
Lab04 - Image Relative Orientation (Two Views)

ENV-408 - Jan Skaloud

13/03/2025

Objectives
Understand how to orient a pair of stereo images relative to one another by finding the pose (position t and
attitude R) of the right image with respect to the left image. This is the same as considering the pose of
the left image as origin (t1 = 0, R1 = I) and finding R = R2 and t = t2. Hence, triangulated points will
be expressed in camera 1 frame. Inputs are the (automated) image observations of corresponding points
obtained from the provided image pair for this lab.

Overview
Input data

• IMG A: raw_data/img_1092311568.jpg and IMG B: raw_data/img_1092314704.jpg: down scaled
image pair for which feature correspondences should be computed and saved in a csv. IMG A was used
as the reference image in Lab03. Be sure to load images in the correct order in your Exercise 2 SIFT
function: units: pixels, origin: top-left.

• raw_data/cam_param.txt: info on image size (height width) in pixels, the camera constant (c)
in pixels, coordinates of perspective point (cx cy): units pixels, origin top-left and the distortion
parameters (k1 k2 k3).

Functions to implement
• p = undistort_solver(cam_param, uv) and undistort(var, x_d, y_d, k1, k2, p1, p2).

These functions include your implementation of Exercise 1 that transform raw perspective centered
coordinates (x′, y′) to undistorted coordinates (x, y).

• xy = topleft2perspective(uv, cam_p) Your implementation of Exercise 1 that expresses top left
coordinates in perspective centered normalized coordinates (was used also in Exercise 3).

• P = triangulation(p1, p2, Rt_1, Rt_2): Intersects correspondences p1, p2 using the relative ori-
entation [R|t] as obtained via the E matrix determined with the eightpoint(p1, p2) function below.

• E = eightpoint(p1, p2): Estimates the essential matrix E using the 8-points algorithm.

• [R1, R2, t1, t2] = decomposeEssential(E): Decomposes the essential matrix E into four numeri-
cally possible solutions of relative orientation.

• [R,t] = checkRelativePose(Rs, ts, p1, p2): Selects the valid solution out of four previously
obtained in decomposeEssential(E) so the triangulated points lie in front of both images (have
positive depth).

1

• Notation: [x]× denotes a skew-symmetric matrix of vector x = (x1, x2, x3)T as [x]× = 0 −x3 x2
x3 0 −x1

−x2 x1 0


Task 1: Triangulation
The final goal of this exercise is to determine the spatial structure of points Pi through stereo vision, through
their observations in left and right cameras. This situation is depicted in Figure 1: once the relative orientation
(relative pose) between both cameras is known, the spatial intersection (also called triangulation) of rays
defines their position in space.

y

x

z

y

xz

P=?

p1 p2

e1 e2

o1
o2

(R, t)

Figure 1: Goal: estimate P from p1, p2 and projection matrices, via triangulation (spatial intersection).

Although [R|t] will be determined later, let’s assume for the moment that they are known and defined as we
implement the triangulation. As will be shown later, the triangulation function is useful in the process of
recovering R and t.

Formulation
Lets consider the acquisition of stereo-pair through motion in which the left and right images are captured by
the same camera but at different instances of time, in other words, K1 = K2 = K. In our implementation,
we have already expressed measurements in normalized coordinates, which implies that K = I3. Further, the
relative mapping-frame is defined by the origin and axes of the left camera. With that, the projection of p1
to object coordinates (X, Y, Z) of P for the left camera takes the following form:

µ1

x1
y1
1

 = [I | 0]︸ ︷︷ ︸
Π′

1

·


X
Y
Z
1

 =⇒ µ1p1 = Π′
1 · P =⇒ p1 × µ1p1 = p1 × Π′

1 · P =⇒ 0 = [p1]× · Π′
1 · P

Similarly, we obtain for the right camera:

2

µ2

x2
y2
1

 = [R | t]︸ ︷︷ ︸
Π′

2

·


X
Y
Z
1

 =⇒ µ2p2 = Π′
2 · P =⇒ p2 × µ2p2 = p2 × Π′

2 · P =⇒ 0 = [p2]× · Π′
2 · P

Putting the last equations for both cameras together we obtain a homogeneous system of equations.

(
[p1]× · Π′

1
[p2]× · Π′

2

)
· P =

(
A1
A2

)
· P = A · P = 0

.

We choose a non-zero P that minimizes the quadratic norm ||A · P ||2. This can be solved by the singular
value decomposition (SVD) of A: A = UΣV T . Then the solution to A · P = 0 is the last column of V that
corresponds to the smallest eigenvalue in Σ.

Implementation
1. For each point pi

1, pi
2:

1.1 Estimate A1 = [p1]× · Π′
1, A2 = [p2]× · Π′

2.

Hint: skewMatrix(pi) will help you build [pi]×.

1.2 Perform SVD

Hint: Numpy SVD outputs V T , not V , Matrix[:,-1] accesses the last column of a matrix.

1.3 Extract P from V .

2. Scale P back to homogeneous coordinates by dividing each P by its 4th coordinate that maybe no
longer unity).

Control

Section ‘Test task 1’ is provided, which will call your triangulation() function on some test [R|t] matrices
test your implementation is correct.

Task 2: Essential matrix
The 8-point algorithm is presented in the lecture and in the supplementary reading (book chapter). It aims
to find the essential (if K is known, otherwise fundamental) projection matrix that satisfies the coplanarity
constraint between the normalized image correspondences pi

1, pi
2 and the relative translation vector t as

shown in Figure 1.

Formulation
The system to solve is the following, starting from coplanarity constraint and using a similar trick as in Lab03:

pT
2 [t]× R p1 = pT

2 E p1 = 0 ⇐⇒ Q · vec(E) = 0

With vec(E) = (e12, e21, e31, e21, . . . , e33) and

Q =

(p1
2 ⊗ p1

1)T

...
(pn

2 ⊗ pn
1)T



3

• The problem Q · vec(E) = 0 is again in the form of a set homogeneous linear equations as in DLT or in
triangulation. The solution follows from SVD: Q = UΣV T where the vector vec(E) is the last column
of V corresponding to the smallest eigenvalue.

• The vector vec(E) must be reshaped back to E.

• E is supposed to be of rank 2, which guarantees that all epipolar lines in an image intersect at a single
point, the epipole. Numerically this corresponds to det(E) = 0. However, due to the presence of noise
in the data, this condition must be enforced. One possibility to do so is the following:

a. Compute SVD of E = UΣV T , where Σ = diag(σ1, σ2, σ3).
b. Set the smallest eigenvalue to zero (σ3 = 0) and the other two eigenvalues to their mean:

σ = 0.5 · (σ1 + σ2).
c. Recalculate E = U diag(σ, σ, 0)V T .

Implement the function E = eightpoint(cpts1, cpts2) following steps below.

Steps
1. Compute Q matrix (using the Kronecker product ⊗ of p1, p2, see lecture codes hint1)

2. Compute SVD of Q.

3. Extract vec(E) and reshape it back to E matrix.

4. Folowing the steps a. b. c. above, compute SVD of E, set the first two eigen-values to their mean and
the third to zero to enforce rank 2. This assures that the obtained E belongs to the space of essential
matrices.

5. Return the re-estimated E from the modified UΣV T .

Hint: The function np.diag() is useful in forming Σ.

Control

The second unitary test will estimate the correctness of your implementation by estimating the reprojection
error (RMSE) of all tie points

(
1
N

∑N
i=1(pi

2Epi
1)2

)−1/2
.

Task 3: Decomposition of E
3.1 Possible solutions
(R|t) can be extracted from the decomposition of the essential matrix E. In the course slides, the method for
extracting t is presented (slide “Extracting R,t from E, part II. finding t”). Here we propose a simplified
method to extract R and t by exploiting the SVD of the previously determined essential matrix and testing
the different combination of R|t afterward (leading to the same solution as the one you would obtain from
the method of the course).

1. Perform SVD of the E = UΣV T returned by eightpoint(cpts1, cpts2)

2. The two possible translations are t1 = u3 and t2 = −u3 where u3 is the last column of U

3. The two possible rotation matrices are R1 = UWV T and R2 = UW T V T , with:

W =

0 −1 0
1 0 0
0 0 1

 ,

and U , V being the previously defined elements of the SVD.
1Refer to the lecture 4 on Stereo Vision, slide "The 8-point algorithm – SVD of Q in Python"

4

4. Finally, the 4 possible solutions to test for R and t are :

(R1|t1) = [UWV T |u3]
(R2|t1) = [UW T V T |u3]
(R1|t2) = [UWV T | − u3]
(R2|t2) = [UW T V T | − u3]

Steps
Goal: Implement [R1, R2, t1, t2] = decomposeEssential(E).

1. Perform SVD of E as estimated in the previous task.
2. Extract translation vector from U (third column) normalized it (divide all components by vector norm)

and express the t1 and t2=-t1
3. Express W matrix
4. Estimate R1, R2 from U, W and V as defined in Step 4 above. Note: Make sure to normalize t1, t2 and

ensure that the determinant of R1, R2 is positive (if not, multiply the rotation matrix with negative
determinant by -1)

3.2 Finding the right solution
The correct solution is that which represents reality. For that, both cameras must look (within pi/2) toward
the same direction and all triangulated points should lie in front of them, or in other words have a positive
depth.

Implementation
Complete [R,t] = checkRelativePose(Rs, ts, p1, p2). Here triangulation() function is useful. To
select the correct rotation and translation, you can triangulate the points for each R|t combination and select
the solution that leads to all triangulated points P having positive depth, i.e. lying in front of both cameras.

Test task 3: Model visualization with control
We can now verify that the estimated (R|t) transformation can correctly triangulate new points visible by
both cameras. A code skeleton is provided that evaluates the model and can be executed as is, provided that
you define the variables with the expected names and respect the format. The unitary test is implemented
which verifies that your model is correct. If your code pass this last test, the implementation of the 8-point
algorithm is correct, congratulations!

Visualization. Plot the reconstructed scene either in 2D or 3D: both cameras (with their orientation) and
the coordinates of points using plot_pipeline(P, t, R, units) that is contained in utils.py

Questions
1. RMSE. Are you happy with the obtained of reprojection error (test 2)? If yes why? If not, how do

you propose to improve it?

2. Closest point 1. What is the closest point that you detected with respect to the left=first camera for
the unitary baseline? What are the units?

3. Absolute pose (position and attitude) of the right camera. Considering a real distance between
left and right camera to be 211.35 m. What is the absolute pose (position & attitude) of the right=second
image? Hint: you may want to use/integrate the results of some previous lab.

4. Coordinates of the closest point 1. Express the absolute coordinates of the closet point 1 (considering
the absolute orientation), specify its units.

5

5. Absolute orientation of model - propose an alternative. Put yourself in the situation where in
the point 3. the distance between the left and right cameras are not given. Suggest briefly in steps:

a. How do you propose to resolve it? If needed, use formulas rather than description.
b. How do you propose to verify that your solution is correct?

Deliverables & report submission
Submit your lab to Moodle before 28-03-2025 23:59 hrs as

• One zip file with the following content:
– your code with auxiliary functions (so it can be executed),
– the input files you used (without images!) and,
– the report (max 2 pages) with answers to questions 1-5.

Feel free to support your answers with plots or tables.

6

	Objectives
	Overview
	Input data
	Functions to implement

	Task 1: Triangulation
	Formulation
	Implementation
	Control

	Task 2: Essential matrix
	Formulation
	Steps
	Control

	Task 3: Decomposition of E
	3.1 Possible solutions
	Steps
	3.2 Finding the right solution
	Implementation
	Test task 3: Model visualization with control
	Questions
	Deliverables & report submission

