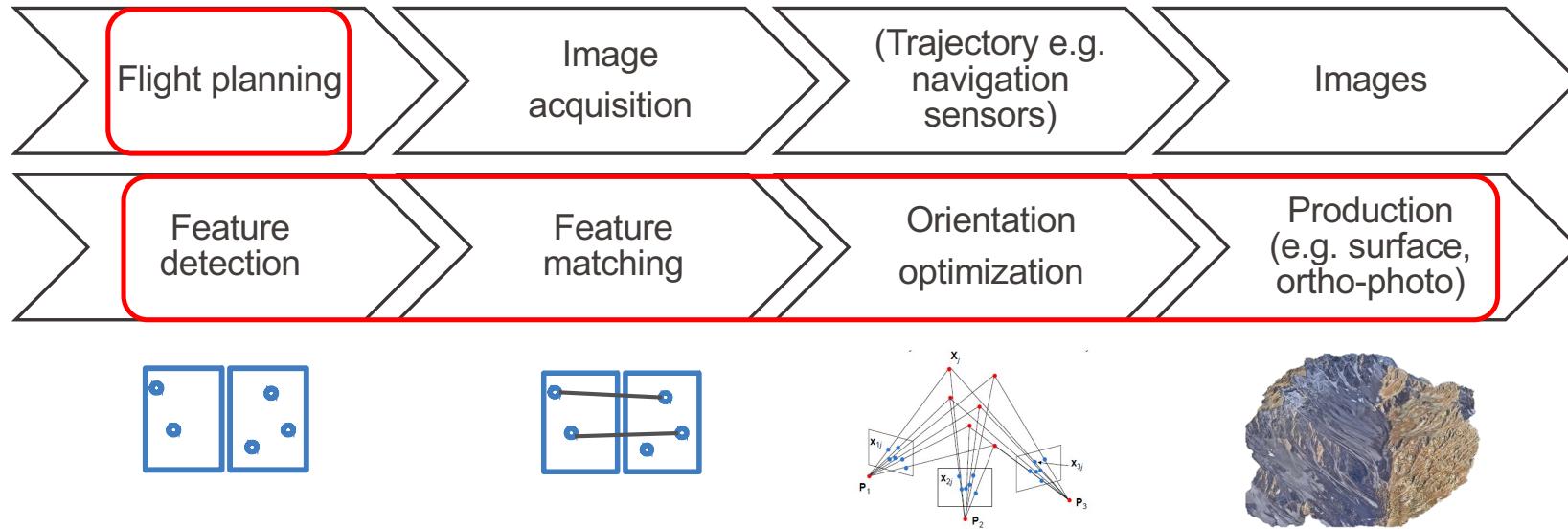


Lecture 3

Image Orientation

ENV408: Optical Sensing & Modeling for Earth Observations

Jan Skaloud



Lectures

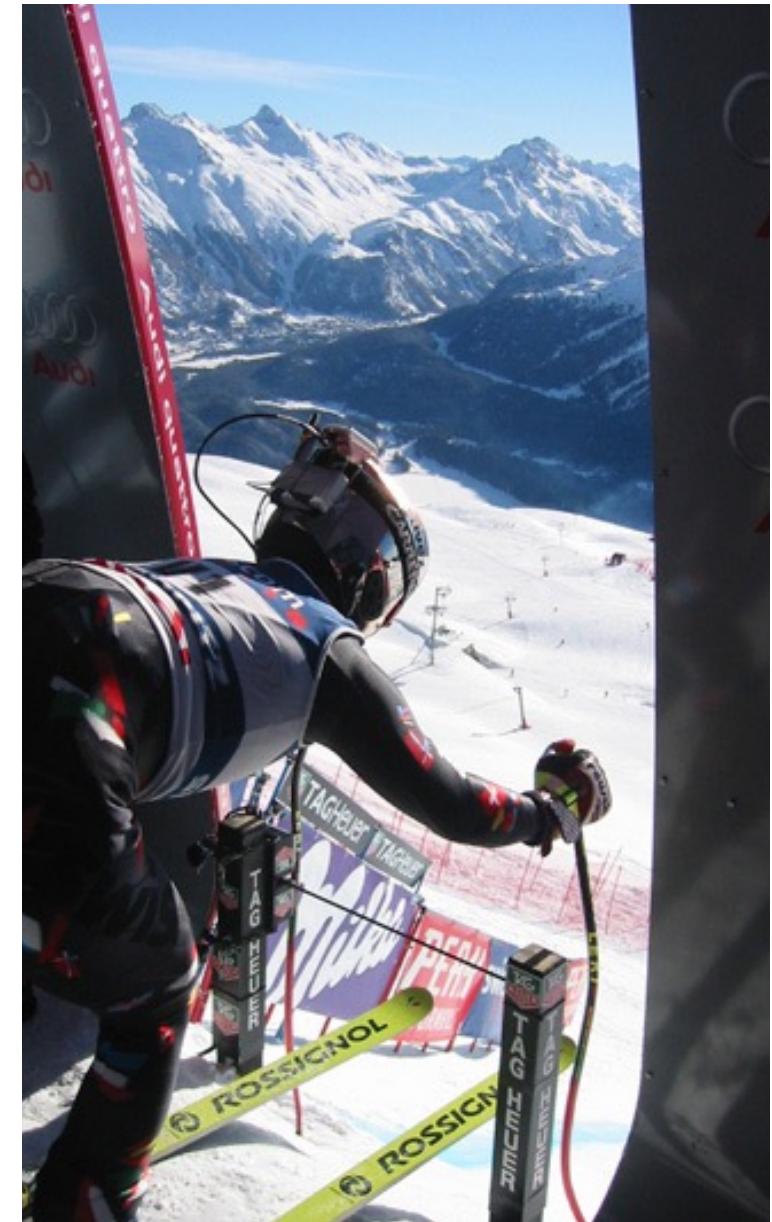
- Image primes (L1)
- Salient *features* (L2)
- **Image orientation (L3)**
- Stereo vision (L4)
- Many photos & mapping products (L5)

Exercises

- Image ‘corrections’ (Lab01)
- Detection & matching (Lab02)
- **Approx. absolute orientation (Lab03)**
- Approx. relative orientation (Lab04)
- Calibration, DEM, ortho-photo (Lab05)

Motivation ?

- Ambitions of the 1st time.
- Can you do it (in 2002)?
- Challenge 1:
 - DTM resolution ~ 1 m



EPFL Image orientation (= camera calibration)

5

Joint problem to solve: determine **intrinsic** & **extrinsic** (interior & exterior orientation) of a camera

Typical setups for lab camera calibration (arXiv)

Strategies:

- I. Unknown camera *calibration & pose*
 - i. Approximate first (fast & linear)
 - ii. Improve (optimization & linearized)

- II. Unknown *pose* but known *calibration*
 - i. Pose(EO) unknown: fast & linear
 - ii. Pose(EO) ~known: non-linear/optimal

3D field

Planar surfaces

Terminology – CV and photogrammetry

Camera parameters

Intrinsic parameters (= interior orientation):

Parameters related to camera optic

- i. focal length
- ii. optical center
- iii. distortion model

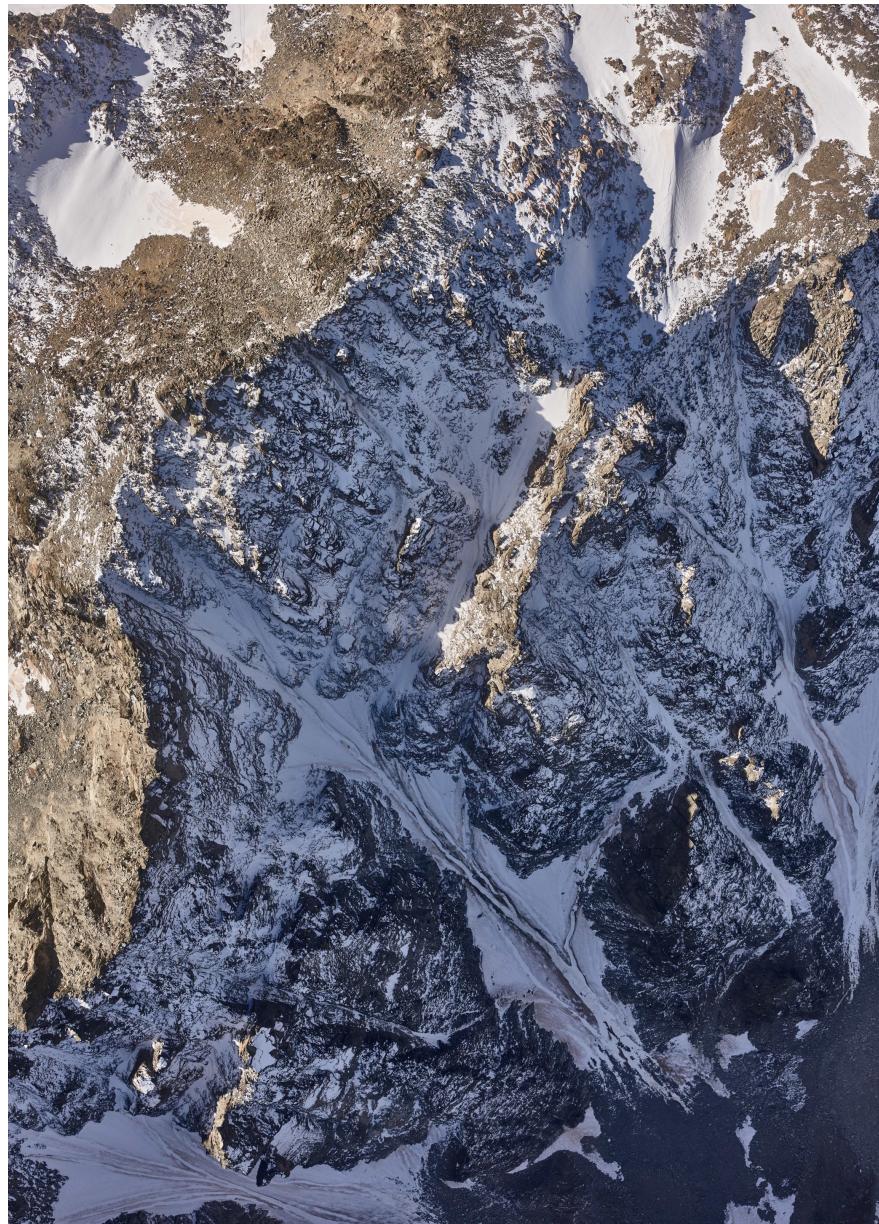
Extrinsic parameters (= exterior orientation EO, = camera pose):

Position and orientation in space of the camera in space (can be absolute or relative)

Extrinsic + intrinsic:

also called **camera calibration** or **orientation**

Photogrammetric term vs Computer Vision term



Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm

How to **estimate camera extrinsic** (position and orientation in space) ?

Given:

- i. set of points with know 3D coordinates \mathbf{P}_i
- ii. their corresponding coordinates (undistorted) in image plane \mathbf{p}_i
- iii. (known camera intrinsic)

Main steps:

- i. Build COLLINEARITY equations given \mathbf{p}_i and \mathbf{P}_i
- ii. Estimate camera pose with [DLT algorithm](#)
- iii. Estimate quality of the reprojection with reprojection error

Today: background, formulation, algorithms

Tomorrow: practical implementation starting from Lab 01 undistorted measurements

Mapping frame (m):

abstract coordinate system with ref. surface to provide known locations and create maps.

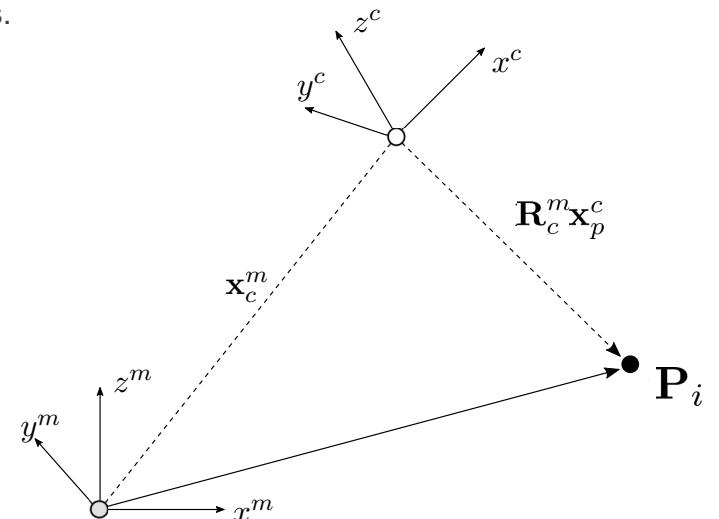
e.g. International Terrestrial Reference System (ITRF) + Year
country-wide, in Switzerland CH1903+/LV95 - EPSG:2056

Camera frame (c):

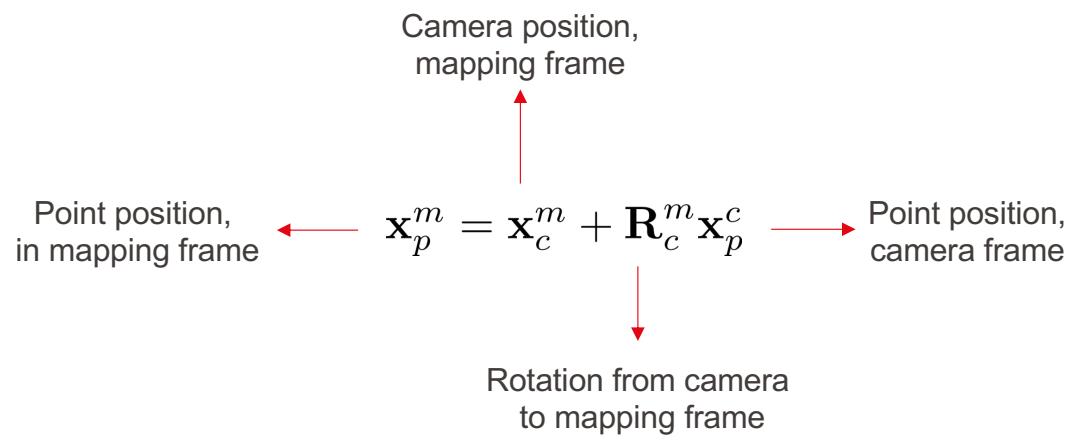
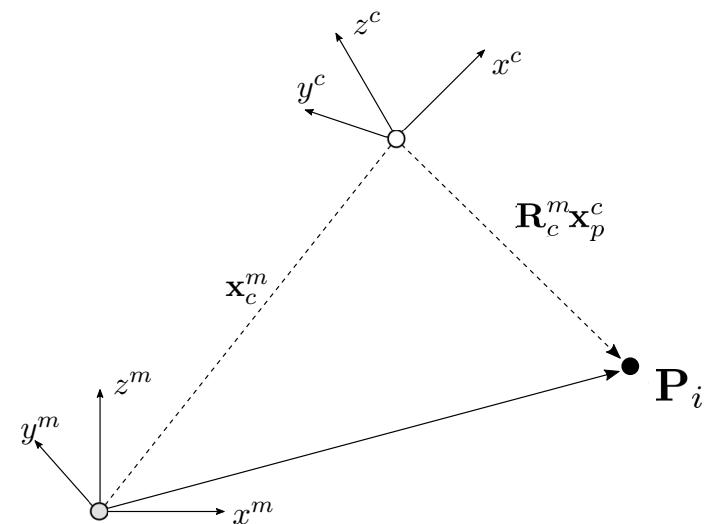
coordinate system defined by the camera position and orientation

Notation:

- Position of point P in m frame $\mathbf{P}_i = \mathbf{x}_i^m = (X_i^m, Y_i^m, Z_i^m)^T$
- Position of point p in image plane [px] $\mathbf{p}_i = (u^i, v^i,)^T$
- Position of camera c in m frame \mathbf{x}_c^m
- Rotation matrix (3x3, $\mathbf{R}^{-1} = \mathbf{R}^T$) from camera to mapping frame \mathbf{R}_c^m
(aligns camera frame axis to that of mapping frame)



Changing (transforming) Frame



Homogeneous coordinates

Goal: express more “efficiently”

$$\mathbf{x}_p^m = \mathbf{x}_c^m + \mathbf{R}_c^m \mathbf{x}_p^c$$

How: Add 4th term / coordinate

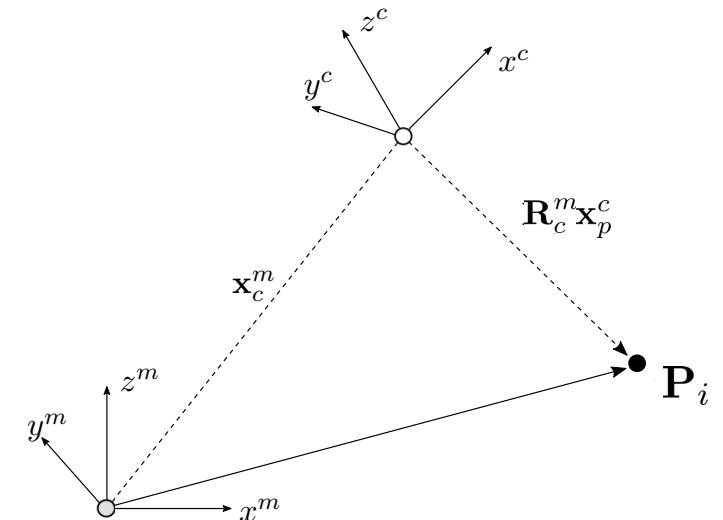
$$\bar{\mathbf{x}} \doteq \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix} = \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Rewrite frame transformation as:

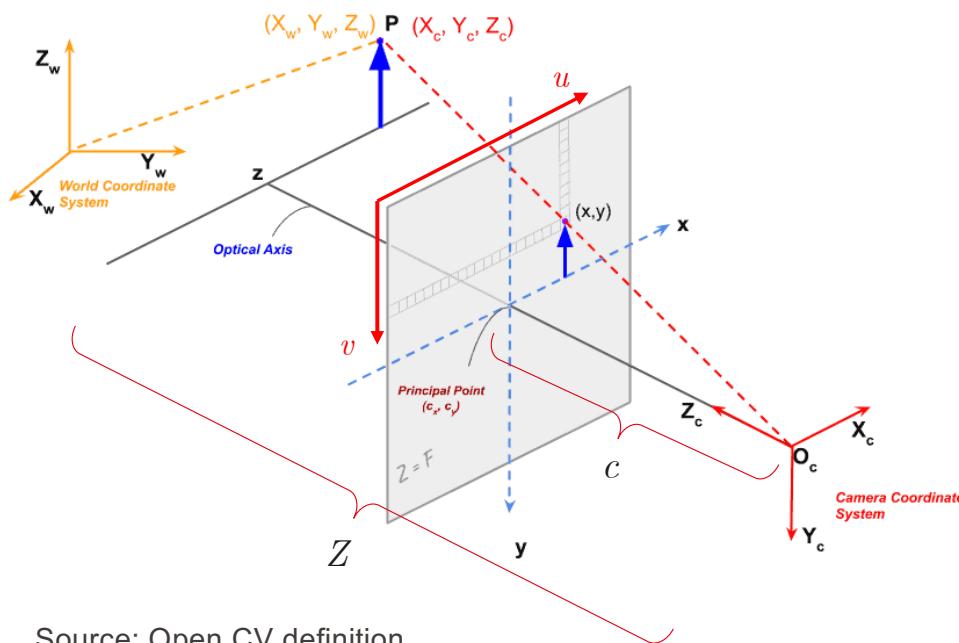
$$\bar{\mathbf{x}}_p^m = \begin{pmatrix} \mathbf{x}^m \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R}_c^m & \mathbf{x}_c^m \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_p^c \\ 1 \end{pmatrix} \doteq \bar{[\mathbf{R}|\mathbf{t}]}_c^m \bar{\mathbf{x}}_p^c = \bar{\mathbf{T}}_c^m \bar{\mathbf{x}}_p^c$$

Practical advantage: concatenation by multiplication:

$$\bar{\mathbf{T}}_c^a = \bar{\mathbf{T}}_b^a \bar{\mathbf{T}}_c^b = \begin{pmatrix} \mathbf{R}_b^a & \mathbf{x}_b^a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathbf{R}_c^b & \mathbf{x}_c^b \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathbf{R}_c^a & \mathbf{x}_c^a \\ 0 & 1 \end{pmatrix}$$



$$(\bar{\mathbf{T}}_c^a)^{-1} = \begin{pmatrix} (\mathbf{R}_c^a)^T & -(\mathbf{R}_c^a)^T \mathbf{x}_c^a \\ 0 & 1 \end{pmatrix} = \bar{\mathbf{T}}_a^c$$



Source: Open CV definition

Ratios

$$\mathbf{x} = \frac{1}{c} \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{Z} \begin{pmatrix} X \\ Y \end{pmatrix} \quad (c \text{ unitless here})$$

Perspective camera model:

Relates point p on image plane to corresponding point P in 3D

$$\mu \cdot p = \mathbf{K} \cdot P$$

With $\mu = Z$

See next slide for developed equation

Perspective camera model

Developed form:

$$\begin{array}{c}
 p \\
 \downarrow \\
 \mu \cdot \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \underbrace{\begin{bmatrix} c & 0 & x_{PPS} + c_x & 0 \\ 0 & c & y_{PPS} + c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}}_K \underbrace{[\mathbf{R}|\mathbf{t}]_m^c}_{P} \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix}
 \end{array}$$

K

Link with lab 01:

$$\mathbf{K} \iff \text{perspective2topleft}(xy, h, w, cx, cy, c)$$

$$\mathbf{K}^{-1} \iff \text{topleft2perspective}(uv, h, w, cx, cy, c)$$

i.e. **K** matrix operation is equivalent to converting measurements from perspective centered to top-left and vice-versa

Perspective camera model

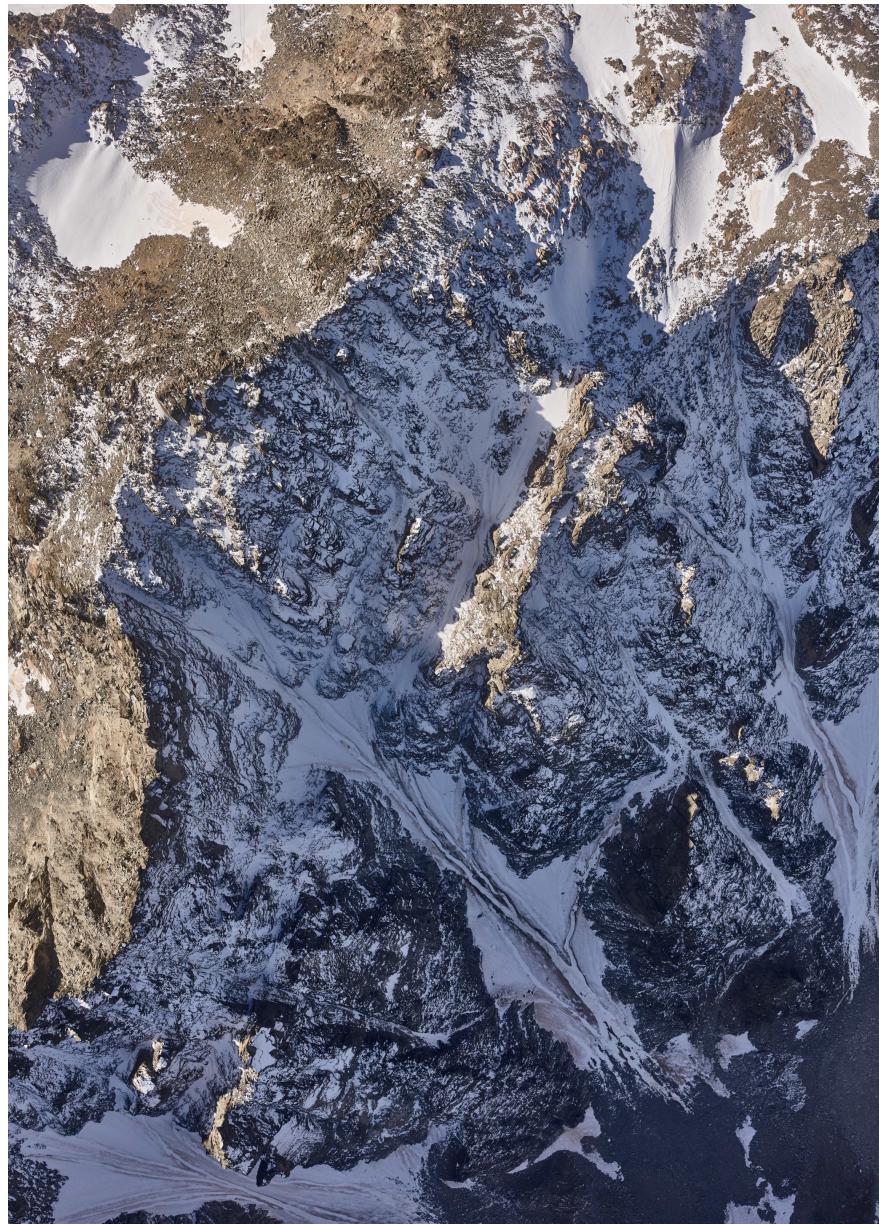
Developed form:

$$\mu \cdot \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} c & 0 & x_{PPS} + c_x & 0 \\ 0 & c & y_{PPS} + c_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} [\mathbf{R}|\mathbf{t}]_m^c \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix}$$

Today's assumption: intrinsic known

- K is known, no need to solve for it
- System becomes:

Solve this to find R , t



Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm

Approach:

Solve collinearity equation in homogenous coordinates for unknown terms: \mathbf{R}, \mathbf{t}

From image obs. \mathbf{p}_i and known 3D points \mathbf{P}_i

$$f_{undistort} \left(\mathbf{K}^{-1} \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} \right) = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \frac{1}{\mu} [\mathbf{R} | \mathbf{t}]_m^c \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix}$$

$$\implies \mu \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix}$$

Direct Linear Transformation (DLT)

$$\begin{aligned}
 & M = [\mathbf{R}|\mathbf{t}] \quad P \\
 \implies \mu \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} &= \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix} \\
 \implies \mu \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} &= M \cdot P = \begin{bmatrix} m_1^T \\ m_2^T \\ m_3^T \end{bmatrix} \cdot P
 \end{aligned}$$

Divide the first and second equations by the third, forms the following system :

$$\begin{aligned}
 x = \frac{\mu x}{\mu} &= \frac{m_1^T \cdot P}{m_3^T \cdot P} \implies (m_1^T - xm_3^T) \cdot P = 0 \\
 y = \frac{\mu y}{\mu} &= \frac{m_2^T \cdot P}{m_3^T \cdot P} \implies (m_2^T - ym_3^T) \cdot P = 0
 \end{aligned}
 \implies \begin{pmatrix} P_1^T & 0^T & -x_1 P_1^T \\ 0^T & P_1^T & -y_1 P_1^T \end{pmatrix} \cdot \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Direct Linear Transformation (DLT)

$$\begin{pmatrix} P_1^T & 0^T & -x_1 P_1^T \\ 0^T & P_1^T & -y_1 P_1^T \end{pmatrix} \cdot \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- For n observations of points (image-frame and map-frame), we obtain a large matrix:

$$\begin{pmatrix} P_1^T & 0^T & -x_1 P_1^T \\ 0^T & P_1^T & -y_1 P_1^T \\ \vdots & & \\ P_n^T & 0^T & -x_n P_n^T \\ 0^T & P_n^T & -y_n P_n^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

- In details

$$\begin{pmatrix} X_1^m & Y_1^m & Z_1^m & 1 & 0 & 0 & 0 & -x_1 X_1^m & -x_1 Y_1^m & -x_1 Z_1^m & -x_1 \\ 0 & 0 & 0 & 0 & X_1^m & Y_1^m & Z_1^m & 1 & -y_1 X_1^m & -y_1 Y_1^m & -y_1 Z_1^m & -y_1 \\ & & & & \dots & \dots & \dots & & & & & \\ X_n^m & Y_n^m & Z_n^m & 1 & 0 & 0 & 0 & -x_n X_n^m & -x_n Y_n^m & -x_n Z_n^m & -x_n \\ 0 & 0 & 0 & 0 & X_n^m & Y_n^m & Z_n^m & 1 & -y_n X_n^m & -y_n Y_n^m & -y_n Z_n^m & -y_n \end{pmatrix} \begin{pmatrix} m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \implies \boxed{Q \cdot \text{vec}(M) = 0}$$

known!

?

$$Q \cdot \text{vec}(M) = 0$$

Solution

Solving the system give us $M = \Pi = [R|t]$

Unique solution

- $Q_{(2n \times 12)}$ should have minimum rank 11 to have unique (up to a scale) *non-zero* solution $\text{vec}(M)$
- What is the **minimum number of** point-correspondences?

Overdetermined

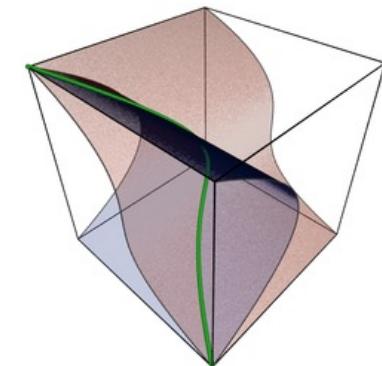
- For $n \geq \text{min.}$, solution is to minimize the sum of squared residuals (least-squares) $\|Q \cdot \text{vec}(M)\|_2$
- Constraint: $\|\text{vec}(M)\|_2 = 1$
- Done by singular value decomposition (SVD) of $Q^T Q$

$$Q \cdot \text{vec}(M) = 0$$

Degenerated situation (rare yet possible...):

In some specific configuration of the points in space, **DLT** can lead to degenerated solutions, e.g.

- points lying on a plane passing through the center of projection
- camera & points on twisted cubic



Twisted cubic: source Wiki

(complementary slide)

Approach:

This time, unknowns to solve for include camera intrinsic: $K(u_0, v_0, c_u, c_v)$, R , t
 (more complex, yet possible !)

$$\mu \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K[R|t] \cdot \begin{pmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{pmatrix} = \begin{pmatrix} c_u & 0 & u_0 \\ 0 & c_v & v_0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{pmatrix} \begin{pmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{pmatrix}$$

$$\implies \mu \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = \begin{pmatrix} c_u r_{11} + u_0 r_{31} & c_u r_{12} + u_0 r_{32} & c_u r_{13} + u_0 r_{33} & c_u t_1 + u_0 t_3 \\ c_v r_{21} + v_0 r_{31} & c_v r_{22} + v_0 r_{32} & c_v r_{23} + v_0 r_{33} & c_v t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{pmatrix} \begin{pmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{pmatrix}$$

■

(complementary slide)

$$\Rightarrow \mu \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} c_u r_{11} + u_0 r_{31} & c_u r_{12} + u_0 r_{32} & c_u r_{13} + u_0 r_{33} & c_u t_1 + u_0 t_3 \\ c_v r_{21} + v_0 r_{31} & c_v r_{22} + v_0 r_{32} & c_v r_{23} + v_0 r_{33} & c_v t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix}$$

$$\Rightarrow \mu \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = M \cdot P = \begin{bmatrix} m_1^T \\ m_2^T \\ m_3^T \end{bmatrix} \cdot P$$

$$M = \mathbf{K} [R|t]$$

$$= \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \begin{bmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{bmatrix}$$

M**P**

- M matrix is more complex to form since it includes unknowns for intrinsic parameters.
- Formulation of Q matrix stays the same

■

(complementary slide)

$$Q \cdot \text{vec}(M) = 0$$

Solution

Solving the system give us $\Pi = \mathbf{K} [R|t]$ instead of $\Pi = [R|t]$ in the known intrinsic case

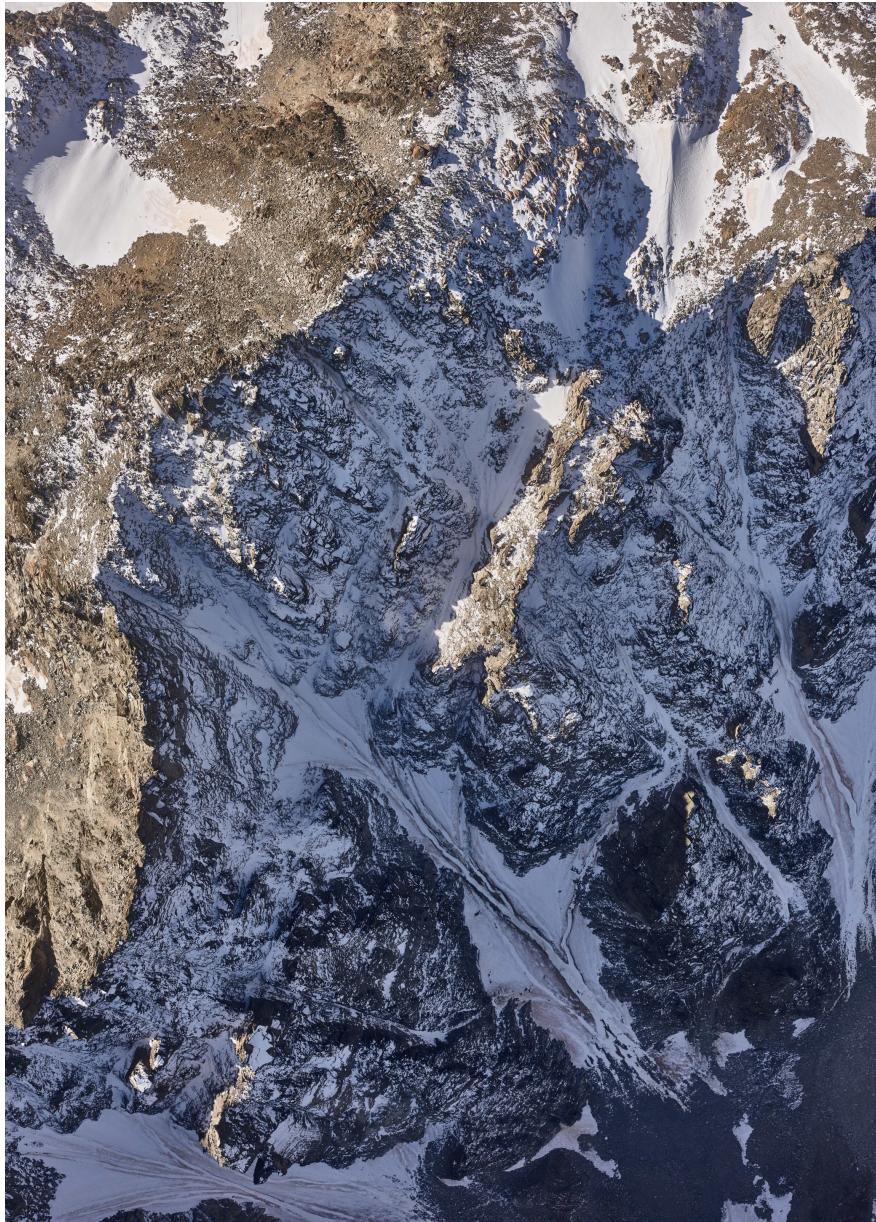
Unique solution

- $Q_{(2n \times 12)}$ should have min. rank 11 to have unique (up to a scale) *non-zero* solution M_s
- What is the **minimum number of** point-correspondences?

Overdetermined

- For $n \geq \text{min.}$, solution is to minimize the sum of squared residuals (least-squares) $\|Q \cdot \text{vec}(M)\|_2$
- Constraint: $\|\text{vec}(M)\|_2 = 1$
- Done by singular value decomposition (SVD) of $Q^T Q$

■



Perspective Camera Model

DLT algorithm

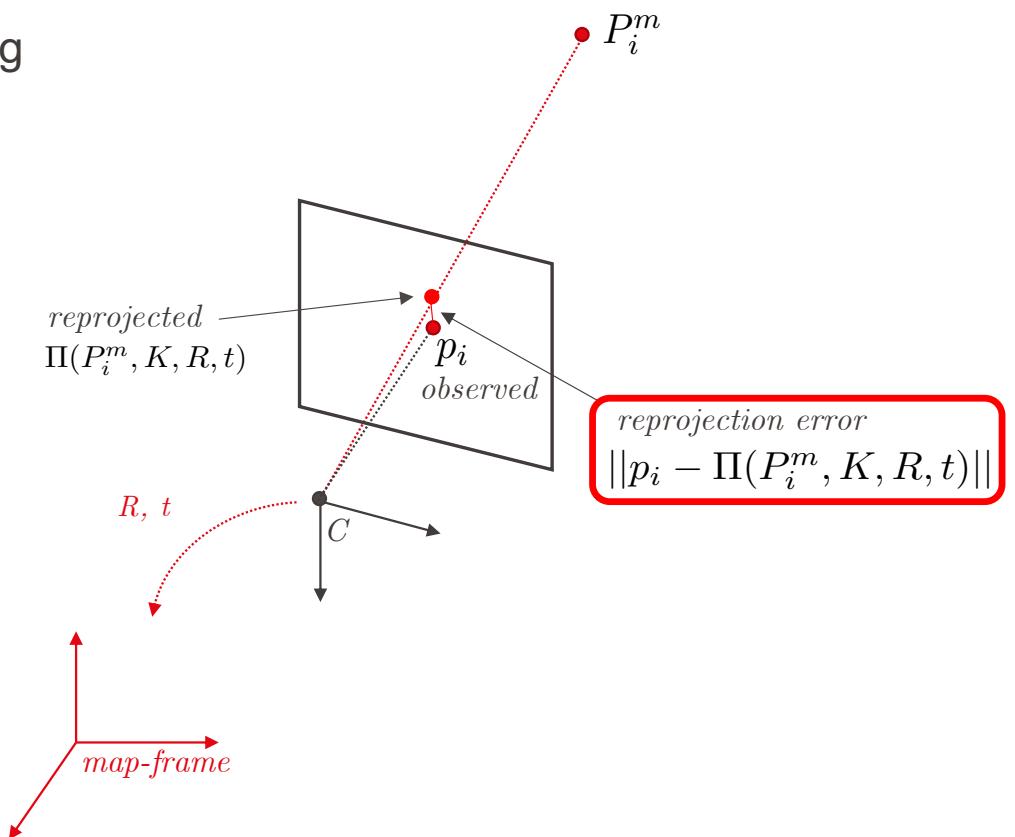
Refine orientation and calibration

Alternative algorithm

- e_r = Euclidian distance [pixels] between **observed** image point and the corresponding 3D point **reprojected** on the camera frame

- Can be used to access the quality of “calibration”.

- What is an **acceptable value of e_r ?**
- What are the **sources of reprojection error?**
- How this can be further **improved?**

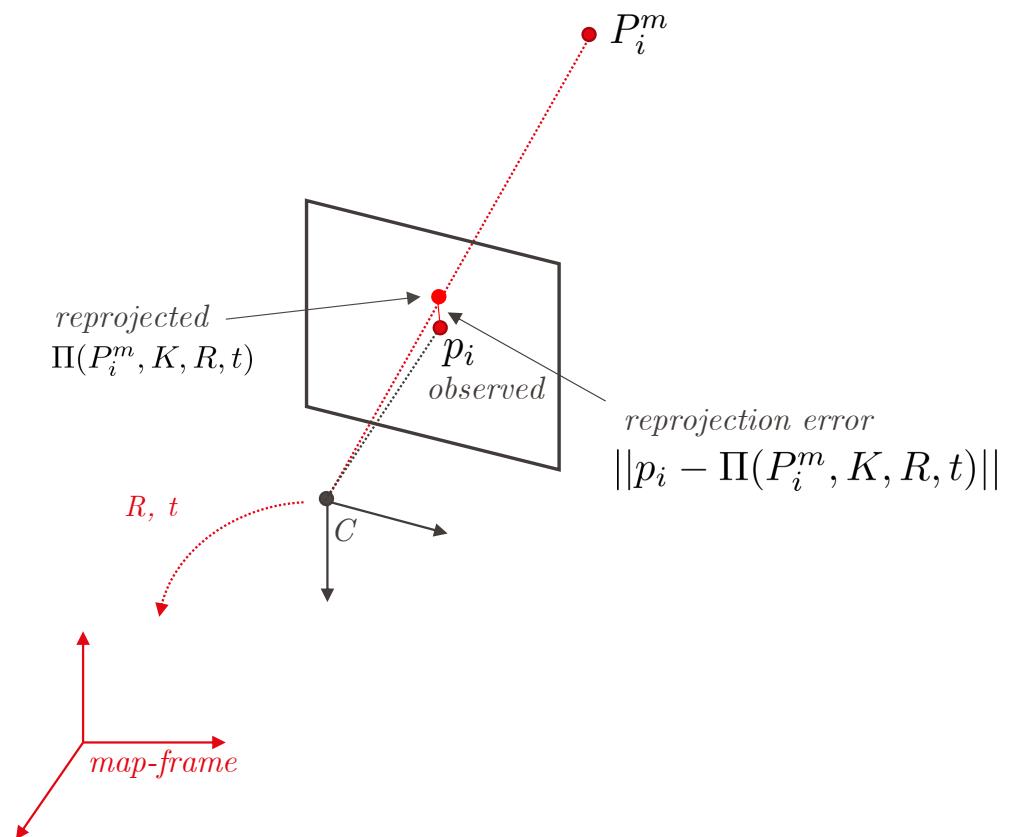


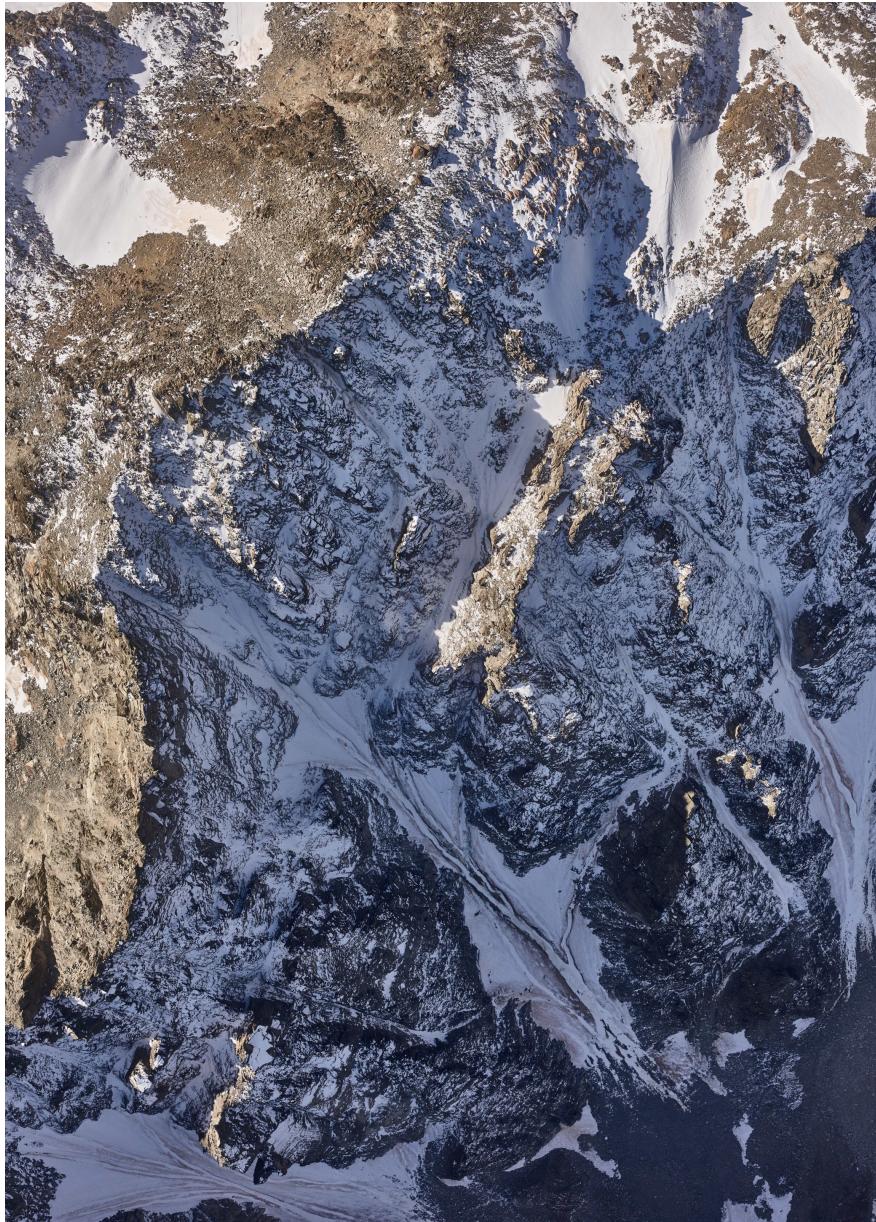
Refinement – orientation & calibration

The orientation parameters (exterior, interior) can be refined by minimizing the cost function:

$$\operatorname{argmin}_{K, R, t, a_p} \sum_{i=1}^n \|p_i - \Pi(P_i^m, K, R, t, a_p)\|_2$$

- Here, lens distortions are included as additional parameters a_p to refine !
- Cost-function **highly** non-linear!
- After DLT, all but a_p have initial values.
- Solving via iterative least-square (linearization).
- **Levenberg-Marquardt** solver: more robust (to local minima) than Gauss-Newton





Perspective Camera Model

DLT algorithm

Refine orientation and calibration

Alternative algorithm

Task: same as DLT, solve the **pose** of camera in map-frame from a set of 2D-3D point correspondences ...

... but *assuming a known camera calibration* !

DLT is possible but sub-optimal (speed, n , accuracy in noise)

Why using PnP?

- Stereo-vision (later subject) will provide points in object space
- Then image (camera) moves ... slightly & takes an image:
- This new image is localized by previously mapped points!
- Applications (robotics, automated driving, UAV – obstacle avoidance, etc.)

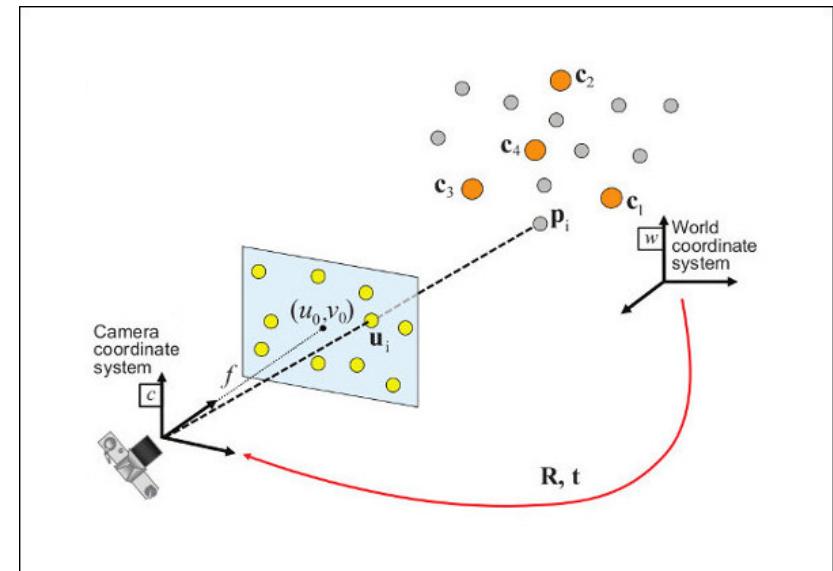
EPFL Solutions to perspective n point (PnP)

29

Efficient PnP by Lepetit et al.* and is implemented in OpenCV ([solvePnP_EPnP](#))

- EPnP expresses n -points (in object frame) as weighted sum of 4 virtual control points (VCPs)
- VCPs' coordinate become the unknown, solvable in $O(n)$ time, solving a constant number of quadratic polynomial equations.
- Final pose of the camera solved from these control points.

$$n \geq 4$$



Source: OpenCV

* Lepetit et al, EPnP: An accurate $O(n)$ solutions to the PnP problem, *Int. J. of Computer Vision*, 2009

Scenario

Uncalibrated camera (intrinsic w. ap unknown)

- only **DLT** can be used!

Calibrated camera (intrinsic, ap known)

- either **DLT** or **EPnP** can be used

Minimum number of points

EPnP: 3(P3P) + 1 for ambiguity resolution

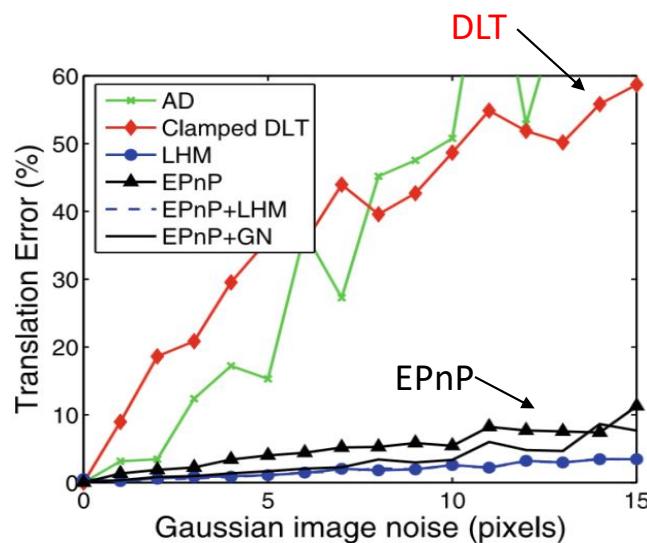
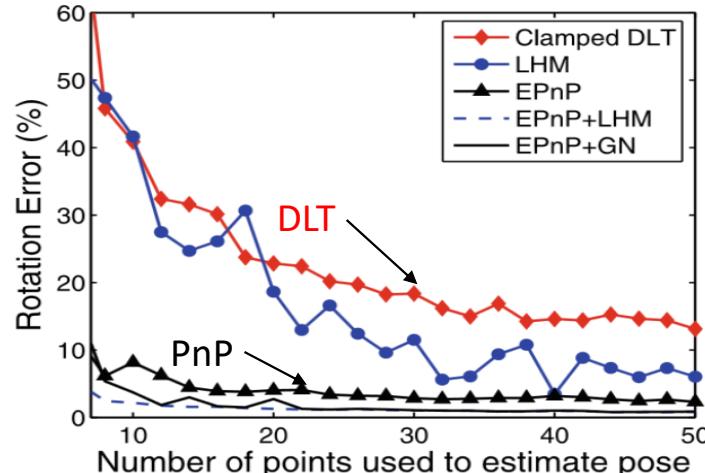
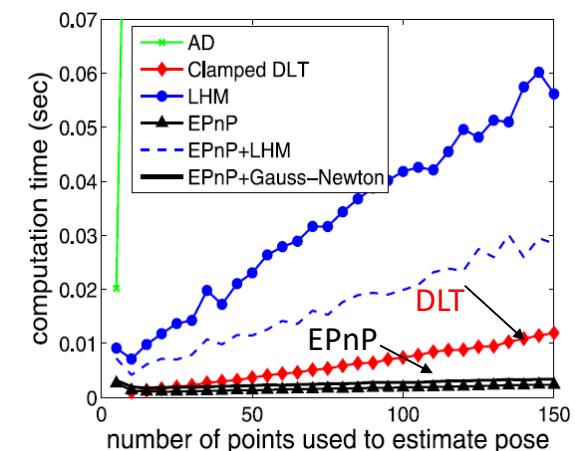
DLT: min. number of points: **4** if coplanar, **6** if non-coplanar

The localization/pose (with intrinsic calibration) can be refined by **non-linear optimization** (min. the sum of squared reprojection errors)

EPFL DLT vs EPnP: efficiency & accuracy in noise

31

- According to Lepetit et al.* EPnP is more than 10x more efficient and supports considerably higher noise levels than DLT:



* Lepetit et al, EPnP: An accurate $O(n)$ solutions to the PnP problem, *Int. J. of Computer Vision*, 2009

Understanding - self assessment

- Explain and derive the DLT (via the presented, so-called Tsai's method).
- What is the minimum number of correspondences required for DLT by Tsai's method?
- What is the reprojection error?
- How the reprojection error can be used to improve the orientation?
- Describe the general PnP problem. What is the behavior of its solutions?
- Why and where PnP can be useful?