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Flight planning
Image
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(Trajectory e.g.
navigation 
sensors)

Images
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Feature 
detection

Feature 
matching

Orientation
optimization

Production   
(e.g. surface, 
ortho-photo)

Exercises
§ Image ‘corrections’ (Lab01)
§ Detection & matching (Lab02)
§ Approx. absolute orientation (Lab03)
§ Approx. relative orientation (Lab04) 
§ Calibration, DEM, ortho-photo (Lab05)

Lectures
§ Image primes (L1)
§ Salient features  (L2)
§ Image orientation (L3) 
§ Stereo vision (L4) 
§ Many photos & mapping products (L5) 



Motivation ?  3

§ Ambitions of the 1st time.  
§ Can you do it (in 2002)?
§ Challenge 1: 

• DTM resolution ~ 1 m 



Image orientation (= camera calibration)

Joint problem to solve: determine intrinsic & 
extrinsic (interior & exterior orientation) of a camera

Strategies:
I. Unknown camera calibration & pose

i. Approximate first (fast & linear) 
ii. Improve (optimization & linearized)

II. Unknown pose but known calibration
i. Pose(EO) unknown: fast & linear 
ii. Pose(EO) ~known: non-linear/optimal 
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Typical setups for lab camera calibration (arXiv) 

3D field

Planar surfaces



Terminology – CV and photogrammetry 6

Camera parameters

Intrinsic parameters (= interior orientation):
Parameters related to camera optic

i. focal length
ii. optical center
iii. distortion model

Extrinsic parameters (= exterior orientation EO, = camera pose):
Position and orientation in space of the camera in space (can be absolute or relative)

Extrinsic + intrinsic:
also called camera calibration or orientation 

Photogrammetric term vs Computer Vision term



Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm



Image Orientation 8

How to estimate camera extrinsic (position and orientation in space) ?

Given:
i. set of points with know 3D coordinates
ii. their corresponding coordinates (undistorted) in image plane
iii. (known camera intrinsic) 

Main steps:
i. Build COLLINEARITY equations given       and  
ii. Estimate camera pose with DLT algorithm 
iii. Estimate quality of the reprojection with reprojection error

Today: background, formulation, algorithms

Tomorrow: practical implementation starting from Lab 01 undistorted measurements 



9Frames

Mapping frame (m): 
abstract coordinate system with ref. surface to provide known locations and create maps. 
e.g. International Terrestrial Reference System (ITRF)  + Year  

country-wide, in Switzerland CH1903+/LV95 - EPSG:2056

Camera frame (c): 
coordinate system defined by the camera position and orientation 

Notation:
• Position of point P in m frame

• Position of point p in image plane [px]

• Position of camera c in m frame 

• Rotation matrix (3x3,                    ) from camera to mapping frame
(aligns camera frame axis to that of mapping frame)

Chapter 3. Photogrammetry 44
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Figure 3.2: Motion of camera frame with respect to a Cartesian mapping
frame.

Every time the camera moves, its motion is captured by Tm
c = (Rm

c , xm
c )

or more shortly by T = (R, x) when the involved frames are clear from the
context. It will become an advantage when we convert the transformation
expressed by (3.1) to an expression of a form u = Av. This is possible by
adding “1” to the vector x as its fourth coordinate and by defining operations
on so called homogeneous coordinates. Such extension preserves the original
Euclidean space.
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The vectors are defined analogically as differences of coordinates v = x1−x2.
Differences makes the fourth component null and give rise to the original
subspace. Rewriting (3.1) in the new notation leads to
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where the 4 × 4 matrix T
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c is the homogeneous representation of the rigid-
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10Changing (transforming) Frame

Point position,
in mapping frame

Camera position,
mapping frame

Rotation from camera
to mapping frame

Point position,
camera frame

Chapter 3. Photogrammetry 44

p

zc

xm
c

xc

yc

ym

xm

zm

Rm
c xc

Figure 3.2: Motion of camera frame with respect to a Cartesian mapping
frame.

Every time the camera moves, its motion is captured by Tm
c = (Rm

c , xm
c )

or more shortly by T = (R, x) when the involved frames are clear from the
context. It will become an advantage when we convert the transformation
expressed by (3.1) to an expression of a form u = Av. This is possible by
adding “1” to the vector x as its fourth coordinate and by defining operations
on so called homogeneous coordinates. Such extension preserves the original
Euclidean space.

x
.=

(
x
1

)

=

⎛

⎜⎜⎜⎝

X
Y
Z
1

⎞

⎟⎟⎟⎠
(3.2)

The vectors are defined analogically as differences of coordinates v = x1−x2.
Differences makes the fourth component null and give rise to the original
subspace. Rewriting (3.1) in the new notation leads to

xm =

(
xm

1

)

=

(
Rm

c xm
c

0 1

)(
xc

1

)
.= T m

c xc (3.3)

where the 4 × 4 matrix T
m
c is the homogeneous representation of the rigid-

body transformation. Now is possible to encapsulate the coordinate trans-
formation between several frames as a sequence of multiplications

T a
c = T a

b T b
c =

(
Ra

b xa
b

0 1

)(
Rb

c xb
c

0 1

)

. (3.4)



Homogeneous coordinates 

Goal: express more “efficiently”

How: Add 4th term / coordinate

Rewrite frame transformation as:  

Practical advantage: concatenation by multiplication:

11

x
.
=

(

x

1

)

=

⎛

⎜

⎜

⎝

X

Y

Z

1

⎞

⎟

⎟

⎠

x
m

p
=

(

xm

1

)

=

(

Rm

c
xm

c

0 1

)(

xc

p

1

)

.

= [R|t]m
c
x
c

p
= T

m

c
x
c

p

T a
c = T a

b
T b

c =

(

Ra
b

xa
b

0 1

)(

Rb
c xb

c

0 1

)

=

(

Ra
c xa

c

0 1

)

Chapter 3. Photogrammetry 44

p

zc

xm
c

xc

yc

ym

xm

zm

Rm
c xc

Figure 3.2: Motion of camera frame with respect to a Cartesian mapping
frame.

Every time the camera moves, its motion is captured by Tm
c = (Rm

c , xm
c )

or more shortly by T = (R, x) when the involved frames are clear from the
context. It will become an advantage when we convert the transformation
expressed by (3.1) to an expression of a form u = Av. This is possible by
adding “1” to the vector x as its fourth coordinate and by defining operations
on so called homogeneous coordinates. Such extension preserves the original
Euclidean space.

x
.=

(
x
1

)

=

⎛

⎜⎜⎜⎝

X
Y
Z
1

⎞

⎟⎟⎟⎠
(3.2)

The vectors are defined analogically as differences of coordinates v = x1−x2.
Differences makes the fourth component null and give rise to the original
subspace. Rewriting (3.1) in the new notation leads to

xm =

(
xm

1

)

=

(
Rm

c xm
c

0 1

)(
xc

1

)
.= T m

c xc (3.3)

where the 4 × 4 matrix T
m
c is the homogeneous representation of the rigid-

body transformation. Now is possible to encapsulate the coordinate trans-
formation between several frames as a sequence of multiplications

T a
c = T a

b T b
c =

(
Ra

b xa
b

0 1

)(
Rb

c xb
c

0 1

)

. (3.4)

(

T a
c

)

−1

=

(

(Ra
c )

T
− (Ra

c )
T
xa
c

0 1

)

= T c
a



Perspective camera model

Ratios

Perspective camera model:
Relates point p on image plane to corresponding point P in 3D

With 

See next slide for developed equation
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Source: Open CV definition
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Developed form:

Perspective camera model 13

Link with lab 01:
perspective2topleft(xy, h, w, cx, cy, c)

topleft2perspective(uv, h, w, cx, cy, c)

i.e. K matrix operation is equivalent to converting measurements from perspective centered to top-left and vice-versa



Developed form:

Today’s assumption: intrinsic known
§ K is known, no need to solve for it
§ System becomes:

Perspective camera model 14

Lab 01

Solve this to find R, t

Lab 03



Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm



Direct Linear Transformation (DLT)

Approach: 
Solve collinearity equation in homogenous coordinates for unknown terms:                          
From image obs.        and known 3D points

16

R, t



Direct Linear Transformation (DLT) 17

Divide the first and second equations by the third, forms the following system :

=⇒ =⇒

M = [R|t] P



Direct Linear Transformation (DLT)

• For n observations of points (image-frame and map-frame), we obtain a large matrix:   
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known! 

• In details

?



Direct Linear Transformation (DLT)

Unique solution
• should have minimum rank 11 to have unique (up to a scale) non-zero solution vec(M)
• What is the minimum number of point-correspondences? 
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Q · vec(M) = 0

Overdetermined 
• For                 , solution is to minimize the sum of squared residuals (least-squares)
• Constraint: 
• Done by singular value decomposition (SVD) of

n ≥ min. ||Q · vec(M)||2
||vec(M)||2 = 1

Solution
Solving the system give us M = Π =

[

R|t
]



Direct Linear Transformation (DLT) 20

Q · vec(M) = 0

Degenerated situation (rare yet possible…):

In some specific configuration of the points in space, DLT can lead to degenerated solutions, e.g.
• points lying on a plane passing through the center of projection
• camera & points on twisted cubic 

Twisted cubic: source Wiki



DLT with unknown intrinsic (interior orientation)
(complementary slide)

Approach:
This time, unknowns to solve for include camera intrinsic:
(more complex, yet possible !)
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K(u0, v0, cu, cv), R, t



Direct Linear Transformation (DLT)
(complementary slide)

22

M P

§ M matrix is more complex to form since it includes unknowns for intrinsic parameters.  
§ Formulation of Q matrix stays the same



Direct Linear Transformation (DLT)
(complementary slide)
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Q · vec(M) = 0

Solution
Solving the system give us                                     instead of                            in the known intrinsic case

Unique solution
• should have min. rank 11 to have unique (up to a scale) non-zero solution Ms

• What is the minimum number of point-correspondences? 

Overdetermined 
• For                 , solution is to minimize the sum of squared residuals (least-squares)
• Constraint: 
• Done by singular value decomposition (SVD) of

n ≥ min. ||Q · vec(M)||2
||vec(M)||2 = 1



Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm



Reprojection error (er)

§ er = Euclidian distance [pixels] between 
observed image point and the corresponding 
3D point reprojected on the camera frame 

§ Can be used to access the quality of 
“calibration”.
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C

Pm
i

pi
observed

reprojected

reprojection error

Π(Pm
i
,K,R, t)

||pi −Π(Pm
i
,K,R, t)||

map-frame

R, t
• What is an acceptable value of er ? 
• What are the sources of reprojection error? 
• How this can be further improved? 



Refinement – orientation & calibration

The orientation parameters (exterior, interior) can 
be refined by minimizing the cost function:  

§ Here, lens distortions are included as additional 
parameters ap to refine !

§ Cost-function highly non-linear!
§ After DLT, all but ap have initial values. 

§ Solving via iterative least-square (linearization). 
§ Levenberg-Marquardt solver: more robust (to local 

minima) than Gauss-Newton 
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Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm



Perspective from nPoints (PnP) – Localization (EO)

Task: same as DLT, solve the pose of camera in map-frame from a set of 2D-3D point 
correspondences …
… but assuming a known camera calibration ! 

DLT is possible but sub-optimal (speed, n, accuracy in noise) 

Why using PnP?  
• Stereo-vision (later subject) will provide points in object space
• Then image (camera) moves … slightly & takes an image:
• This new image is localized by previously mapped points!
• Applications (robotics, automated driving, UAV – obstacle avoidance, etc.) 
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Solutions to perspective n  point (PnP) 

Efficient PnP by Lepetit et al.* and is implemented in 
OpenCV (solvePnP_EPnP)

§ EPnP expresses n-points (in object frame) as 
weighted sum of 4 virtual control points (VCPs)

§ VCPs’ coordinate become the unknown, solvable 
in O(n) time, solving a constant number of 
quadratic polynomial equations.

§ Final pose of the camera solved from these control 
points. 
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n ≥ 4

* Lepetit et al, EPnP: An accurate O(n) solutions to the PnP problem, Int. J. of Computer Vision, 2009

Source: OpenCV

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html


DLT vs EPnP

Uncalibrated camera (intrinsic w. ap unknown)
• only DLT can be used!

30

Calibrated camera (intrinsic, ap known)
• either DLT or EPnP can be used 

Minimum number of points 
EPnP: 3(P3P) + 1 for ambiguity resolution    
DLT: min. number of points: 4 if coplanar, 6 if non-coplanar

The localization/pose (with intrinsic calibration) can be refined by non-linear 
optimization (min. the sum of squared reprojection errors)

Scenario



DLT vs EPnP: efficiency & accuracy in noise

§ According to Lepetit et al.* EPnP is more than 10x more efficient and supports 
considerably higher noise levels than DLT: 
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* Lepetit et al, EPnP: An accurate O(n) solutions to the PnP problem, Int. J. of Computer Vision, 2009

EPnP vs. DLT: Accuracy vs noise

EPnP is more up to 𝟏𝟎 × more accurate and more efficient than DLT

54

Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.

DLT

EPnP EPnP

DLT

EPnP vs. DLT: Accuracy vs number of points

EPnP is more up to 𝟏𝟎 × more accurate and more efficient than DLT
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Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.

DLT

PnP EPnP

DLT

EPnP+ Gauss Newton

EPnP vs. DLT: Timing

EPnP is more up to 𝟏𝟎 × more accurate and more efficient than DLT
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Plots from
Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, International Journal of Computer Vision. PDF.

DLT
EPnP



Understanding - self assessment

§ Explain and derive the DLT (via the presented, so-called Tsai’s method). 
§ What is the minimum number of correspondences required for DLT by 

Tsai’s method?
§ What is the reprojection error? 
§ How the reprojection error can be used to improve the orientation? 
§ Describe the general PnP problem. What is the behavior of its solutions? 
§ Why and where PnP can be useful? 
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