ENV-408: Ex3-Absolute Orientation (Camera Pose)

Jan Skaloud

05,/03/2025

Objectives

Understand how to orient a single image in space, i.e. determine its pose (position and attitude)
from image observations of points with known coordinates in object (world) space.

Methodology: Given a set of n-points in undistorted perspective-centered coordinates (Lab 01) and their
corresponding ground coordinates (mapping frame) implement the DLT algorithm in the simplified setup
where camera calibration parameters (¢, ¢;, ¢, and thus K) are known. It will be used to estimate the camera
pose II = [R, t].

Overview

Input data
1. gcps.txt: mapping coordinates (No X Y Z) of Ground Control Points (GCPs), units: meters

2. cam_param.txt: image dimensions, camera constant and coordinates of perspective point (¢, ¢z, ¢y),
units: pixels, as well the unitless distortion coefficients (k1, k2, p1,p2).

3. id_xy_corrected.txt: undistorted image coordinates (No x y) of GCPs, unitless in perspective-
centered coordinate system (you can use provided or your own output from Lab 01 or provided
measurements.

Functions to implement:
e Q = build_Q(p, P): builds the system of equations to be solved by the DLT algorithm

e PI_prime = estimatePoseDLT(Q): estimates the camera rotation matrix and camera translation vector
that fit as much as possible the perspective projection for the set of points.

e r = reprojectPoints(P, PI_prime): re-projects 3D points P; to image plane using estimated pro-
jection matrix PI_prime.

Notation and coordinate systems
o P4 denotes the point P expressed in the coordinate frame A

o T% dentotes the transformation that maps points in frame A to frame B, such that: P2 =T§ . P4 =
[Rt]% - P4

Task 1 : Building DLT’s system of equations

Formulation

The DLT algorithm is presented in the lecture (slides). Here we consider the simplified case that K is
(approximately) known, as would be the case for a pre-calibrated camera.

Our goal is to estimate R and ¢ (rotation matrix & translation vector) that satisfy the perspective projection:

xm
I
. u/ T 1 . gm
fundistort K v =Y = 7[R|t]m ! Zm (1)
1 | #)

Note that using the topleft2perspective function to convert (u,v) from top left to (z,y) perspective
centered coordinate, you implicitly used K. Denoting the projection matriz for normalized image coordinates
IT = [R[t]¢,, the problem reduces to finding IT and scale factors u; satisfying:

pipi = 1LP;

For each 2D-3D correspondence i = 1,...,n, where p; = (z,y,1)T and P, = (X, Y™, Z™ 1)T are the
respective i" image & object point homogeneous coordinates.

As shown in the lecture, the scale factors u; can be canceled by dividing the first two equations by the 3rd,

T .
e.g. % = ::;:?i; and afterwards the problem reduces to finding II alone'. II can be estimated by stacking
z 3

its rows into a (12 x 1) vector:

vec(H):[mH miz2 MMi13 Mi4 M21 M22 M23 M24 131 132 71133 m34]

and solving the following homogeneous system of linear equations:

Q-vec(Il) =0
where
le Ylm Z{n 1 0 0 0 0 —$1X{n —Z‘lylm —$1Z{n —X1
0 0 0 o0 X Y™ Z7" 1 —yp X" —ypY" —pZt -y
Q= (2)
Xmrym oz 1 0 0 0 0 —z, X" —x,Y)" —x,2 —x,
0 0 0 0 X Y™ Z 1 —y, X" =y Y, =y 2" —yn
Implementation
Input
1. Measurements normalized undistorted coordinates, Nx2 array : p; = [ﬂ
X
2. Measurements GCPs 3D coordinates (shifted) Nx3 array : P, = |Y
Z

1The scale factors can be recovered once II is determined.

Steps

1. Express P in homogeneous coordinates

X
Z

X
Y
Z
1
2. Build the Q matrix as expressed in Eq. 3 above from p and P
Hint : Using np array advanced indexing and broadcasting will help a lot, see below
Example 1: Q[i:j:k, :] allows to access the lines i to j every k lines.
You might consider using it when building Q matrix columns 0 to 7
Example 2 : Broadcasting line array with column array

col is a Nx1 column array, row is a 1xM array. By doing col*row, you will end up with a NxM
matrix corresponding to the matrix multiplication of the two array. You might consider this when
building Q matrix columns 8 to 11

Output
Q matrix 2*N x 12 matrix of the DLT algorithm

Figure 1: The goal is to estimate the camera pose z* and RS, from n pairs [p; — P;] of 2D-3D point
correspondences, via the PnP (DLT) solver.

Task 2 : Solving the over-determined system of equations and
extracting R, t from II

Formulation

Each 2D-3D correspondence provides 2 independent equations, we need at least 6 points to resolve the twelve
unknowns m;_;.

However, the distribution of points has to avoid degenerate configurations (such as all points lying on a
plane), in other words, @ needs to be at least of rank 11 (solution up to an unknown scale factor).

Ideally, the system is over-determined (n > 6) and we look for a solution that minimizes ||@ - IT|| subject
to the constraint [|II|| = 1. This constraint can be enforced by Singular Value Decomposition (SVD) of @:
Q =USVT, where U,V are unitary matrices and S is diagonal.?

1. The best (approximate) solution vec(f[) is the eigen-vector corresponding to the smallest eigen-value of
QTQ, i.e. the last column of V if S has its diagonal entries sorted in descending order. After solving
the linear system @ - vec(II), the obtained vector vec(II)’(12 x 1) must be reshaped to the projection
matrix T1(3 x 4) = [R|f].

2. Because SVD operation does not preserve the sign of its solution, we must ensure that the sign of II is
correct. Since the object are lying in front of the camera and since the camera axis points forward, the
translation vector must be positive. Inspect the z component of the recovered translation: ¢, = II34
and ensure that it is positive. If not, you need to multiply II by (—1).

In summary after this operation we obtain the approximate translation vector ¢ as the last column of II:
t = II(:,4), while the first three columns of II correspond to the approximated rotation matrix R.

3. Elements in @ are built from observations affected by errors, and nothing ensures that m;; with
(4,j) = 1,---,3 have the properties of a rotation matrix. To guarantee that R € SO(3)3 we want to
extract the true rotation matrix R from R, which is the closest matrix in the sense of the Frobenius
norm, with all eigen values equal to one. The R matrix can be found by domg the SVD decomposition
of R, and forcing all eigen values to one. The estimation of R follows : R =UIVT =UVT

4. The applied solution of Q - vec(II)’ provides the projection matrix up to a scale, i.e. its approximation
Il = [R|f] = [uR|pf]. The nearest (true) rotation matrix R was obtained from its approximate R, which
implicitly recovered the unknown scale factor u when ensuring Re SO(3). One can take advantage of

the relation R = puR, to estimate p = Hg”, -|| is any matrix norm, e.g. the Frobenius norm.
Implementation
Input

Q matrix 2*N x 12 matrix of the DLT algorithm

Steps
1. Perform the SVD decomposition of Q to obtain vec(II) and reshape vec(I) into II of shape (3x4)

Hint numpy.linalg.svd()* will perform the svd with S values sorted by descending order.
np.reshape is usefull to recover the matrix form

2. Enforce det(R) = 1 property: Implement an if condition that multiply II by -1 if ¢, = II34 <0

3. Extract rotation matrix R: Perform SVD(R) =UXVT. You can then estimate R=UIvT =yuvT
which is equivalent to forcing R eigenvalue to one.

2Note that under the orthogonality properties of U, V matrices, the decomposition of Q is sufficient if we want to recover last
column of V, as described in the Step 1, because the SVD(QT Q) = VI STUTUSV = VT ST SV yields the same answer.

3The space of rotation matrix in 3D is the special orthogonal group of dim = 3.

4In Matlab: [U,S,V]=svd(Q’*Q).

4. Recover the scale p: The scale is defined by p = HI? }, where || - || is any matrix norm, such as the

Frobenius norm.

Hint numpy.linalg.norm() using Frobenius norm is available to you for this task.’

Output

= [Rm, 3x4 matrix. The rotation matrix and translation vector that projects 3D points into the image
plane

Check that the resulting R (within PI_prime) is a valid rotation matrix (i.e. det(R) =1 and RTR = I).

Hint .T (matrice transpose operator) and np.det() function might prove useful.

Task 3 : Reproject 3D coordinates into the image

Thanks to the extraction of IT = []%|ﬂ7 it is now possible to reproject any 3D point into the image plane.

1. Define rp = reprojectPoints(P, PI_prime) that re-projects the 3D points P; to the image space
using the estimated projection matrix PI_prime. Check that the re-projected points p,¢p ; are close to
the points p;.

The plot_reprojection_error and plot_reprojection_error_norm have been implemented for you. You
can use them to estimate the reprojection error of your 3D points with respect to the initial values. The
camera position and orientation is then calculated from your estimated [R[t]S,.

Your image is now oriented :)

Note: The camera position error with the full set of provided point should lead to an error below
Im.

Task 4 : Numerical analysis

Calculate the camera poses and plot the re-projection error to simulate fewer GCPs, degenerate case and
faulty measurements:

1. Full set of points

2. A minimum set of points:

e 1092311568. jpg: [140,142,143,147,150,151]
3. A subset of points (de-generate case):

o 1092311568. jpg: [143,144,146,147,149,150]
4. A faulty measurement:

e +10 pixels on (u,v) coordinates of GCP 149

Complete the following table with your results:

Mean rep. error Cam Pos. Cam Pos. Cam Pos.
Configuration (pix) Max. rep. error (pix) X(m) Y (m) Z(m)

1. Full set
2. Min. set
3. Subset
4. Faulty
GCP

5In Matlab norm().

Discussion
Answer the following questions:

1. Impact. Do you consider the differences (i.e. in the obtained camera position and/or re-projection
error) between the three cases significant? Justify your opinion.

2. Cause. According to your opinion what is (are) the main factor(s) affecting the differences between
the cases 1.-2. and 1.-3.7

	Objectives
	Overview
	Input data
	Functions to implement:
	Notation and coordinate systems

	Task 1 : Building DLT's system of equations
	Formulation
	Implementation
	Input
	Steps
	Output

	Task 2 : Solving the over-determined system of equations and extracting R, t from \Pi
	Formulation
	Implementation
	Input
	Steps
	Output

	Task 3 : Reproject 3D coordinates into the image
	Task 4 : Numerical analysis
	Discussion

