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https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html

=PrL Why image matching?
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(a) Red Band

Meng et al., JAG, 2021

(b) REG Band

When we acquire series of images
(e.g. with a drone) and want to

Create a mosaic

Reconstruct a 3D surface

Make 3D point measurements

Identify and track moving objects

Align different bands/ sensors acquired

at different times

N
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*F*L " How does image
matching work?

= AIM: Identify and uniquely match identical object features in two or
more images of the object

» Here

* Green points are
correct matches

* Red points are
misses

B SSMEO course, 26 February 2025

Sarlin et al., CVPR, 2019
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Let's say you have found the picture on the left and

would like to take the same image in summer.

How would you do it?

What if you cannot take
the image with you?

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/01/09/wxbs-in-simple-terms.html
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Identify salient objects and features in the images
("trees", "statues”, “tip of the tower”, etc).

Describe the objects and features, taking into
account their neighbourhood: “statue with a blue
left ear".

Match: establish potential correspondences
between features in the different images, based
on their descriptors.

Estimate in which direction one should move the

camera to align the objects and features.

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/01/09/wxbs-in-simple-terms.html
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Given two images to
be matched

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73
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Detect some keypoints

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73
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And find away to
match them!

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73

®
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=P*L The recipe is simple

Detector | Me,asurerlnetnt —»| Descriptor | _
region selector MatCh|ng Geometrical
and =»| verification
- i RANSA
Detector Measurement =» Descriptor |=» fllterlng ( A9
region selector P

https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/02/11/WxBS-step-by-step.html

Compute interest points/regions in all images independently

2. For each interest point/region compute a descriptor of their neigborhood
(local patch).

3. Establish tentative correspondences between interest points based on
their descriptors.

4. Robustly estimate geometric relation between two images based on

B SSMEO course, 26 February 2025

tentative correspondences with RANSAC.

©
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Why so difficult?

Matching is inherently ill posed, a unique
and univoque solution might not exist, due
fo:

= Occlusions
= Several candidates for a match
= Noise in the image

= Changes in acquisition conditions (day/night,
intensity)

= Changes in the object in between acquisition

200 400 600

Redzic et al., DEXA 2010

800

1000

1200
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N VM ‘“\Q !)etect keypomts:

W interest points / regions

, 26 February 2025

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b73
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Interest operators
extracting keypoints

= Algorithms that extract distinctive image points (keypoints)
= These points are potential suitable candidates for matching

= Good characteristics:
 Individuality = locally unique, distinct from background
 Invariant to geometric and radiometric distortions
* Robust to noise
* Rare = globally unique

= These keypoints are extracted on each image separately

-
N
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Interest operators
extracting keypoints

We want keypoints that are unique and invariant

= Unique: they happen rarely in the image
= [nvariant: if you shift or rotate the image, they are
still the same

Blue patch: you move it around, it looks the same
Black patch: on an edge, if you move it horizontally it
looks the same

Red patch: corner, anywhere you move it, it looks
different 2> Good keypoint!

https://docs.opencv.org/4.x/df/d54/tutorial_py_features_meaning.html

image

-
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Simple interest
operators

How to find them?

We use criteria within an interest window to see how
“interesting” the center pixel is

A first try could be the local variance (in a M x M window)

Not good,
» No geometric meaning
= All edges would seem interesting

Local Varlance: Window 51§

N

D. Tuia. ECEO



=PrL

B SSMEO course, 26 February 2025

Self-similarity and local
values comparison criteria

= We could look at patch similarity across the image, i.e.
the cross-correlation function

[What is the cross-correlation function?]

take each patch and slide it over the image. Every time, you
calculate the similarity with the area it is superimposed to:
if the patch is unique, you will have only one maximum (patch
with itself, max similarity),
if it repeats across image, there will be multiple areas with high
similarity, so not interesting.

-
(4]
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Self-similarity and local
values comparison criteria

= We could look at patch similarity across the image, i.e.
the cross-correlation function

[What is the cross-correlation function?]

take each patch and slide it over the image. Every time, you
calculate the similarity with the area it is superimposed to:
if the patch is unique, you will have only one maximum (patch
with itself, max similarity),
if it repeats across image, there will be multiple areas with high
similarity, so not interesting.
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“ The Harris detector (1)

D. Tuia. ECEO

= Now let’s take this idea of comparing
patches, but locally.

= Moving a patch around could give us a
good impression of whether we are in a
corner region

“flat” region: “‘edge”: “corner”:

no change in no change along significant

all directions the edge change in all
o A Efros direction directions

Strongly inspired by: https://www.cs.cornell.edu/courses/cs4670/2016sp/lectures/lec10_features2_web.pdf
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L

The Harris detector (2)

Now let’s take this idea of comparing
patches, but locally.

Moving a patch around could give us a
good impression of whether we are in a
corner region

We can calculate the sum of squared
differences for a location (x,y) after shifting
by w = (u,yv):

E(w,v)= >  [I(z+uy+v)—I(zy)]
(x,y)eW

-
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D. Tuia. ECEO



PF

B SSMEO course, 26 February 2025

L

-
©

The math behind (for your curiosity)

D. Tuia. ECEO

Corners and edges are

= We want to assess E(u,v) for small motions .
/ 1st order gradients
Taylor Series expansion of /:

I(x4u,y+v) = I(:z:,y)—l—%u—kg—év—l—higher order terms

If the motion (u,v) is small, then first order approximation is good

I(x+u,y+v)%1(w,y)+%u+g—£v

~ I(z,y) + [Iz Iy [ZJ]

) This is a Sobel

shorthand: I, = & filter, for example
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The math behind (for your curiosity)

= Coming back to the original equation:

E(w,v) = Y [Ta+uy+v)—I(zy)
(x,y)eW

Z [I%) + Iyu+ I,v — I>;<y)]2
(x,y)eW
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The math behind (for your curiosity)

E(u,v)

X

Z T.u+ va]2

(z,y)eW
~ Au’® 4+ 2Buv + Cv?

A= » I. B= » LI, C= oI

(z,y)eW (z,y)eW (x,y)eW

e Thus, E(u,v) is locally approximated as a quadratic error function

D. Tuia. ECEO
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The Harris detector (3)

E(uv)= Y [Uz+uy+v)—I(z,y)]
(x,y)eW

Using Taylor expansion, this is equivalent to
u
Ewu,v) = [u vl M
v

2
oI,

M=;woc,y) 17

Often a Gaussian weight
= distance from central pixel

We,y

A\
i S
: \‘}‘Q S
xTy o)
For a single pixel, 2 x 2 matrix

N
N
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The Harris detector (4)

= E(u,v) = const is locally quadratic

= [t can be approximated by an ellipse,

a.k.a each colorringin

= An ellipse can be decomposed into its psioplol

» eigenvectors (X) : orientation vectors
» eigenvalues ()) : length of the axis

\'

ection of the
Iweth nge

N
w
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L=

L

The Harris detector (4)

= E(u,v) = const is locally quadratic

= [t can be approximated by an ellypse,
a.k.a each colorringin

= An ellipse can be decomposed into its
eigenvectors (x) and eigenvalues (A)

= Since [u,v] are basis vectors of the
space (=the xy axis), M is the ellipse.

Ew,v) = [u vl M [u]
%

= The axes of the ellipse are thus the
eigenvectors of M and the scale of the
axes the eigenvalues

Xmax

Eigenvalues and eigenvectors of M

M Tmax = )\maxmmax

M Znin = )‘minxmin

¢ Define shift directions with the smallest and largest change in error

* Amax = @amount of increase in direction x.,,,

 dicaction ot . 0 E

= direchion of smallesi = F

* Anin = amount of increase in direction x.;,

N
'
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The Harris detector (4)

= Using the two eigenvalues,
we can characterise the
“‘edge-iness”

A\, and A, are small;

FE is almost constant
in all directions

N
a
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The Harris detector (5)

D. Tuia. ECEO

Final touch,

In 1988, Harris and Stephens merged all this into a single index, called the Harris detector

It uses the ingredients above to create a unified, simple to compute index

Given
o detiM) = 414,
e trace(M) =1, + 4,
e A; and A, are the eigenvalues of M

The Harris detector is:

R =det M — atrace(M)2 = A1 Ay — 04()\1 T )\2)2
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N
N

The Harris detector (5)

So the magnitudes of these eigenvalues decide whether a region is a corner, an edge, or flat.

D. Tuia. ECEO

e When |R| is small, which happens when 4; and 4, are small, the region is flat.
e When R < 0, which happens when A; >> A, or vice versa, the region is edge.
o When R is large, which happens when A; and A, are large and A; ~ A,, the region is a corner.

a: constant (0.04 to 0.15)

“Flat’ 9
region

R = det M — atrace(M)* = My — (A1 + Aa)?
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You can compute the
Harris detector fast!

= So far, we saw the math pixel by pixel

= Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

N
[o 2]

D. Tuia. ECEO
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"L You can compute the
Harris detector fast!

= So far, we saw the math pixel by pixel

= Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

= If you consider the whole image

N
©
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=P*L You can compute the
Harris detector fast!

D. Tuia. ECEO

= So far, we saw the math pixel by pixel

= Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues
Y P 9 o, 110,

= 1. Image (D
= If you consider the whole image, M is of size e — #01,05) g(a,)*[lxly(%) I2(0,) l derivaﬁves 0 |\"
(2 x height_image, 2 x width_image) (optionally, blur first) SERRES2

= This matrix is made of the gradient images,

B SSMEO course, 26 February 2025
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=P*L " You can compute the

(@)
O
u |
Harris detector fast!
a
= So far, we saw the math pixel by pixel O ‘—\
= Each pixel gave us a M matrix of size (2 x 2) E°§ I/
that you can decompose in two eigenvalues o) 11.(0))
i i i i u(o,,0,)=g(0)*| ° n 1. Image :
» |f you consider the whole image, M is of size IL1(0oy) 1;(0p) derivatives ;
(2 x height_image, 2 x width_image) (optionally, blur first)
= This matrix is made of the gradient images, Hm . - ,
derivatives ol ;

B SSMEO course, 26 February 2025
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You can compute the
Harris detector fast!

= So far, we saw the math pixel by pixel

= Each pixel gave us a M matrix of size (2 x 2)
that you can decompose in two eigenvalues

. , , . w(o,,0,)=g(o,)* L(@y)  L1,(0,) 1. Image
= If you consider the whole image, M is of size =D U110, IXop) derivatives
(2 x height_image, 2 x width_image) (optionally, blur first)

= This matrix is made of the gradient images,

me 2. Square of
multiplied by blur kernels g()

derivatives
3. Gaussian

filter g(o)

[
N
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L

You can compute the
Harris detector fast!

= So far, we saw the math pixel by pixel

= Each pixel gave us a M matrix of size (2 x 2) that
you can decompose in two eigenvalues

= |f you consider the whole image, M is

2
(2*height_image, 2*width_image) w(o,,0,)=g(0)* L(0p)  1d,(0p) 1. Image
. - . LI1,(0,) I;(0,) derivatives
= This matrix is made of the gradient images, (optionally, blur first)
multiplied by blur kernels g()
) ) ) 2. Square of
= The Harris detector can be implemented without derivatives
the need for eigen decomposition, only the det
determinant and trace of M! trace
3. Gaussian
A B | filter g(o)
trace[ c D ] =A+D
det { é g } _AD - BC ornerness function — both eigenvalues are strong
2
— oftrace(u(0,,0 )" ] =

gI)gU)-[gU )T =ale()+gU)T

5. Non-maxima suppression

[0
(&)
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Yi te th .
ou Can compute tne .
L
= 2
Harris detector fast!
- F
a
So far, we saw the math pixel by pixel
Each pixel gave us a M matrix of size (2 x 2) that you can O ‘—\
decompose in two eigenvalues ‘ |
[ | -]
If you consider the whole image, M is (2 x height_image, 2 x , g /
width_image) H(0,.0.) = (o)) [ (o) 11,(0,) 1. Image
YD)~ 1 2 , .
This matrix is made of the gradient images, multiplied by blur IXIY(GD) Iy (@) ti de“vagresf. t
kernels g() (optionally, blur first)
The Harris detectorcan be implemented without the need for 2. Square of
eigen decomposition, only the determinant and trace of M! derivatives
detM = AA,
traceM = A +
A+ 3. Gaussian
A B | filter g(o)
trace[ c D ] =A+D
det { é IB; } _AD - BC 4. Cornerness function — both eigenvalues are strong
2
‘ har = det[ (0,0 )] - eftrace(u(0,,0 )" ] =
So you can compute the Harris detector for the whole image in 2 2y _ 2 _ 2 2N\12
one go by summing/substracting the gradient images g(lx )g(Iy ) [g(lxly)] a[g(lx ) + g(ly )]

5. Non-maxima suppression
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2.
Compute a descriptor of

the neighborhood of the
keypoint

B SSMEO course, 26 February 2025

https://www.pexels.com/photo/black-and-green-toucan-on-tree-branch-17811/
https://medium.com/@vad710/cv-for-busy-developers-describing-features-49530f372fbb
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Now that we have
corners, what?

= We want to describe the content of the image at that location

= Taking the example of the beginning they could be textual
descriptions (“a statue”, “a red flag”) that could help us matching
corresponding objects in different images

= [n image matching, we use image features, e.g. grayscale gradients,
particular patterns, etc.

= We need to find features that are

* Unique (so we can find a clear match in the other image)
 Invariant to scaling and rotation
* |Invariant to color deformations (atmospheric conditions, illumination, etc)

W
[}
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Why invariance?

= We want patches centered on the same keypoint of different images
to have high similarity between each other

= We need to find the right function of the pixel values, a descriptor
= What we want:

W
N
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Why invariance?

= We want patches centered on the same keypoint of different images
to have high similarity between each other

= Similarity is a measure of feature distance between the patches being
considered. For instance a Gaussian distance, an Euclidean, ...

Me Me
v
£ £ 1m——————-—73
S o
> =
x "
= =
8 ©
£ e 3 _ _ _ _ _
v w0
Someone Someone
else else

Large bandwidth (large gamma) Small bandwidth (small gamma)

[o\]
©
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Why invariance?

= We want patches centered on the same keypoint of different images
to have high similarity between each other

= Similarity is a measure of feature distance between the patches being
considered. For instance a Gaussian distance, an Euclidean, ...

= But we have images that are distorted, at different scales, etc! So the
features we use to describe the patch are important!

= Example:

» |f we take the grayvalues directly as features and we rotate the image, the same patch will have very
low similarity

* |f we sort the values, the feature is rotation invariant

Pixel by pixel Euclidean distance: 507.28!!
Sorted values pixel by pixel distance: O

'S
o
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But a description
should be invariant AND
discriminative

Comparing original
pixel values, no rotation
invariance

© 2 n» @ & o o
g8 8 8 8 8 8
8 8 8 8 8 8

© 2 N @ & o o9
g8 8 8 8 8 8
8§ 8 8 8 8 8

£
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But a description

should be invariant AND

discriminative

= |f we sort, our distance
becomes rotation invariant (the

two maps in the right column are the same)

Comparing original

pixel values, no rotation

invariance

© 2 N @ s o 9
g8 8 8 8 8 8
8 8 8 8 8 8

© 2 N @ & o o9
g8 8 8 8 8 8
8§ 8 8 8 8 8

B 32238

5 8

3 3

e

'S
)
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Comparing sorted
pixel values, rotation
invariance, but poor
discrimination

Patches normal, sorted

©c =2 N @ & o o
g 8 8 8 8 8
8 8 8 8 8 8

Patches rotated, sorted

o =2 N w & o o
g8 8 8 8 8 8
8 8 8 8 8 8
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But a description
should be invariant AND
discriminative

= |f we sort, our distance

becomes rotation invariant (e
two maps in the right column are the same)

= But we have less
discrimination, since we
destroyed all image structure

* many more patches look similar (the
right column is more blue)
« The original distance map (top left) is

better (it just doesn’t work as soon as we
have differences, bottom left)

Comparing original

pixel values, no rotation

invariance

Patches normal

50 100 150 200

Patches rotated

50 100 150 200

Comparing sorted

'S
@

D. Tuia. ECEO

pixel values, rotation
invariance, but poor

discrimination

Patches normal, sorted

50 100 150 200

Patches rotated, sorted

50 100 150 200
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A good feature descriptor works
across scales and orientations: SIFT

= A very popular one is the Scale-Invariant Feature Transform (SIFT)
= [nvented by David Lowe in 1999

= Still probably the most used one around

= WWas patented until 2020.

= Emulated implementations are around.

= SIFT includes two steps:
» keypoint detection (you can use your own, e.g. the Harris detector)
» keypoint description = extract meaningful features

= We will go through both, since the detection is crucial for scale
invariance

D. Tuia. ECEO
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keypoints: SIFT

Wi V,,‘“\Q Back to detecting

\&Jl

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-o

B SSMEO course, 26 February 2025
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SIFT, phase 1
Detection

Let’s say we want to find good keypoints for this image

SIFT first creates a pyramid of images at different levels of blurring
We use Gaussian convolutions (green arrow)

After some convolutions (here 3) we downsample and start over (blue arrow)
Each row of 6 is called an octave (it doubles the blur in the image)

= Allimages are [0-1] normalised.

http:/weitz.de/sift/index.ntml

'S
)
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=PL  SIFT, phase 1
Detection

= By doing so, we built a scale-space
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B SSMEO course

Space: octaves

SIFT, phase 1
Detection

= By doing so, we built a scale-space

Scale: suppress details

D. Tuia. ECEO
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SIFT, phase 1
Detection

= To find the keypoints, we look for points that change a lot across
scales and/or levels of detail

= To do so, we calculate the difference of Gaussians, the difference
between the pixel values of the left and right images of the previous
slide

(they were Gaussian
blurred version of
each octave,

remember?)

'S
©
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SIFT, phase 1
Detection

o
o

D. Tuia. ECEO
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We detect interesting keypoints

by looking at the DoG

Image 1

4+
§=
o
Q
>
Q
X
®)
=

Keypoint

DoG

Image 2

D. Tuia. ECEO
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We detect interesting keypoints
by looking at the DoG

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

DoG for each octave / level of blur Each pixel in a DoG map gets compared
to neighbors in the same map and the one
at the smaller and larger level of blur.

= Keypoints are found by comparing the DoG values across nearby pixels, in scale space (we
don’t compare across octaves).

= We have 26 neighbors (green dots).

octaves

a
N

D. Tuia. ECEO



=PrL

B SSMEO course, 26 February 2025

We detect interesting keypoints
by looking at the DoG

[4)]
(&)

D. Tuia. ECEO

PS: it’s not so simple.
there are several extra
steps to remove spurious
maxima (flat points, edges)
looking at local curvature

&
&

= Keypoints are found by comparing the DoG values across nearby pixels, in detail space (we don’t
compare across octaves).

= We have 26 neighbors (green dots on previous slide).
= AREXML (resp. minimum) is the point with DoG value larger (resp. smaller) than all its neighbors
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L

Last thing: assign the
main orientation

= For each detected point, we compute the main orientation of the
gradients in the image.

= This will impact the features detected later on.

= Note: one keypoint can have more than one main direction (see next
slides). In this case, it is used as multiple keypoints with different
orientations (with same location and scale)

ol
»

D. Tuia. ECEO
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Last thing: assign the
main orientation

= First we compute for every keypoint the
magnitude (m) and orientation (6) of the
gradients of every pixel in the
surroundings.

]

Gaussian blurred image Gradient

orientations. =

= We use the formulas below, where L is
the Gaussian blurred image:

m(z,y) = \/(L(z + L,y) — L(z — ,y))? + (L(z,y + 1) — L(z,y — 1))?

6(z,y) = tan~" ((L(z,y + 1) — L(z,y — 1))/(L(z + 1,y) — L(z — 1,y)))

[4)]
(3]

D. Tuia. ECEO



=L Last thing: assign the
main orientation

= First we compute for every keypoint the
magnitude #m) and orientation () of the
gradients of every pixel in the
surroundings.

= We make an histogram out of it. Gaussian blurred image  Gradient

. %@ make 36 bins, each one accounting for origristions): <

+ We add in the specific bin a value .
proportional to the magnitude for each pixel.

o
o]

D. Tuia. ECEO

g 100%

8 E.g. if a pixel has a 18.79° orientation and i )

§ magnitude “10”, we add 10 in the 10°-20

5 bin.

2 = All orientations above 80% are

o considered a main direction.

= : -
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2.bis

the descriptor of SIFT

B SSMEO course, 26 February 2025

https://www.pexels.com/photo/black-and-green-toucan-on-tree-branch-17811/
https://medium.com/@vad710/cv-for-busy-developers-describing-features-49530f372fbb
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Ready to compute
descriptors!

= Recall: the descriptors describe what is giong on in the direct
surroundings of the keypoint.

= [t's a kind of a fingerprint for each keypoint that we will use later to
match.

= We need : the location, scale and orientation of each keypoint.

= [t needs to be unique and easy to calculate.

D. Tuia. ECEO
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We take each keypoint =

= We first break the neighborhood
around the keypoint into a 16 x 16
window

Let's zoom in this

one for a sec.
F

16x16 window

® Keypoint

[4)]
©

D. Tuia. ECEO
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= We first break the neighborhood
around the keypoint into a 16 x 16
window

= Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

LR
<

VAN
bY a

2]
o

D. Tuia. ECEO
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= We first break the neighborhood
around the keypoint into a 16 x 16

window

= Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

= To enforce rotation invariance, the
keypoint’s main orientation is
substracted from the orientations

128 dimensional vector

"
‘ 'é v "‘ b phw
" ~ \L/ <4— »
S ‘“« ¢—f‘ + }‘
0 | ‘.
Ko Ky 4 ke .
-
<o | YO o> | <o
Kv4d - v - L " Y s
-
“
L5 phw Val v‘; ~
e + > <+ Zi"b "t:&%‘ > < -jI:»
v 4 » - -
v ‘,' vh w ",' "'
«x»> =P =P 4—K>
LN e a4 x4
® Keypoint

o]
=
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=PFL - What is the effect of ”
substracting the main

D. Tuia. ECEO

orientation?
0] 0"
315° . 45° 315° | o
A
o Y o - 45° = ;%5 )
‘% v Main Y
E 9050 135° orientation 225° 135°

180° 180°

B SSMEO course
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Visualising like
histograms

= We first break the neighborhood
around the keypoint into a 16 x 16
window

= Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

= To enforce rotation invariance, the
keypoint’s main orientation is
substracted from the orientations

= Each radial plot corresponds to a
histogram...

OO
315° | 45°
270° 90°
225° 135°
180°

0] 90 180 270
45 135 225 315

o]
(3]
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The SIFT descriptor

= We first break the neighborhood

around the keypoint into a 16 x 16
window

= Within each 4 x 4 sub-window, a
histogram of 8 bins (44° each)
orientations and magnitudes
recorded (like in the previous step!)

= Each bin of each histogram
becomes a feature, so 8 x 16 =128
features!

= To achieve illumination invariance,
all features with big numbers are
clipped. E.g. everything larger than
20% is clipped to 20%.

(o)
B

D. Tuia. ECEO
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The SIFT descriptor

» There are more tweaks on the
descriptor, which | omit here.

= In the end, the patch is described
by the 128-dimensional vector,
which has all the information about

* |ocation,

» scale,

« orientation and

* magnitude gradients

in the patch.

»
4]

D. Tuia. ECEO

SIFT, _

128
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Establlsh
correspondences and

— make them robust with
— RANSAC

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b

B SSMEO course, 26 February 2025
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=FrL Time to match!

D. Tuia. ECEO

= Now we have, for each image,
» A set of keypoints 128
« Each one with a 128-dimensional vector describing it.

B SSMEO course, 26 February 2025

https://towardsdatascience.com/improving-your-image-matching-results-by-14-with-one-line-of-code-b72ae9ca2b73
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L

The simplest strategy to matchis a
“best match”

= Calculate distance between the SIFT features.

= Each keypoint from image “/” is matched with the one of image “J*
showing the smallest distance in the SIFT features

= A keypoint / from the set 4, will be matched with the keypoint / from
the set &, as follows:

SIFT .SIFT)

arg min d(z;" " *, T

j€k s

= d(,) is adistance, e.g. Euclidean.

D. Tuia. ECEO
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L

Sorting out for ex-
aequos

= This strategy can work poorly if there are repetitive structure in
images

= All these keypoints in J will score similarly

= A solution is to compare the best and 2nd match and keep the match
only if the first leads to a much smaller distance than the second (=
unigue match).

= A division is what you need: if the result is close to 1, you discard the
match. If it’s small, you keep.
dl st

d2nd

D. Tuia. ECEO
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Sorting out for ex-
aequos

= Red: keypoints without a
good match (comparing 1st
and 2nd result)

= Blue: “good” matches, but
including points matches to
the wrong keypoint in the
other image

~
o

D. Tuia. ECEO

https://people.cs.umass.edu/~elm/Teaching/ppt/370/370_10_RANSAC.pptx.pdf
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L

Sorting out for ex-
aequos

= We can use an algorithm so

I

D. Tuia. ECEO

1. For

sort out outliers, a favourites’ 2. Select four feature pairs

choice is RANSAC

N B P
H " f \ g —,/' H
O\ b

" planar surface

T hoo  hor  ho2 T2
=H |y | =1| hio hit hi2 Y2
1 hao  ho1  haoo 1

€1
N
1

3. Compute the homography H

(the transform from one image plane to another)
4. Compute /nliers (matches that lie

within the distance of the homography)

d(xj, Hx;) < €

6. Keep the largest set of inliers
/. Re-compute the homography H with all inliers

https://people.cs.umass.edu/~elm/Teaching/ppt/370/370_10_RANSAC.pptx.pdf
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Sorting out for ex-
aequos

= Red: keypoints without a
good match (comparing 1st
and 2nd result)

o . correct good
matches

= Blue: wrong “good”
matches

~
N

D. Tuia. ECEO
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PFL Summing up

= Today we have learned about:

Why we need image
matching

The steps of image matching

One simple corner detector:
Harris

A complex keypoint detector
+ feature descriptor: SIFT

How to match the two
images.

B SSMEO course, 26 February 2025

created by Olha Mishkina
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. Photo and doll


https://ducha-aiki.github.io/wide-baseline-stereo-blog/2020/03/27/intro.html

