time, you
calculate the similarity with the area it is superimposed to:
• if the patch is unique, you will have only one maximum (patch

with itself, max similarity),
• if it repeats across image, there will be multiple areas with high

similarity, so not interesting.

= 0.7

The Harris detector (1)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

17

§ Now let’s take this idea of comparing
patches, but locally.

§ Moving a patch around could give us a
good impression of whether we are in a
corner region

Strongly inspired by: https://www.cs.cornell.edu/courses/cs4670/2016sp/lectures/lec10_features2_web.pdf

The Harris detector (2)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

18

§ Now let’s take this idea of comparing
patches, but locally.

§ Moving a patch around could give us a
good impression of whether we are in a
corner region

§ We can calculate the sum of squared
differences for a location (x,y) after shifting
by w = (u,v):

The math behind (for your curiosity)

§ We want to assess E(u,v) for small motions

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

19

This is a Sobel
filter, for example

Corners and edges are
1st order gradients

The math behind (for your curiosity)

§ Coming back to the original equation:

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

20

The math behind (for your curiosity)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

21

The Harris detector (3)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

22

§ Using Taylor expansion, this is equivalent to

Often a Gaussian weight
= distance from central pixel

v
u

E

For a single pixel, 2 x 2 matrix

The Harris detector (4)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

23

§ E(u,v) = const is locally quadratic
§ It can be approximated by an ellipse,

a.k.a each color ring in
§ An ellipse can be decomposed into its

• eigenvectors (x) : orientation vectors
• eigenvalues (l) : length of the axis

The Harris detector (4)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

24

§ E(u,v) = const is locally quadratic
§ It can be approximated by an ellypse,

a.k.a each color ring in
§ An ellipse can be decomposed into its

eigenvectors (x) and eigenvalues (l)
§ Since [u,v] are basis vectors of the

space (=the xy axis), M is the ellipse.

§ The axes of the ellipse are thus the
eigenvectors of M and the scale of the
axes the eigenvalues

The Harris detector (4)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

25

§ Using the two eigenvalues,
we can characterise the
“edge-iness”

The Harris detector (5)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

26

Final touch,

In 1988, Harris and Stephens merged all this into a single index, called the Harris detector

It uses the ingredients above to create a unified, simple to compute index

Given

The Harris detector is:

<latexit sha1_base64="lzK65b3QGfcq7NLcYKPSe9Qj6X4=">AAACQnicbVDPaxNBGJ2tto1R26hHL4NBSCiG3UWsl0Kol14CUUxbSdLw7eyXZMjsD2a+LYQlf1sv/gXe+gf00oMiXj04m6xtTX0w8Hjvfd/MvCBV0pDrXjobDx5ubm1XHlUfP3m6s1t79vzYJJkW2BOJSvRpAAaVjLFHkhSephohChSeBLMPhX9yjtrIJP5M8xSHEUxiOZYCyEqj2pdP/IAPQqS8s+Bv+ABUOgVOGgQ2Os0zv3CVXRfCyPtL/Ntg48bke/wm6Tf5mT+q1d2WuwS/T7yS1FmJ7qj2bRAmIoswJqHAmL7npjTMQZMUChfVQWYwBTGDCfYtjSFCM8yXFSz4a6uEfJxoe2LiS/XuRA6RMfMosMkIaGrWvUL8n9fPaPx+mMs4zQhjsbponClOCS/65KHUKEjNLQGhpX0rF1Ow/ZFtvWpL8Na/fJ8c+y3vXcv/+LbePizrqLCX7BVrMI/tszY7Yl3WY4JdsCv2nf1wvjrXzk/n1yq64ZQzL9g/cH7/Ad6KrDM=</latexit>

R = detM � ↵trace(M)2 = �1�2 � ↵(�1 + �2)
2

The Harris detector (5)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

27

<latexit sha1_base64="lzK65b3QGfcq7NLcYKPSe9Qj6X4=">AAACQnicbVDPaxNBGJ2tto1R26hHL4NBSCiG3UWsl0Kol14CUUxbSdLw7eyXZMjsD2a+LYQlf1sv/gXe+gf00oMiXj04m6xtTX0w8Hjvfd/MvCBV0pDrXjobDx5ubm1XHlUfP3m6s1t79vzYJJkW2BOJSvRpAAaVjLFHkhSephohChSeBLMPhX9yjtrIJP5M8xSHEUxiOZYCyEqj2pdP/IAPQqS8s+Bv+ABUOgVOGgQ2Os0zv3CVXRfCyPtL/Ntg48bke/wm6Tf5mT+q1d2WuwS/T7yS1FmJ7qj2bRAmIoswJqHAmL7npjTMQZMUChfVQWYwBTGDCfYtjSFCM8yXFSz4a6uEfJxoe2LiS/XuRA6RMfMosMkIaGrWvUL8n9fPaPx+mMs4zQhjsbponClOCS/65KHUKEjNLQGhpX0rF1Ow/ZFtvWpL8Na/fJ8c+y3vXcv/+LbePizrqLCX7BVrMI/tszY7Yl3WY4JdsCv2nf1wvjrXzk/n1yq64ZQzL9g/cH7/Ad6KrDM=</latexit>

R = detM � ↵trace(M)2 = �1�2 � ↵(�1 + �2)
2

You can compute the
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

§ But the Harris detector does not need the
eigenvalues, only the determinant and trace!

•

•

§ In that case, M is (2*height_image,
2*width_image)

§ So you can compute the Harris detector for
the whole image in one go by summing and
substracting the whole block matrices!

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

28

You can compute the
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

§ If you consider the whole image, M is of size
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images,
multiplied by blur kernels g()

age in one go by summing and
substracting the whole block
matrices!

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

29

You can compute the
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

§ If you consider the whole image, M is of size
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images,
multiplied by blur kernels g()

age in one go by summing and
substracting the whole block
matrices!

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

30

You can compute the
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

§ If you consider the whole image, M is of size
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images,
multiplied by blur kernels g()

age in one go by summing and
substracting the whole block
matrices!

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

31

You can compute the
Harris detector fast!

§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

§ If you consider the whole image, M is of size
(2 x height_image, 2 x width_image)

§ This matrix is made of the gradient images,
multiplied by blur kernels g()

age in one go by summing and
substracting the whole block
matrices!

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

32

You can compute the
Harris detector fast!
§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) that
you can decompose in two eigenvalues

§ If you consider the whole image, M is
(2*height_image, 2*width_image)

§ This matrix is made of the gradient images,
multiplied by blur kernels g()

§ The Harris detector can be implemented without
the need for eigen decomposition, only the
determinant and trace of M!

§ So you can compute the Harris detector for the
whole image in one go by summing/substracting
the gradient imagesand substracting the whole

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

33

<latexit sha1_base64="mNHubrOnhSvKRDpAZ1Q5CfKb+ns=">AAACNnicbVBBSxtBGJ3VWuNUa2qPXoaGihfDroj2UtDEgxdBoVEhu4TZ2W+TwdnZZebbQljyq7z4O7zl4qEiXv0JTuIeWu2Dgcd738eb78WFkhZ9f+otLH5Y+rjcWKGfVtc+rze/bFzYvDQCeiJXubmKuQUlNfRQooKrwgDPYgWX8XV35l/+BmNlrn/huIAo40MtUyk4OmnQPA0TQBYqSLFPwxiGUlfcGD6eVEJM6BHbYh0WhrTryDENQSe1TUMjhyOM2E92dMx2WKdLKR00W37bn4O9J0FNWqTG2aB5Fya5KDPQKBS3th/4BUYuAqVQ4EJKCwUX13wIfUc1z8BG1fzsCfvulISluXFPI5urf29UPLN2nMVuMuM4sm+9mfg/r19i+iOqpC5KBC1eg9JSMczZrEOWSAMC1dgRLox0f2VixA0X6JqelRC8Pfk9udhtB/vt3fO91mGnrqNBNsk3sk0CckAOyQk5Iz0iyA2Zkj/kwbv17r1H7+l1dMGrd76Sf+A9vwCe8Kd4</latexit>

det


A B
C D

�
= AD �BC

<latexit sha1_base64="nRSlvFKkESHZFIxY5siac28KigA=">AAACM3icbVDLahsxFNWkzaPKy0mX2YiahEDAzJiQZBNwHouQVQq1E/AMRiPfsYU1mkG6EzCD/ymb/kgWgdJFS+k2/1DZnkXzOCA4nHMfuifOlbTo+z+8hQ8fF5eWVz7R1bX1jc3a1nbHZoUR0BaZysxdzC0oqaGNEhXc5QZ4Giu4jUcXU//2HoyVmf6G4xyilA+0TKTg6KRe7RoNF8BCBQl2aRjDQOqSG8PHk1KICT1je+ychSG9cOSShqD7lU1DIwdDjNgpOzu4pJT2anW/4c/A3pKgInVS4aZXewz7mShS0CgUt7Yb+DlGbjxKocAtKCzkXIz4ALqOap6CjcrZzRO265Q+SzLjnkY2U//vKHlq7TiNXWXKcWhfe1PxPa9bYHISlVLnBYIW80VJoRhmbBog60sDAtXYES6MdH9lYshdiuhinoYQvD75Lek0G8FRo/n1sN46r+JYITvkC9knATkmLXJFbkibCPJAnsgv8tv77v30/nh/56ULXtXzmbyA9/wPdmmnCQ==</latexit>

trace


A B
C D

�
= A+D

You can compute the
Harris detector fast!
§ So far, we saw the math pixel by pixel

§ Each pixel gave us a M matrix of size (2 x 2) that you can
decompose in two eigenvalues

§ If you consider the whole image, M is (2 x height_image, 2 x
width_image)

§ This matrix is made of the gradient images, multiplied by blur
kernels g()

§ The Harris detectorcan be implemented without the need for
eigen decomposition, only the determinant and trace of M!

§ So you can compute the Harris detector for the whole image in
one go by summing/substracting the gradient imagesand
substracting the whole

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

34

<latexit sha1_base64="mNHubrOnhSvKRDpAZ1Q5CfKb+ns=">AAACNnicbVBBSxtBGJ3VWuNUa2qPXoaGihfDroj2UtDEgxdBoVEhu4TZ2W+TwdnZZebbQljyq7z4O7zl4qEiXv0JTuIeWu2Dgcd738eb78WFkhZ9f+otLH5Y+rjcWKGfVtc+rze/bFzYvDQCeiJXubmKuQUlNfRQooKrwgDPYgWX8XV35l/+BmNlrn/huIAo40MtUyk4OmnQPA0TQBYqSLFPwxiGUlfcGD6eVEJM6BHbYh0WhrTryDENQSe1TUMjhyOM2E92dMx2WKdLKR00W37bn4O9J0FNWqTG2aB5Fya5KDPQKBS3th/4BUYuAqVQ4EJKCwUX13wIfUc1z8BG1fzsCfvulISluXFPI5urf29UPLN2nMVuMuM4sm+9mfg/r19i+iOqpC5KBC1eg9JSMczZrEOWSAMC1dgRLox0f2VixA0X6JqelRC8Pfk9udhtB/vt3fO91mGnrqNBNsk3sk0CckAOyQk5Iz0iyA2Zkj/kwbv17r1H7+l1dMGrd76Sf+A9vwCe8Kd4</latexit>

det


A B
C D

�
= AD �BC

<latexit sha1_base64="nRSlvFKkESHZFIxY5siac28KigA=">AAACM3icbVDLahsxFNWkzaPKy0mX2YiahEDAzJiQZBNwHouQVQq1E/AMRiPfsYU1mkG6EzCD/ymb/kgWgdJFS+k2/1DZnkXzOCA4nHMfuifOlbTo+z+8hQ8fF5eWVz7R1bX1jc3a1nbHZoUR0BaZysxdzC0oqaGNEhXc5QZ4Giu4jUcXU//2HoyVmf6G4xyilA+0TKTg6KRe7RoNF8BCBQl2aRjDQOqSG8PHk1KICT1je+ychSG9cOSShqD7lU1DIwdDjNgpOzu4pJT2anW/4c/A3pKgInVS4aZXewz7mShS0CgUt7Yb+DlGbjxKocAtKCzkXIz4ALqOap6CjcrZzRO265Q+SzLjnkY2U//vKHlq7TiNXWXKcWhfe1PxPa9bYHISlVLnBYIW80VJoRhmbBog60sDAtXYES6MdH9lYshdiuhinoYQvD75Lek0G8FRo/n1sN46r+JYITvkC9knATkmLXJFbkibCPJAnsgv8tv77v30/nh/56ULXtXzmbyA9/wPdmmnCQ==</latexit>

trace


A B
C D

�
= A+D

2.
Compute a descriptor of
the neighborhood of the
keypoint

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

35

https://www.pexels.com/photo/black-and-green-toucan-on-tree-branch-17811/
https://medium.com/@vad710/cv-for-busy-developers-describing-features-49530f372fbb

Now that we have
corners, what?

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

36

§ We want to describe the content of the image at that location
§ Taking the example of the beginning they could be textual

descriptions (“a statue”, “a red flag”) that could help us matching
corresponding objects in different images

§ In image matching, we use image features, e.g. grayscale gradients,
particular patterns, etc.

§ We need to find features that are
• Unique (so we can find a clear match in the other image)
• Invariant to scaling and rotation
• Invariant to color deformations (atmospheric conditions, illumination, etc)

Why invariance?

§ We want patches centered on the same keypoint of different images
to have high similarity between each other

§ We need to find the right function of the pixel values, a descriptor
§ What we want:

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

37

High similarity!
Low similarity!

Why invariance?

§ We want patches centered on the same keypoint of different images
to have high similarity between each other

§ Similarity is a measure of feature distance between the patches being
considered. For instance a Gaussian distance, an Euclidean, ...

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

39

Me

1

.5

Si
m

ila
ri

ty
 to

 m
e

Someone
else

Me

1

.3

Si
m

ila
ri

ty
 to

 m
e

Someone
else

Large bandwidth (large gamma) Small bandwidth (small gamma)

me = me
se = someone else

Why invariance?

§ We want patches centered on the same keypoint of different images
to have high similarity between each other

§ Similarity is a measure of feature distance between the patches being
considered. For instance a Gaussian distance, an Euclidean, ...

§ But we have images that are distorted, at different scales, etc! So the
features we use to describe the patch are important!

§ Example:
• If we take the grayvalues directly as features and we rotate the image, the same patch will have very

low similarity
• If we sort the values, the feature is rotation invariant

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

40

Original -90°

Pixel by pixel Euclidean distance: 507.28!!
Sorted values pixel by pixel distance: 0

But a description
should be invariant AND
discriminative

§ If we sort, our distance
becomes rotation invariant (the
two maps in the right column are the same)

§ But we have less
discrimination, since we
destroyed all image structure
• many more patches look similar (the

right column is more blue)

• The original distance map (top left) is
better (it just doesn’t work as soon as we
have differences, bottom left)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

41

Comparing original
pixel values, no rotation
invariance

Comparing sorted
pixel values, rotation
invariance, but poor
discrimination

But a description
should be invariant AND
discriminative

§ If we sort, our distance
becomes rotation invariant (the
two maps in the right column are the same)

§ But we have less
discrimination, since we
destroyed all image structure
• many more patches look similar (the

right column is more blue)

• The original distance map (top left) is
better (it just doesn’t work as soon as we
have differences, bottom left)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

42

Comparing original
pixel values, no rotation
invariance

Comparing sorted
pixel values, rotation
invariance, but poor
discrimination

But a description
should be invariant AND
discriminative

§ If we sort, our distance
becomes rotation invariant (the
two maps in the right column are the same)

§ But we have less
discrimination, since we
destroyed all image structure
• many more patches look similar (the

right column is more blue)

• The original distance map (top left) is
better (it just doesn’t work as soon as we
have differences, bottom left)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

43

Comparing original
pixel values, no rotation
invariance

Comparing sorted
pixel values, rotation
invariance, but poor
discrimination

A good feature descriptor works
across scales and orientations: SIFT

§ A very popular one is the Scale-Invariant Feature Transform (SIFT)
§ Invented by David Lowe in 1999
§ Still probably the most used one around
§ Was patented until 2020.
§ Emulated implementations are around.

§ SIFT includes two steps:
• keypoint detection (you can use your own, e.g. the Harris detector)
• keypoint description = extract meaningful features

§ We will go through both, since the detection is crucial for scale
invariance

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

44

1.bis
Back to detecting
keypoints: SIFT

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

45

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

SIFT, phase 1
Detection

§ Let’s say we want to find good keypoints for this image
§ SIFT first creates a pyramid of images at different levels of blurring
§ We use Gaussian convolutions (green arrow)
§ After some convolutions (here 3) we downsample and start over (blue arrow)
§ Each row of 6 is called an octave (it doubles the blur in the image)
§ All images are [0-1] normalised.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

46

http://weitz.de/sift/index.html

SIFT, phase 1
Detection
§ By doing so, we built a scale-space

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

47

SIFT, phase 1
Detection
§ By doing so, we built a scale-space

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

48
Sp

ac
e:

 o
ct

av
es

Scale: suppress details

SIFT, phase 1
Detection
§ To find the keypoints, we look for points that change a lot across

scales and/or levels of detail
§ To do so, we calculate the difference of Gaussians, the difference

between the pixel values of the left and right images of the previous
slide

 (they were Gaussian
 blurred version of
 each octave,
 remember?)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

49

SIFT, phase 1
Detection
§ To find the keypoints, we look for points that change a lot across

scales and/or levels of detail
§ To do so, we calculate the difference of Gaussians, the difference

between the pixel values of the left and right images of the previous
slide

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

50

substraction

We detect interesting keypoints
by looking at the DoG

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

51

DoGImage 1 Image 2Image 1 Image 2

DoG

N
o

ke
yp

oi
nt

Ke
yp

oi
nt

We detect interesting keypoints
by looking at the DoG

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

52

§ Keypoints are found by comparing the DoG values across nearby pixels, in scale space (we
don’t compare across octaves).

§ We have 26 neighbors (green dots).
§ A maximum (resp. minimum) is the point with DoG value larger (resp. smaller) than all its

neighbors

DoG for each octave / level of blur Each pixel in a DoG map gets compared
to neighbors in the same map and the one
at the smaller and larger level of blur.

scale

oc
ta

ve
s

We detect interesting keypoints
by looking at the DoG

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

53

§ Keypoints are found by comparing the DoG values across nearby pixels, in detail space (we don’t
compare across octaves).

§ We have 26 neighbors (green dots on previous slide).
§ A maximum (resp. minimum) is the point with DoG value larger (resp. smaller) than all its neighbors

PS: it’s not so simple.
there are several extra
steps to remove spurious
maxima (flat points, edges)
looking at local curvature

Last thing: assign the
main orientation

§ For each detected point, we compute the main orientation of the
gradients in the image.

§ This will impact the features detected later on.

§ Note: one keypoint can have more than one main direction (see next
slides). In this case, it is used as multiple keypoints with different
orientations (with same location and scale)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

54

Last thing: assign the
main orientation

§ First we compute for every keypoint the
magnitude (m) and orientation (q) of the
gradients of every pixel in the
surroundings.

§ We use the formulas below, where L is
the Gaussian blurred image:

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

55

Last thing: assign the
main orientation

§ First we compute for every keypoint the
magnitude (m) and orientation (q) of the
gradients of every pixel in the
surroundings.

§ We make an histogram out of it.
• We make 36 bins, each one accounting for

10°
• We add in the specific bin a value

proportional to the magnitude for each pixel.

E.g. if a pixel has a 18.79° orientation and
magnitude “10”, we add 10 in the 10°-20°
bin.

§ All orientations above 80% are
considered a main direction.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

56

2.bis
the descriptor of SIFT

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

57

https://www.pexels.com/photo/black-and-green-toucan-on-tree-branch-17811/
https://medium.com/@vad710/cv-for-busy-developers-describing-features-49530f372fbb

Ready to compute
descriptors!

§ Recall: the descriptors describe what is giong on in the direct
surroundings of the keypoint.

§ It’s a kind of a fingerprint for each keypoint that we will use later to
match.

§ We need : the location, scale and orientation of each keypoint.

§ It needs to be unique and easy to calculate.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

58

We take each keypoint .
§ We first break the neighborhood

around the keypoint into a 16 x 16
window

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

59

Let’s zoom in this
one for a sec.

§ We first break the neighborhood
around the keypoint into a 16 x 16
window

§ Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

60

§ We first break the neighborhood
around the keypoint into a 16 x 16
window

§ Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

§ To enforce rotation invariance, the
keypoint’s main orientation is
substracted from the orientations

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

61

What is the effect of
substracting the main
orientation?

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

62

- 45° =

0°
45°

225°

270°

315°

180°

90°

135°

0°
45°

225°

270°

315°

180°

90°

135°
Main
orientation

Visualising like
histograms

§ We first break the neighborhood
around the keypoint into a 16 x 16
window

§ Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

§ To enforce rotation invariance, the
keypoint’s main orientation is
substracted from the orientations

§ Each radial plot corresponds to a
histogram…

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

63

0°
45°

225°

270°

315°

180°

90°

135°

=
0

45
90

135
180

225
270

315

The SIFT descriptor

§ We first break the neighborhood
around the keypoint into a 16 x 16
window

§ Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

§ Each bin of each histogram
becomes a feature, so 8 x 16 =128
features!

§ To achieve illumination invariance,
all features with big numbers are
clipped. E.g. everything larger than
20% is clipped to 20%.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

64

The SIFT descriptor

§ There are more tweaks on the
descriptor, which I omit here.

§ In the end, the patch is described
by the 128-dimensional vector,
which has all the information about
• location,
• scale,
• orientation and
• magnitude gradients

in the patch.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

65

SIFTi =
128

3. 4.
Establish
correspondences and
make them robust with
RANSAC

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

66

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

Time to match!

§ Now we have, for each image,
• A set of keypoints
• Each one with a 128-dimensional vector describing it.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

67

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

128

The simplest strategy to match is a
“best match”

§ Calculate distance between the SIFT features.
§ Each keypoint from image “I” is matched with the one of image “J “

showing the smallest distance in the SIFT features
§ A keypoint i from the set kI will be matched with the keypoint j from

the set kJ as follows:

§ d (.,.) is a distance, e.g. Euclidean.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

68

<latexit sha1_base64="jy10Jrw+5W3ziX3IAwddvaIkJzY=">AAACF3icbZDLSgMxFIYz9VbrrerSTbAIFaTMFFGXRUHUVcXeoFOHTJq2aTOZIclIyzBv4cZXceNCEbe6821M21lo6w+Bj/+cw8n53YBRqUzz20gtLC4tr6RXM2vrG5tb2e2dmvRDgUkV+8wXDRdJwignVUUVI41AEOS5jNTdwcW4Xn8gQlKfV9QoIC0PdTntUIyUtpxswUaiC22PcifqQ5tyOHBuYtjODx16H91dX1bio6HTT/DQyebMgjkRnAcrgRxIVHayX3bbx6FHuMIMSdm0zEC1IiQUxYzEGTuUJEB4gLqkqZEjj8hWNLkrhgfaacOOL/TjCk7c3xMR8qQcea7u9JDqydna2Pyv1gxV56wVUR6EinA8XdQJGVQ+HIcE21QQrNhIA8KC6r9C3EMCYaWjzOgQrNmT56FWLFgnheLtca50nsSRBntgH+SBBU5BCVyBMqgCDB7BM3gFb8aT8WK8Gx/T1pSRzOyCPzI+fwA51562</latexit>

arg min
j2kJ

d(xSIFT
i , xSIFT

j)

Sorting out for ex-
aequos

§ This strategy can work poorly if there are repetitive structure in
images

§ All these keypoints in J will score similarly
§ A solution is to compare the best and 2nd match and keep the match

only if the first leads to a much smaller distance than the second (=
unique match).

§ A division is what you need: if the result is close to 1, you discard the
match. If it’s small, you keep.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

69

<latexit sha1_base64="KFOytC8tyGwfspCK+33ABZLk2qA=">AAACBnicbZDLSsNAFIYn9VbrLepShMEiuCpJEXVZdOOygr1Am5bJZNIOnUzCzEQoQ1ZufBU3LhRx6zO4822ctFlo6w8DH/85hzPn9xNGpXKcb6u0srq2vlHerGxt7+zu2fsHbRmnApMWjlksuj6ShFFOWooqRrqJICjyGen4k5u83nkgQtKY36tpQrwIjTgNKUbKWEP7uB8KhHUw1O5AS5VlWc71geaB4aFddWrOTHAZ3AKqoFBzaH/1gxinEeEKMyRlz3US5WkkFMWMZJV+KkmC8ASNSM8gRxGRnp6dkcFT4wQwjIV5XMGZ+3tCo0jKaeSbzgipsVys5eZ/tV6qwitPU56kinA8XxSmDKoY5pnAgAqCFZsaQFhQ81eIx8jkokxyFROCu3jyMrTrNfeiVr87rzauizjK4AicgDPggkvQALegCVoAg0fwDF7Bm/VkvVjv1se8tWQVM4fgj6zPH8k3mfo=</latexit>

d1st

d2nd

Sorting out for ex-
aequos

§ Red: keypoints without a
good match (comparing 1st
and 2nd result)

§ Blue: “good” matches, but
including points matches to
the wrong keypoint in the
other image

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

70

https://people.cs.umass.edu/~elm/Teaching/ppt/370/370_10_RANSAC.pptx.pdf

Sorting out for ex-
aequos

§ We can use an algorithm so
sort out outliers, a favourites’
choice is RANSAC

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

71

https://people.cs.umass.edu/~elm/Teaching/ppt/370/370_10_RANSAC.pptx.pdf

1. For
2. Select four feature pairs
3. Compute the homography H
 (the transform from one image plane to another)
4. Compute inliers (matches that lie

within the distance of the homography)

6. Keep the largest set of inliers
7. Re-compute the homography H with all inliers

<latexit sha1_base64="nY1kNFIwgB+wc/HhdFKtWR+a2oU=">AAAB/3icbVDLSsNAFJ3UV62vquDGzWARKkhJiqgLF0U3XVawD2hDmEwm7djJJMxMpCV24a+4caGIW3/DnX/jpM1CWw9cOJxzL/fe40aMSmWa30ZuaXlldS2/XtjY3NreKe7utWQYC0yaOGSh6LhIEkY5aSqqGOlEgqDAZaTtDm9Sv/1AhKQhv1PjiNgB6nPqU4yUlpzigVceOfen9ZFDT+AV7JFIUpYaJbNiTgEXiZWREsjQcIpfPS/EcUC4wgxJ2bXMSNkJEopiRiaFXixJhPAQ9UlXU44CIu1kev8EHmvFg34odHEFp+rviQQFUo4DV3cGSA3kvJeK/3ndWPmXdkJ5FCvC8WyRHzOoQpiGAT0qCFZsrAnCgupbIR4ggbDSkRV0CNb8y4ukVa1Y55Xq7Vmpdp3FkQeH4AiUgQUuQA3UQQM0AQaP4Bm8gjfjyXgx3o2PWWvOyGb2wR8Ynz9XFJUK</latexit>

d(xj , Hxi) < ✏

<latexit sha1_base64="srm6qy4PHK+t+muY4oD4yogYCcg=">AAADH3icnZLLbtQwFIadUKCES6ftshurIxCrURy1wAapKpsuW4lpK02iyPGczFh1nMh2EFGUN2HTV+mGBQhV7Po2OGkiQTuw4Ei2fp3P//HxJSkE18b3bxz3wdrDR4/Xn3hPnz1/sTHa3DrVeakYTFkucnWeUA2CS5gabgScFwpolgg4Sy4+tPzsEyjNc/nRVAVEGV1InnJGjU3Fm85+KCA1szCBBZc1VYpWTc0a73NMwtCrurkdIch5j71Q8cXSRPg99o7+ag86e/Bv+0o3s/5lXPt+g1/hVpBBBI0tZQUZEBkQGVAwoGBAQYdWNfD/vcejsT/xu8D3BenFGPVxHI9+hvOclRlIwwTVekb8wkS2quFMgK1baigou6ALmFkpaQY6qrv3bfBLm5njNFd2SIO77O+OmmZaV1liV2bULPVd1iZXsVlp0ndRzWVRGpDsdqO0FNjkuP0seM4VMCMqKyhT3PaK2ZIqyoz9Up69BHL3yPfFaTAhbybByd744LC/jnW0g3bRa0TQW3SAjtAxmiLmfHGunG/Od/fS/er+cK9vl7pO79lGf4R78wuCxPmr</latexit>2

4
x1

y1

1

3

5 = H

2

4
x2

y2

1

3

5 =

2

4
h00 h01 h02

h10 h11 h12

h20 h21 h22

3

5

2

4
x2

y2

1

3

5

Sorting out for ex-
aequos

§ Red: keypoints without a
good match (comparing 1st
and 2nd result)

§ Yellow: correct good
matches

§ Blue: wrong “good”
matches

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

72

Summing up

§ Today we have learned about:

• Why we need image
matching

• The steps of image matching

• One simple corner detector:
Harris

• A complex keypoint detector
+ feature descriptor: SIFT

• How to match the two
images.

SS
M

EO
 c

ou
rs

e,
 2

6
Fe

br
ua

ry
 2

02
5

D
. T

ui
a.

 E
C

EO

73

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html. Photo and doll
created by Olha Mishkina

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html

