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Lectures
* |mage primes (L1)
» Salient features (L2)
* Image orientation (L3)
= Stereo vision (L4)
= Many photos & mapping products (L5)

Exercises

Image ‘corrections’ (Lab01)

Detection & matching (Lab02)

Approx. absolute orientation (Lab03)
Approx. relative orientation (Lab04)
Calibration, DEM, ortho-photo (Lab05)



=P*L Motivation ?

= Ambitions of the 1st time.
= Can you do it (in 2002)?

= Challenge 1:
e DTM resolution ~1m




=PFL Image orientation (= camera calibration) |

Joint problem to solve: determine intrinsic &
extrinsic (interior & exterior orientation) of a camera Typical setups for lab camera calibration (arXiv)

Strategies:

l. Unknown camera calibration & pose
I Approximate first (fast & linear)
i. Improve (optimization & linearized)

Il.  Unknown pose but known calibration
I Pose(EO) unknown: fast & linear
. Pose(EQO) ~known: non-linear/optimal

Planar surfaces



=P7L " Terminology - CV and photogrammetry

Camera parameters

Intrinsic parameters (= interior orientation):
Parameters related to camera optic

i. focal length
ii. optical center
iii. distortion model

Extrinsic parameters (= exterior orientation EO, = camera pose):
Position and orientation in space of the camera in space (can be absolute or relative)

Extrinsic + intrinsic:
also called camera calibration or orientation

Photogrammetric term vs Computer Vision term



Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm




=PFL Image Orientation

How to estimate camera extrinsic (position and orientation in space) ?

Given:
i. set of points with know 3D coordinates P;
ii. their corresponding coordinates (undistorted) in image plane P;
iii. (known camera intrinsic)

Main steps:
i. Build COLLINEARITY equations given P; and P;
ii. Estimate camera pose with DLT algorithm
iii. Estimate quality of the reprojection with reprojection error

Today: background, formulation, algorithms

Tomorrow: practical implementation starting from Lab 01 undistorted measurements



=PFL " Frames

Mapping frame (m):

abstract coordinate system with ref. surface to provide known locations and create maps. 5C
e.g. International Terrestrial Reference System (ITRF) + Year i x°
country-wide, in Switzerland CH1903+/LV95 - EPSG:2056
v my,c
Camera frame éc?: \Rc Xp
coordinate system defined by the camera position and orientation

Notation: .
 Position of point P in m frame P,=xi" = (szaYima sz>

Position of point p in image plane [px] P; = (Ui, Ui,)

Position of camera ¢ in m frame Xe

« Rotation matrix (3x3, R™! = R7) from camera to mapping frame R
(aligns camera frame axis to that of mapping frame)



=PFL Changing (transforming) Frame ’

z
l..C
Camera position, ye
mapping frame \
/// \\\\ m
. Point position, xM — X(T:n T RZLXC Point position, in
in mapping frame p p camera frame ‘

l

Rotation from camera
to mapping frame




=PFL " Homogeneous coordinates

Goal: express more “efficiently”
m __ m ™M ~,-C
X, =X + RUx;

How: Add 4th term / coordinate
X

(3)-( %

1
Rewrite frame transformation as:

m R™ m c ST e —m_,
()= (% %)) e -
Practical advantage: concatenation by multiplication:

— S— R x% R xt R* x@
a __ a b __ b b c c _ c c
TC_Tch_( 0 1 )( 0 1>_( 0 1)

X
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=P*L Perspective camera model

P (xc’ Yc’ zc)
\

Optical Axis

Camera Coordinate
System

Source: Open CV definition
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Ratios

) _ (X .
X_E Y =7z y (c unitless here)

Perspective camera model:

Relates point p on image plane to corresponding point P in 3D

With 1= 2

See next slide for developed equation
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Perspective camera model

Developed form:

p P
l A
r o
U c 0 xzppg+c, O ym
p- vl =10 ¢ ypps+cy 0| [RE]S, m
1 0 O 1 0 1
N
v
K

l

Link with lab 01:
K <= perspective2topleft(xy, h, w, cx, cy, c)
I{_1 «~—— topleft2perspective(uv, h, w, cx, cy, c)

i.e. K matrix operation is equivalent to converting measurements from perspective centered to top-left and vice-versa

13
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Perspective camera model

Developed form:

p K P
l A A
Is N\ <
U c 0 xzppg+c, O ym
me vl = 0 ¢ YyppPs + Cy 0 [R‘t]m zm
1 0 0 1 0 1

Today’s assumption: intrinsic known
= Kis known, no need to solve for it
= System becomes:

Solve this to find R, t
A

\
u’ T X
o | = || = LRie, gm
1 1 \b

Lab 01 Lab 03

— fundistort (Kl
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Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm




=PFL Direct Linear Transformation (DLT)

Approach:

Solve collinearity equation in homogenous coordinates for unknown terms: I{7 t

From image obs. p, and known 3D points P;

/ Xm

u x ym

fundistort K_l v’ = 1Y _%[th]fn zm
1 1 1

.

x r11 T2 Ti3 b1 ym

— “1Yl = |21 22 r23 t2 zm
1 31 T32 T3z t3 1
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=P*L Direct Linear Transformation (DLT)

€r =

M = [R]t] P
4 a A [~ vm [~ yvm
. X - X
x ri1 Ti2 Tz b1 ym mip M2 M13 Mi4 ym
Yl = 721 T22 723 t2 gm = |Mm21 22| M23 M24 zm
_1_ r31 T2 T33 13 1 |31 32 | 33 134 1
_[L'_ m? <
y|l =M -P= |mi| -P
T
1] m3
Divide the first and second equations by the third, forms the following system :
m7 -P
m
ml.P (mT —amT)-P=0 P 0T —x P ml (0
T (mI —ymI) - P=0 0" P —y P 2] \o
mT.p 2 —Yymg ms

y:

p
7}

=g

T
m3 'P
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=P7L Direct Linear Transformation (DLT)

Pr 0T -z Pl zl (0
of P —yPr 21— \o
ms

* For n observations of points (image-frame and map-frame), we obtain a large matrix:

P o —mPf 0
OT PiT _ylpir mi 0
; my | = |
PQ{ 077: —:cnP?TF ms 0
0 Pn —ynPn 0 mi1 \
. mio
* In details .
Xirrl }/vlm Z{n 1 0 0 0 0 —ale{n —:L'IYlm —xlz{n —x1 214 O
0 0 0 0 X" V" 27" 1 —upnX{" —wn¥{"" —nZi" -un mz; ’
XpoYrZr 1 0 00 000 X Y w2y, || i T @vee ) =0
0 0 0 0 X Y ZP 1 —yuXD' —yaY" —ynZl —yn >
n n n n n n Ma 0
\ Y / m32
ma3s
known! \m34)



F*L Direct Linear Transformation (DLT)

Q -vec(M) =0

Solution
Solving the system giveus M = II = [R‘t]

Unique solution
* Qenx12) should have minimum rank 11 to have unique (up to a scale) non-zero solution vec(M)
* What is the minimum number of point-correspondences?

Overdetermined

* For n > man., solution is to minimize the sum of squared residuals (least-squares) |Q - vec(M)]|2
« Constraint: ||[vec(M)||2 =1

- Done by singular value decomposition (SVD) of QT Q



=P7L Direct Linear Transformation (DLT)

Q- -vec(M)=0

Degenerated situation (rare yet possible...):

In some specific configuration of the points in space, DLT can lead to degenerated solutions, e.g.
 points lying on a plane passing through the center of projection
» camera & points on twisted cubic

Twisted cubic: source Wiki



=P~L  DLT with unknown intrinsic

(complementary lide)

Approach:
This time, unknowns to solve for include camera intrinsic: K (ug, vg, Cy,Cy), R, t

(more complex, yet possible !)

X X™
u ym cu 0 ug ri1 T2 Ti3 b ym
Hl1v] = K[RM N AL =10 ¢ v o1 To2 T2z 12 Zm
1 1 0 0 1 's1 T32 T33 t3 1
m
u CyT11 + UQT31  CuT12 + UT32  CyuT13 + UOT33  Cyuly + Upls i/(m
— pu|lv )] = | cro1 +vor31  CyTo2 + VoT32  CyT23 + VoT33  Cyla + Vol3 gm

1 731 732 733 l3 1



=PrL Direct Linear Transformation (DLT)

(complementaryslide)
M =K [R|t]
_ _Xm- xm
u CyT11 + UT31  CuT12 + UOT32  CuT13 + UpT33  Cyul1 + Upts ym M M1z Maz Mgl | ym
— W |v| = | Cyr21 +UoT31  CyTo2 + V32 CyTo3 + Vo33 Cyla + Vota gm | = |M21 M2z M2z Mol | ,p
1 r31 32 33 t3 ] ms31 M3z M3z M3y 1
- M P
U mlT
— pulv|=M-P=|mi|. P
_1_ mg

= M matrix is more complex to form since it includes unknowns for intrinsic parameters.
= Formulation of Q matrix stays the same
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=PFL Direct Linear Transformation (DLT)

(complementaryslide)

Q -vec(M) =0

Solution
Solving the system giveus [ = K [R‘t} instead of [] = [R|t] in the known intrinsic case

Unique solution
* Qenx12) should have min. rank 11 to have unique (up to a scale) non-zero solution M,
* What is the minimum number of point-correspondences?

Overdetermined

* For n > man., solution is to minimize the sum of squared residuals (least-squares) |Q - vec(M)]|2
« Constraint: ||[vec(M)||2 =1

- Done by singular value decomposition (SVD) of QT Q
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Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm
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=PFL_Reprojection error (e,)

= ¢, = Euclidian distance [pixels] between .
observed image point and the corresponding i F,
3D point reprojected on the camera frame '

= Can be used to access the quality of

“calibration”. | -
reprojected — I

(P", K, R, t) Z;N

4 observed

reprojection error

» What is an acceptable value of ¢, ?
» What are the sources of reprojection error?
* How this can be further improved?

map-frame
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=F*L Refinement - orientation & calibration

The orientation parameters (exterior, interior) can o P
be refined by minimizing the cost function: I

argming R.t,a, 2?21 |ps — IL(P™, K, R, t, ap”z

= Here, lens distortions are included as additional reprojected /’//’I
parameters a, to refine ! (P, K, R, t)
= Cost-function highly non-linear! reprojection error
- After DLT, all but , have initial values. A Ip: =TI, K B, ]
= Solving via iterative least-square (linearization). :
= Levenberg-Marquardt solver: more robust (to local ¢

minima) than Gauss-Newton

map-frame



Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm




=PFL Perspective from 72 Points (PnP) - Localization (EO)

Task: same as DLT, solve the pose of camera in map-frame from a set of 2D-3D point
correspondences ...

... but assuming a known camera calibration !

DLT is possible but sub-optimal (speed, n, accuracy in noise)

Why using PnP?
» Stereo-vision (later subject) will provide points in object space
* Then image (camera) moves ... slightly & takes an image:
* This new image is localized by previously mapped points!
» Applications (robotics, automated driving, UAV — obstacle avoidance, etc.)

28



=PFL Solutions to perspective 7 point (PnP)

Efficient PnP by Lepetit et al.* and is implemented in
OpenCV (solvePnP _EPNP)

29

= EPnP expresses n-points (in object frame) as
weighted sum of 4 virtual control points (VCPs)

= \/CPs’ coordinate become the unknown, solvable
in O(n) time, solving a constant number of

quadratic polynomial equations.

= Final pose of the camera solved from these control

pOintS. Source: OpenCV

* Lepetit et al, EPnP: An accurate O(n) solutions to the PnP problem, Int. J. of Computer Vision, 2009


https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html

=P*L DLTvs EPnP

Scenario

Uncalibrated camera (intrinsic w. ap unknown) Calibrated camera (intrinsic, ap known)
« only DLT can be used! « either DLT or EPnP can be used

Minimum number of points
EPnP: 3(P3P) + 1 for ambiguity resolution
DLT: min. number of points: 4 if coplanar, 6 if non-coplanar

The localization/pose (with intrinsic calibration) can be refined by non-linear
optimization (min. the sum of squared reprojection errors)

30



2PFL DLT vs EPnP: efficiency & accuracy in noise

= According to Lepetit et al.* EPnP is more than 10x more efficient and supports
considerably higher noise levels than DLT:

DLT
60 60 : 0.07
——AD —&— Clamped DLT —»— AD
—e— LHM
—4— Clamped DLT 50 ] —~ 0.06F | | —#—Clamped DLT 1
5 50| —e—LHM ~ —A—EPnP g ——LHM ]
< —A—EPnP = - — -EPnP+LHM £ 0.05} | | —+—EPnP ]
S 40f|- - -EPnP+LHM = ——EPnP+GN__ |4 2 - - ~EPnP+LHM
LE —— EPnP+GN = .= 0.04} | | === EPnP+Gauss—Newton
(1N c
c 30 / - 30 DLT S,
] = =
@ 20} 2 20f 2o,
= €
o o » 3
F 10} A 10 PnP | 0
: i ol—————= : - ] 0 50 100 150
0 > 10 19 N1u0mber of 20oints uszsa?j to estir‘;oate ose5 ° number of points used to estimate pose
Gaussian image noise (pixels) P P

* Lepetit et al, EPnP: An accurate O(n) solutions to the PnP problem, Int. J. of Computer Vision, 2009



=PFL Understanding - self assessment

= Explain and derive the DLT (via the presented, so-called Tsai's method).

= What is the minimum number of correspondences required for DLT by
Tsai’'s method?

= What is the reprojection error?

= How the reprojection error can be used to improve the orientation?

= Describe the general PnP problem. What is the behavior of its solutions?
= Why and where PnP can be useful?
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