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Ex 5 – Optimization, 
DSM, orthophoto

§ Tomorrow: use 8 (possibly 45) neighboring 
photographs (to those used in Ex. 1,2,3,4)
together with navigation-derived poses to 
obtain (via a professional software) a digital 
surface model with orthorectified image.

§ Today: understand the concepts behind this 
process and the influencing parameters. 
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Flight planning
Image

acquisition

(Trajectory e.g. 
navigation 
sensors)

Images

3

Feature 
detection

Feature 
matching

Orientation
3D reconstruction

Optimization 
Production surface 

orthophoto

Exercises
§ Image ‘corrections’ (Lab01)
§ Detection & matching (Lab02)
§ Approx. absolute orientation (Lab03)
§ Approx. relative orientation (Lab04) 
§ Calibration, DEM, ortho-photo (Lab05)

Lectures
§ Image primes (L1)
§ Salient features  (L2)
§ Image orientation (L3) 
§ Stereo vision (L4) 
§ Optimization & Mapping (L5) 



Main mapping products 4

Digital elevation model (DEM)
colour represents a height above reference surface

Ortho-rectified image (needs DEM)  
pixels correspond to ∆x, ∆y (m) on a projected surface  



Main stages

• Detection & matching
• [R|t]i , K, triangulation
• External (GCPs, poses)
• Global optimization 

(Bundle Adjustement, 
Calibration, Align images

Structure from 
Motion (SfM) 

• Dense matching 
(epipolar contraint)

• Triangulation (no 
adjustment)

Dense Point 
Cloud • Classification 

(segmentation)
• Resampling & 

refinement
• Mesh extraction 

Digital Elevation 
Model (DEM)

• Projection 
• Radiometric 

adjustement
• Resampling

Ortho-
rectification
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possibly external (e.g. via lidar)



Optimization

Dense matching /3D point cloud

3D meshes and elevation models 

Orthorectification

Appendix



Global optimization

Incremental SfM

Effect of random errors

Additional observations

Quality analysis 

• Optimize

Structure from 
Motion (SfM) 

• Dense 
matching

• Triangulation 

Dense Point 
Cloud • Mesh

extraction 

Digital Elevation 
Model (DEM)

• Projection 

Ortho-
rectification



Incremental SfM
(Structure from Motion) 

I. Describe & match images (SIFT, Lab02), deduce connectivity matrix (which image 
matches which image)

II. Initialize 3D model with suitable image pair (coplanarity, Lab04)
III. Expand model to all images, iterate steps below:

a. Add connected image 
b. Compute its pose from previously triangulated points (e.g. via DLT, Lab03)
c. Triangulate new points (coplanarity, Lab04)
d. Optimize (minimize reprojection error)  via collinearity for all images
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1. Analyse structure of image block by building connectivity matrix

2. Initialize 3D model by selecting suitable pair for stereo matching from all available 
images

3. Expand 3D model 
a. If there are connected images add that image which contains the largest number of 

existing 3D points

b. Compute orientation of corresponding camera station (DLT)

c. Spatial intersection of additional stereo points

d. Compute bundle block adjustment

36

Incremental Structure from Motion Algorithm

© Institute for Photogrammetry, Univ. Stuttgart
CV_1_Basic_Readings_in_Computer_Vision

III.bII. Image: P. MoulonIII.c



Scene reconstruction 
without scale*

Estimate essential matrix E (>4 points) 
§ Filter wrong matches (RANSAC, lecture 1.2) + extract [R|t ]

Sequentially (one image pair at a time) 

§ Good for unknown camera param, pose,
poor overlap, etc. 

§ Initial step/approximation

Global (all)
§ Good for scenes with known image distortions,

large overlap, sufficient texture, etc. 
§ Final step
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*Scale reconstruction: several possibilities: a. GCPs, b. pose via GPS(/INS), c. a+b (details later)



Scene reconstruction –
global optimization

Goal: 
increase reconstruction accuracy

§ Refine: exterior T=(R | t) & interior (K | ap) 
parameters + image coordinates pij

§ How: using collinearity conditions involving all images j 
in a set J

§ Better identification of extreme (faulty) observations 

(Pi , Tj=[Rj|tj ] in local-frame, no scale!)

p

TP Kap



Optimization – starting 
point 

With minimum inputs:
§ Observed image coordinates pi
§ Keypoints 3D coordinates Pi

§ Camera poses Tj =[R|t ]

§ Camera additional parameters (calibration) ap 

Via following observation model (collinearity equations)

With optional additional inputs:
§ (possibly) observed point coordinates in object space (GCP) – later 
§ (possibly) observed pose (position and/or attitude) – later   
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p
pi,j + vi,j = Π(Pi, Tj ,K, ap)

Pi Ti Kap



Optimization – general 

Minimize errors via maximum likelihood estimate of

With: 
§ Parameters 
§ Joint covariance matrix  
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How to minimize errors: least-squares
• For errors following (multivariate) normal distribution 
• Choose                                   that minimize the sum of 

squared errors v weighted by the inverse of their 
uncertainty (covariance matrix)

Cj

Pm
i

pij

observed

reprojected

reprojection error

||pij −Π(Pm
i ,K,Rj , tj)||

map-(or arbitrary, e.g. 1st image)-frame

C
−1

ℓℓ

argminK,R,t,ap
v = argminK,R,t,ap

∑n
i=1

∥pij −Π(Pm
i ,K,Rj , tj , ap∥2



Optimization – input 
dependency 

§ Input
• Image coordinates (key-points)
• :
• (possibly) observed points in object space (later)
• (possibly) observed camera poses (partial or full - later)
• :
• approximated values of exterior or interior orientation & 3D point coordinates!

§ Output
• Follows the fundamental I/O principal

• Adjusted values of all observations + exterior and interior orientation & 3D points

13

GARBAGE IN → GARBAGE OUT



Effect of random errors 
– precision of points

Image block (forward+side overlap)
§ Only image coordinates (pi )

§ Ideal (hypothetical) case

Prediction / covariance of points Pi
Pi are part of the parameter space
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Cx̂x̂ = (ATC
−1

ℓℓ
A)−1

after W. Förstner, UAV-g 2017

Free Strips and Blocks
Strips and blocks without GCP, only image data
Precision �X of derived scene points

! drifts may be caused by
I random errors
I remaining calibration errors

Block

A =

(

∂Π()
∂x

)

|(ℓ,x0)

x

circle/ellipse = uncertainty



Effect of random errors  
in image observations

Image overlap forward + side (if in block*)
When no accurate prior knowledge on camera 

pose

Possible deformation caused by accumulation of 
random errors
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Quasi systematic Errors of Strips and Blocks

Figures show 1� large deformation as a representative sample
1

3 4

1 2 3 4

2

after W. Förstner, UAV-g 2017

control is needed!

circle/ellipse = uncertainty

Quasi systematic Errors of Strips and Blocks

Figures show 1� large deformation as a representative sample
1

3 4

1 2 3 4

2

Quasi systematic Errors of Strips and Blocks

Figures show 1� large deformation as a representative sample
1

3 4

1 2 3 4

2

B
LO

C
K

S
TR

IP
/L

IN
E

*block is from from several strips (e.g. flight lines) where images overlap also laterally/sideways



Quality of Blocks
Precision depending on GCP distribution

I GCPs only at corners !
I instable at boundaries, up to 6�
I large outliers in GCP not detectable up to 45�

I GCPs at boundary ! homogeneous precision
I homogeneous precision, up to 1.7�
I small outliers in GCP not detectable, up to 9�

5.69

45.9 9.06.9
0 l=

∆

0 l=

1.46

∆

1.66

3.72

σ=

σ=σ=

0 l=

∆

σ=

Improving quality 
e.g. via ground control points (GCPs) 

GCP spatial distribution:
A. Only 4 GCPs at corners 

• Unstable boundaries, 6 sigma
• GCP outliers (large errors) are 

not detectable

B. GCPs at boundaries
• Homogenous precision, < 2 

sigma
• Small GCP outliers not 

detectable

§ Note: a better setup is with 
precise aerial position (+ attitude)

• Camera poses observed
• Fewer or no GCPs are needed! 

(Lab05)

16

After W. Förstner, UAV-g 2017

triangle symbol = GCP
circle/ellipse = uncertainty

minimum detectable errors 

A B



Optimization – additional observations
Ground control points (GCPs)

Points with know coordinates in mapping frame, measured on site
and known image coordinates (measured manually or semi-automatically)

Using GPS/GNSS - RTK/PPK:
§ 1.5-2 cm horizontal uncertainty
§ 2.5-3 cm vertical uncertainty

Signalization
• Uncoded

• Coded 
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Pi

map-frame

Cj

automated identification
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Optimization – additional observations
Sensor aerial position + orientation 
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GPS antenna

Cj

Pm

m-frame

GPS / GNSS receiver + inertial measurement unit (IMU)
§ IMU orientation, interpolated for Cj :
§ orientation offset (bore-sight):
§ IMU position, interpolated for Cj :
§ spatial offset to IMU origin (lever-arm):

ℓ
R

b,j
m

+ v
R

b,j
m

≡

(

Rm
b,jRv,j

)T

=
(

Rm
c,jR

c
b

)T

Rb
c = (Rc

b
)T

IMUb

ℓmb,j + vb,j = tmc,j +Rm
c,jx

c
ob

x
c

ob

x
c

ob

Position observation (GPS only or GPS/IMU)

Attitude observation (requires IMU)



Optimization – precision and accuracy

Quantify effect of random errors 

Internal measures 
• Control correctness
• Needs to be checked

External measures
• Control sufficiency
• Needs to be sufficient
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Quality metrics example
for a drone flight

A. Internal
§ Discordance between observations
§ Size & distribution of residuals vs. estimated precision

B. External
§ comparison with ground truth, e.g. < 2 x GSD (ground sampling density) 
§ e.g. using reference values, points (check points = coordinates in object 

space observed, but not used in optimization)

Metric - Mean square error (MSE) of:
§ reprojection error (all image observations) 
§ aerial pose (position & attitude)
§ check points (in object space, metric) 
§ check points (in image space, pixels)
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Survey Data
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Fig. 1. Camera locations and image overlap.

Number of images: 440

Flying altitude: 155 m

Ground resolution: 2.66 cm/pix

Coverage area: 0.547 km²

Camera stations: 440

Tie points: 381,168

Projections: 1,698,383

Reprojection error: 0.445 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

unknown 5120 x 3840 unknown unknown No

Table 1. Cameras.
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Ground resolution: 2.66 cm/pix

Coverage area: 0.547 km²

Camera stations: 440

Tie points: 381,168

Projections: 1,698,383

Reprojection error: 0.445 pix

Camera Model Resolution Focal Length Pixel Size Precalibrated

unknown 5120 x 3840 unknown unknown No

Table 1. Cameras.
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Example – summary 



Quality report example
Camera calibration

22

Camera Calibration

1 pix

Fig. 2. Image residuals for unknown.

unknown

440 images

Type Resolution Focal Length Pixel Size

Frame 5120 x 3840 unknown unknown

Value Error F Cx Cy B1 B2 K1 K2 K3 P1 P2

F 5607.25 0.018 1.00 0.00 0.04 -0.13 0.01 -0.35 0.32 -0.29 0.01 -0.00

Cx 30.2154 0.021 1.00 -0.01 0.02 -0.09 -0.00 -0.00 0.00 0.82 -0.01

Cy 52.4225 0.018 1.00 0.14 0.04 0.01 -0.00 0.00 -0.00 0.66

B1 -0.0246013 0.003 1.00 -0.00 0.04 -0.06 0.07 -0.02 -0.08

B2 0.120007 0.003 1.00 -0.00 0.00 -0.00 0.08 0.00

K1 0.0161593 3e-005 1.00 -0.97 0.92 0.00 0.02

K2 -0.0621043 0.00022 1.00 -0.99 -0.00 -0.01

K3 0.063624 0.00048 1.00 0.01 0.01

P1 -0.000934223 1.2e-006 1.00 0.01

P2 0.00104344 9e-007 1.00

Table 2. Calibration coefficients and correlation matrix.

Page 3

Camera Calibration

1 pix

Fig. 2. Image residuals for unknown.

unknown

440 images

Type Resolution Focal Length Pixel Size

Frame 5120 x 3840 unknown unknown

Value Error F Cx Cy B1 B2 K1 K2 K3 P1 P2

F 5607.25 0.018 1.00 0.00 0.04 -0.13 0.01 -0.35 0.32 -0.29 0.01 -0.00

Cx 30.2154 0.021 1.00 -0.01 0.02 -0.09 -0.00 -0.00 0.00 0.82 -0.01

Cy 52.4225 0.018 1.00 0.14 0.04 0.01 -0.00 0.00 -0.00 0.66

B1 -0.0246013 0.003 1.00 -0.00 0.04 -0.06 0.07 -0.02 -0.08

B2 0.120007 0.003 1.00 -0.00 0.00 -0.00 0.08 0.00

K1 0.0161593 3e-005 1.00 -0.97 0.92 0.00 0.02

K2 -0.0621043 0.00022 1.00 -0.99 -0.00 -0.01

K3 0.063624 0.00048 1.00 0.01 0.01

P1 -0.000934223 1.2e-006 1.00 0.01

P2 0.00104344 9e-007 1.00

Table 2. Calibration coefficients and correlation matrix.

Page 3

35 mm eq. 4.6 10E-6 m7920 x 6004

c

ap

K



Quality report example
Camera location 
internal metric - prediction
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Quality report example
Check* points 
external metric
evaluation

24

*check points 
are GCP that are used as 
tie-points, i) position of which 
is determined via photos & 
evaluated against known
position. 
(i.e. their known object
coordinates are NOT used
to constrain optimizations)

What are the principal factors 
Influencing precision/accuracy?
→ Appendix II.



Optimization

Dense matching /3D point cloud

3D meshes and elevation models 

Orthorectification

Appendix

• Optimize

Structure from 
Motion (SfM) 

• Dense 
matching

• Triangulation 

Dense Point 
Cloud • Mesh

extraction 

Digital Elevation 
Model (DEM)

• Projection 

Ortho-
rectification



3D point cloud from 
multi-view stereo 

26

Potential accuracy of 3D point cloud 0.5-2 pixels (at image scale) so 0.5- 2x GSD. 
Challenges: occlusion (see Appendix IV.), semi-transparent structures, homogenous texture.

example



High-density image matching stages 

Required
Image orientation parameters (+global optimization), Lab 03 + 04 + 05

Steps
1. Epipolar image generation (optional, appendix III.)

i.e. image transformation for simplified matching
2. Dense matching 

disparity (per pixel) along epipolar lines 
3. Triangulation 

we know how, Lab 04 

Further process 
Digital elevation model – see below

27

Source: N. Haala, EuroSDR 2019

Agisoft – Align Photos

(1.)

2.

3.

dense point cloud



Epipolar lines = rows in the epipolar images 
28

Source: N. Haala, EuroSDR 2019

What it does ? 
• 2D Transformation 
• Epipolar lines = rows

How ?
• 5 slides on “epipolar 

image generation” 
are in Appendix III. 

Why doing that ? 
• Simplification for 

dense matching
• Region algoritm algo



Dense pixel matching

Epipolar images: pairs of epipolar lines are parallel to rows
§ This simplifies the matching to 1D search
§ Correspondences per each pixel can be stored in disparity 

(parallax) images (shade = distance)

29

ifpifpUniversität Stuttgart

2. Dense Pixel Matching

• For each pixel in the base image find the corresponding pixel in the match 
image

•Window based algorithms
� local algorithms, correlation

•Pixel based matching 
� Global algorithms  with continuity constraint

19

d d

Base image Match image Parallax image 

p q

© Institute for Photogrammetry, Univ. Stuttgart 21.06.2019

� �,p px y � �,p px y� �,x d y�p p

ifpifpUniversität Stuttgart

•Use relative or absolute orientation of a stereo image 
pair to compute epipolar lines or epipolar image pairs.

• In epipolar image pairs epipolar lines are parallel to x-
axis of the pixel coordinate system

•Simplifies matching to 1D problem 

•Correspondences for each pixel can be stored in 
parallax/disparity images

10

Prerequisite for parallax or disparity images

1. Epipolar image generatopm

© Institute for Photogrammetry, Univ. Stuttgart
21.06.2019EuroSDR_Short_course_Dense_Image_Matching

Source: N. Haala, EuroSDR 2019



Window based matching 

Challenge: Homogenous texture results in matching ambiguity
(same gray values for many different object points)

Goal: Increase robustness of similarity measure by comparing 
matching windows (correlation).

Condition: implies constant disparity (depth) within the mask

Side effects: Blurred edges, loss of resolution (small objects)

Other approaches: hierarchical stereo matching, 
segmentation by Markov fields, graph cut labeling, multi-stereo 
(across several images) matching, deep learning … 

30

ifpifpUniversität Stuttgart

Window based matching

• Corresponding pixels have same gray values

• Homogenous texture results in matching ambiguity 
� Same greyvalues for many different object points

• Increase robustness of similarity measure
� Compare greyvalues of matching windows, i.e. by correlation 

• Implies constant disparity (depth) within mask

• Wrong model results in errors at depth jumps 
� Blurred edges, loss of small objects

29EuroSDR_Short_course_Dense_Image_Matching

Source: Hirschmüller, Heiko (2005) - Accurate and efficient stereo processing by Semi Global Matching an Mutual Information

© Institute for Photogrammetry, Univ. Stuttgart 21.06.2019

ifpifpUniversität Stuttgart

Window based matching

• Corresponding pixels have same gray values

• Homogenous texture results in matching ambiguity 
� Same greyvalues for many different object points

• Increase robustness of similarity measure
� Compare greyvalues of matching windows, i.e. by correlation 

• Implies constant disparity (depth) within mask

• Wrong model results in errors at depth jumps 
� Blurred edges, loss of small objects

29EuroSDR_Short_course_Dense_Image_Matching

Source: Hirschmüller, Heiko (2005) - Accurate and efficient stereo processing by Semi Global Matching an Mutual Information

© Institute for Photogrammetry, Univ. Stuttgart 21.06.2019

Source: Hirschmuller, Heiko 2005, Accurate and efficient stereo processing by semi global matching and mutual information.



Dense matching + triangulation = 3D cloud / image 
pair
Union of stereo pairs: combined 3D cloud (in mapping frame)

31

Agisoft - Build Point Cloud



Optimization

Dense matching /3D point cloud

3D meshes and elevation models 

Orthorectification

Appendix

• Optimize

Structure from 
Motion (SfM) 

• Dense 
matching

• Triangulation 

Dense Point 
Cloud • Mesh

extraction 

Digital Elevation 
Model (DEM)

• Projection 

Ortho-
rectification



Types of digital elevation models (DEM)
Digital surface model (DSM)

Representation of Earths surface including buildings 
and vegetation

33

ifpifpUniversität Stuttgart

• Digital Surface Model (DSM)
¾ digitale representation of Earths‘ terrain 

surface including buildings and vegetation

• Digital Terrain Model (DTM) 
¾ digitale representation of Earths‘ terrain 

surface without buildings and vegetation

Filtering
© Ressl, TU Wien, 2007

Types of elevation models: DSM and DTM

82ISPRS TCI Symposium Karlsruhe 2018Tutorial: Topo and bathy from LiDAR and images

Digital terrain model (DTM)
Representation of Earth surface without buildings 

and vegetation 

Filtering

Agisoft – Build DEM



Elevation model representation types (2.5D)

Raster (2D vector) 
ü easy to use (format)  
ü Once uper-left and lower-right cornes 

only defined with spacing, only sequence 
of height needed (as an image)

ü Choice for national models at different 
resolutions 

Triangulated irregular network (TIN)
ü More efficient in respresenting varying 

levels of details 
ü Preserves break-lines
ü Can be extended to 3D

34
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Point cloud organisation
explicit surface representation priors

Properties
§ Massive point clouds ( >109 points) 
§ Not all can be in computer memory
§ Not all needs to be treated together 

35

Image credit: Haala, 2019

Strategies 
§ Sub-sample 
§ Divide into blocks (Tiles) 
§ Efficient spatial data structure (K-d Tree) 

ifpifpUniversität Stuttgart

•Provide data by ODM format

 Points, Polylines, Polygons
 Geometry and attributes
 Efficient spatial data structures for neighbour search (K-d Tree)
 Provision and processing of massive point clouds (>109 points)

21.06.2019Short_Course_on_Photogrammetry 21

OPALS Data Manager (*.odm)

Tiles in 
RAM K-d Tree 



3D Meshing usage 36

3D model as a 3D mesh (triangles)3D model 3D model with texture

Source: N. Haala, EuroSDR 2019



Georeferenced 
pointcloud

vegetationpoints

buildingpoints

groundpoints

DSM

DTM

TIN 3D-model

contourlines

keypoints 3D-Visualisation

Georeferenced image2D-vector
3D   

pointcloud

vegetationpoints

buildingpoints DSM

groundpoints DTM contourlinesgroundpointsgroundpoints

keypoints

DTM

DSM

TIN

DTM

DSM

2D-vector
Raw point data to final geo-productPoint-cloud processing



Triangle meshes
explicit surface representation 

Consists of geometric and topological component 
§ Set of vertices
§ Set of triagular faces connecting them (often respresented as 

edges of a graph) 

Continuous piecewise linear surface
§ Approximation error of order O(h2), h = max. edge length
§ Error reduced by ¼ for ½ h

Properties
§ No. triangles = 2x No. of vertices 
§ No. edges = 3 x No. vertices 
§ Average No. of incident edges* = 6 

38

6 M. Botsch et al. / Geometric Modeling Based on Triangle Meshes

Figure 2: Each subdivision step halves the edge lengths, increases the number of faces by a factor of 4, and reduces the error
by a factor of 1

4 .

2.1.3. Triangle Meshes
In contrast to spline surfaces, triangle meshes are neither specified in terms of a surface parameterization nor do they provide
an inherent parameterization as subdivision surfaces do. However, triangle meshes are also defined in an explicit manner, and
therefore are categorized to be an explicit surface representation, although not a parametric one.

A triangle mesh M consists of a geometric and a topological component, where the latter can be represented by a set of
vertices

V = {v1, . . . ,vV }

and a set of triangular faces connecting them

F = { f1, . . . , fF} , fi 2 V⇥V⇥V ,

where each triangle specifies its three vertices from V . However, as we will see in Section 3, it is sometimes more efficient to
represent the connectivity of a triangle mesh in terms of the edges of the respective graph

E = {e1, . . . ,eE} , ei 2 V⇥V .

The geometric embedding of a triangle mesh into IR3 is specified by associating a 3D position pi to each vertex vi 2 V:

P = {p1, . . . ,pV } , pi := p(vi) =

0

@
x (vi)
y(vi)
z(vi)

1

A 2 IR3 ,

such that each face f 2 F actually represents a triangle in 3-space specified by its three vertex positions.

A triangle mesh therefore represents a continuous piecewise linear surface. If a sufficiently smooth surface is approximated
by such a piecewise linear function, a local Tailor expansion reveals that the approximation error is of the order O(h2), with
h denoting the maximum edge length. Due to this quadratic approximation power, the error is reduced by a factor of 1/4 by
halving the edge lengths. As this refinement splits each triangle into four sub-triangles, it increases the number of triangles from
F to 4F (cf. Fig. 2). Hence, the approximation error of a triangle mesh is inversely proportional to the number of its faces.
The approximation error depends on the higher order terms of the Taylor expansion, i.e., mainly on the second derivatives or
the curvature of the underlying smooth surface. From this we can derive that a sufficient approximation is possible with just a
moderate mesh complexity: The vertex density has to be locally adapted to the surface curvature, such that flat areas are sparsely
sampled, while in detailed regions the sampling density is sufficiently higher.

An important topological characterization of a surface is whether or not it is two-manifold, which is the case if for each point
the surface is locally homeomorphic to a disk (or a half-disk at boundaries). A triangle mesh is considered to be two-manifold,
if it does neither contain non-manifold edges, non-manifold vertices, nor self-intersections. A non-manifold edge has more than
two incident triangles and a non-manifold vertex is generated by pinching two surface sheets together at that vertex, such that
the vertex is incident to two fans of triangles (cf. Fig. 3). Non-manifold meshes are problematic for most algorithms, since
around non-manifold configurations there exists no well-defined local geodesic neighborhoods.

Even irregular triangle meshes provide a certain topological structure. The famous Euler formula [Cox89] states an interesting
relation between the numbers of vertices V , edges E and faces/triangles F in a closed and connected mesh:

V �E +F = 2(1�g) , (1)

c� The Eurographics Association 2006.
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The geometric embedding of a triangle mesh into IR3 is specified by associating a 3D position pi to each vertex vi 2 V:

P = {p1, . . . ,pV } , pi := p(vi) =

0

@
x (vi)
y(vi)
z(vi)

1

A 2 IR3 ,

such that each face f 2 F actually represents a triangle in 3-space specified by its three vertex positions.

A triangle mesh therefore represents a continuous piecewise linear surface. If a sufficiently smooth surface is approximated
by such a piecewise linear function, a local Tailor expansion reveals that the approximation error is of the order O(h2), with
h denoting the maximum edge length. Due to this quadratic approximation power, the error is reduced by a factor of 1/4 by
halving the edge lengths. As this refinement splits each triangle into four sub-triangles, it increases the number of triangles from
F to 4F (cf. Fig. 2). Hence, the approximation error of a triangle mesh is inversely proportional to the number of its faces.
The approximation error depends on the higher order terms of the Taylor expansion, i.e., mainly on the second derivatives or
the curvature of the underlying smooth surface. From this we can derive that a sufficient approximation is possible with just a
moderate mesh complexity: The vertex density has to be locally adapted to the surface curvature, such that flat areas are sparsely
sampled, while in detailed regions the sampling density is sufficiently higher.

An important topological characterization of a surface is whether or not it is two-manifold, which is the case if for each point
the surface is locally homeomorphic to a disk (or a half-disk at boundaries). A triangle mesh is considered to be two-manifold,
if it does neither contain non-manifold edges, non-manifold vertices, nor self-intersections. A non-manifold edge has more than
two incident triangles and a non-manifold vertex is generated by pinching two surface sheets together at that vertex, such that
the vertex is incident to two fans of triangles (cf. Fig. 3). Non-manifold meshes are problematic for most algorithms, since
around non-manifold configurations there exists no well-defined local geodesic neighborhoods.

Even irregular triangle meshes provide a certain topological structure. The famous Euler formula [Cox89] states an interesting
relation between the numbers of vertices V , edges E and faces/triangles F in a closed and connected mesh:

V �E +F = 2(1�g) , (1)
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Figure 2: Each subdivision step halves the edge lengths, increases the number of faces by a factor of 4, and reduces the error
by a factor of 1
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by such a piecewise linear function, a local Tailor expansion reveals that the approximation error is of the order O(h2), with
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the curvature of the underlying smooth surface. From this we can derive that a sufficient approximation is possible with just a
moderate mesh complexity: The vertex density has to be locally adapted to the surface curvature, such that flat areas are sparsely
sampled, while in detailed regions the sampling density is sufficiently higher.

An important topological characterization of a surface is whether or not it is two-manifold, which is the case if for each point
the surface is locally homeomorphic to a disk (or a half-disk at boundaries). A triangle mesh is considered to be two-manifold,
if it does neither contain non-manifold edges, non-manifold vertices, nor self-intersections. A non-manifold edge has more than
two incident triangles and a non-manifold vertex is generated by pinching two surface sheets together at that vertex, such that
the vertex is incident to two fans of triangles (cf. Fig. 3). Non-manifold meshes are problematic for most algorithms, since
around non-manifold configurations there exists no well-defined local geodesic neighborhoods.

Even irregular triangle meshes provide a certain topological structure. The famous Euler formula [Cox89] states an interesting
relation between the numbers of vertices V , edges E and faces/triangles F in a closed and connected mesh:
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Mesh data structures

Data structures
§ Face Vertex List - direct edges (straight forward implementation, 

complex processing)1

§ Doubly Connected Edge List (DCEL) – half edges (processing 
efficient, enforces manifold structure, implementation complex)1

Mesh libraries 
§ CGAL (Computational Geometry Algorithms Library) – robust, 

efficient, scalable 
§ OpenMesh – efficient for processing based on halfedge data 

structures 

Computation
§ Purpose: visualisation, 2.5D models, 3D models, quality, breaklines, 

smoothness, level of detail, topology (clustering) 
§ Implies filtering, editing, corrections … 
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The goal is to produce a triangulation of a polygon p0� � � � �pn�1
that minimizes some given weight function. In the context of mesh
repair, this weight function typically measures the fairness of the
triangulation, e.g., its area or the variation of the triangle normals
(see also Section 6).

Let ��i� j�k� be a weight function that is defined on the set of all
triangles �pi�p j�pk� that could possibly appear during construction
of the triangulation and let wi� j be the minimum total weight that can
be achieved in triangulating the polygon pi� � � � �p j, 0 	 i � j � n.
Then wi� j can be computed recursively as

wi� j � min
i�m� j

wi�m �wm� j ���i�m� j� �

The triangulation that minimizes w0�n�1 is computed by a dynamic
programming algorithm that caches the intermediate values wi� j.

Liepa suggests a weight function � that is designed to take into account the dihedral angles between neighboring triangles as
well as triangle area. It produces tuples

��i� j�k� � ���A� �

where � is the maximum of the dihedral angles to the neighbors of �pi�p j�pk� and A is its area. Note that this weight function
in particular penalizes fold-overs. When comparing different values of �, a low normal variation is favored over a low area:

��1�A1� � ��2�A2� :� ��1 � �2�' ��1 � �2&A1 � A2�

Note that when evaluating � one has to take into account that the neighboring triangles can either belong to the mesh that
surrounds the hole or to the patch that is currently being created. A triangulation of a hole that is produced using this weight
function is shown in Fig. 12.

Figure 12: A hole triangulation that minimizes normal variation and total area.

To produce a fair hole filling, Liepa suggests to produce a tangent continuous fill-in of minimal thin plate energy: First the
holes are identified and filled by a coarse triangulation as described above. These patches are then refined such that their vertex
densities and edge lengths match that of the area surrounding the holes, see Section 10. Finally, the patch is smoothed such as
to blend with the geometry of the surrounding mesh, see Section 7.

c� The Eurographics Association 2006.

Goal: minimizes normal 
variation and total area. 
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To produce a fair hole filling, Liepa suggests to produce a tangent continuous fill-in of minimal thin plate energy: First the
holes are identified and filled by a coarse triangulation as described above. These patches are then refined such that their vertex
densities and edge lengths match that of the area surrounding the holes, see Section 10. Finally, the patch is smoothed such as
to blend with the geometry of the surrounding mesh, see Section 7.
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Source: Botsch et al. 2006
[1] – https://observablehq.com/@2talltim/mesh-data-structures-traversal

http://www.cgal.org/
http://www.openmesh.org/
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•Based on availability of camera parameters and 3D point cloud with 
corresponding pixel coordinates

1. Delaunay-Triangulation of point cloud 

21.06.2019MVS-Surface Reconstruction 147

Surface Extraction from Delaunay triangulation of point
clouds: Example in 2D

Example of 2D triangulation 

1. Delaunay-Triangulation of point cloud (in 2D / horizontal plaine) 
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Example of 2D triangulation 

1. Delaunay-Triangulation of point cloud 
2. Each 3D point defines (free) line of sight to the corresponding camera station
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ifpifpUniversität Stuttgart

1. Delaunay-Triangulation of point cloud 

2. Each 3D-point defines (free) line of sight to the corresponding camera station 

3. Label each Delaunay cell as outside or inside of the observed object, taking 
into account visibility and geometric quality
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Example in 2D
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Example of 2D triangulation 

1. Delaunay-Triangulation of point cloud 
2. Each 3D point defines (free) line of sight to the corresponding camera station
3. Label each Delaunay cell as outside or inside of the observed object (while considering visibility 

and geometric quality)
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1. Delaunay-Triangulation of point cloud 

2. Each 3D-point defines (free) line of sight to the corresponding camera station 

3. Label each Delaunay cell as outside or inside of the observed object, taking 
into account visibility and geometric quality
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Example in 2D
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Example of 2D triangulation 

1. Delaunay-Triangulation of point cloud 
2. Each 3D point defines (free) line of sight to the corresponding camera station
3. Label each Delaunay cell as outside or inside of the observed object (while considering visibility 

and geometric quality) – optimization by Graph-cut
4. Extract surface (ok for 2.5D representation)
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ifpifpUniversität Stuttgart

1. Delaunay-Triangulation of point cloud 

2. Each 3D-point defines (free) line of sight to the corresponding camera station 

3. Label each Delaunay cell as outside or inside of the observed object, taking 
into account visibility and geometric quality – Binäry Labeling – Optimization 
by Graph-Cut (lecture pattern recognition…)

4. Extract surface
21.06.2019MVS-Surface Reconstruction 150

Example in 2D 4. 3. 
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Optimization

Dense matching /3D point cloud

3D meshes and elevation models 

Orthorectification

Appendix

• Optimize

Structure from 
Motion (SfM) 

• Dense 
matching

• Triangulation 

Dense Point 
Cloud • Mesh

extraction 

Digital Elevation 
Model (DEM)

• Projection 

Ortho-
rectification



Why ortho-rectification? 45

flat ground 

surface patch 
e.g. 0.1 x 0.1 m
resolution

its perspective view

pixel



Why ortho-rectification? 46

A
B

D

E F
G

C

a b c d e f g

A
B

D

E F
G

C

a b c d e f g

We aim to have an equidistant resolution … … at a chosen projection surface (map)!

perspective projection
we have we want

orthogonal projection



Ortho-rectification 

Perspective projection
§ Causes displacement of reality (radialy) per 

each pixel (also due to relief).
§ Does not account for Earth curvature. 

Orthographic projection 
§ Removes this displacement and produces 

planimetric photo from which features can be 
mapped.

Prerequisites 
§ Orientation (external & internal) known.
§ Existance of a digital elevation model DEM –

external or via photo-derived point cloud. 
(resolution, accuracy, format)

Ortho-photo
Is an image where each point is derived from an 
orthogonal projection on a planar surface.

Characteristics
§ Constant scale (as in a map)
§ Inferring on distances (or angles) is possible
§ Overlay of the photo on a map is possible
§ Stereo-viewing is NOT possible
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Process of ortho-rectification

For each X, Y
1. on ortho-photo (grid) coordinates 
2. Project to DEM
3. Project to image coordinates (x,y)
4. Correction due to terrain height 
5. Interpolate  (radiometrically) from 

surrounding pixels (and photos) 

48

Perspective image

C

Relief correction

Ortho-image

Terrain surface

Reference surface

Resolution
1

2

3

4

Agisoft – Build Orthomosaic



Process of ortho-rectification  49

Characteristics per stage
A. Re-projection of pixel coordinates is uneven. 
B. New RGB values obtained via interpolation (e.g. 

bilinear, bi-cubic, nearest-neighbour).
C. Position is redressed on the grid of resolution at a 

reference height (GSD - ground sampling density): 

EPFL – SIE - Analyse d’Image I – J.Vallet

2. Le redressement2. Le redressement
Mosaiquage

Interpolation de la radiométrie

!Bilinéaire
!Bicubique
!Nearest Neighbour

GSD

GSD

Redressement

x,y

x,y,RGB

X,Y,RGB

EPFL – SIE - Analyse d’Image I – J.Vallet

2. Le redressement2. Le redressement
Mosaiquage

Interpolation de la radiométrie

!Bilinéaire
!Bicubique
!Nearest Neighbour

GSD

GSD

Redressement

x,y

x,y,RGB

X,Y,RGB

EPFL – SIE - Analyse d’Image I – J.Vallet

2. Le redressement2. Le redressement
Mosaiquage

Interpolation de la radiométrie

!Bilinéaire
!Bicubique
!Nearest Neighbour

GSD

GSD

Redressement

x,y

x,y,RGB

X,Y,RGB

GSD

GSD

A. x,y

B. 
RGB

C. 

Characteristics – general
• The distance between points on orthophoto = 

(accounting for photo scale) 
= the horizontal distance between the 

corresponding points on the ground. 



Ortho-rectification in cities …

Building correction
• If buildings are not included in the DEM 

(normal case of DTM), they are not 
orthorectified and remain “leaning”

• Use of DSM is recommended

50

C

Perspective image

Correct projection
(building roof only)

Incorrect projection
(building roof and side)

Orthoimage

European Spatial Data Research – www.eurosdr.net 

Multi Ray Photogrammetry for True 
Orthophoto 

z 80/60 flight 
pattern: up to 
15 rays per 
ground pixel 

z Effective 
occlusion 
avoidance 

z Robust and 
highly 
automated 

Images: VEXEL, Microsoft 
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Ortho-rectification in cities ...

European Spatial Data Research – www.eurosdr.net 

„True“ Orthophoto 

True 
Orthophotos 
require a 
detailed digital 
surface model 
(DSM) that 
contains all 
buildings etc. 

Uncorrected Bridge 

Uncorrected Bridges Corrected bridges 

Pasted from adjascent images 

Problems in the creation of true orthophotos: highly accurate DSM and 
high longitudinal and transverse overlap (80% / 80%) necessary 
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True ortho-photo
• Detailed DSM
• All buildings & bridges

Challenges 
§ Visibility afects DSM quality

(Appendix IV: image vs lidar)

§ Along-track 80% …
§ Cross-track 80% …
§ Productivity! 

51

Idem for ‘bridge correction’ …



Orthophoto – mosaicing 

European Spatial Data Research – www.eurosdr.net 

Limits of digital orthophotos 

Orthophoto with overlay of buildings 

DEM 
Not 
visible 

Top Side 

An orthophoto is only accurate, if a 
correct corresponding height from the 
DSM exists 

Due to the central perspective and the 
DTM, the roof can be displaced or the 
facade becomes visible 

Displacement of 
railwaydam in 
neihboring 
Orthophotos 
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Goal 
§ From image collection – all geometric 

distortions corrected, and imagery colour 
balanced to produce seamless image 

Pixel 
§ can have several representations – choice! 

Strategy
§ radiometric differences are less visible on 

borders: seamlines or cutlines
§ Urban: geometry (building unity)
§ Rural: radiometry (field unity) 

Algorithm
§ Graph-cut 1
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Bad mosaicing
example )-:

Good mosaicing
Example (-:

[1] https://www.sciencedirect.com/science/article/pii/S0924271615002774, 
http://web.eecs.umich.edu/~pettie/matching/Edmonds-Karp-network-flow.pdf

https://www.sciencedirect.com/science/article/pii/S0924271615002774


Understanding - self assessment

§ What is main idea of “incremental” structure from motion (SfM)?
§ Why is ”incremental” SfM performed in steps?
§ What are the pre-requisites before global optimization can be performed?  
§ What is the objective function to minimize in the global optimization?
§ How are random errors influencing feature coordinates? 
§ What are the possible approaches to mitigate the influence of random errors 

on points? 
§ What a should and optimization quality report contain? 
§ What should the criteria of acceptance be? 
§ What type of analysis could be done prior to a mission to determine the chance 

that its objectives can be fulfilled? (What are the influencing factors?)   
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Understanding - self assessment

§ What are the processing stages for creating 3D point clouds from image pixels? 
§ What is necessary to known before dense-matching can be started and how the pixel-

to-pixel correspondence search can be simplified?
§ What are the main challenges in performing dense-matching for 3D point cloud and 

which can be overcome by using a different technology?
§ How DTM is created from a 3D point cloud? 
§ What are the differences between DSM and DTM? 
§ What are the respective pros & cons for DEM in raster and TIN representations? 
§ What is the ortho-rectification of images and what is needed for its creation? 
§ What is needed that building’s facades are not visible on an ortho-photo? 
§ What is the true orthophoto?
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Optimization

Dense matching /3D point cloud

3D meshes and elevation models 

Orthorectification

Appendix  I. planning exercise 4 exam!
II. optimization factors 
III. epipolar image generation
IV.  image vs. lidar point-cloud

• Optimize

Structure from 
Motion (SfM) 

• Dense 
matching

• Triangulation 

Dense Point 
Cloud • Mesh

extraction 

Digital Elevation 
Model (DEM)

• Projection 

Ortho-
rectification


