Chap. 3 Kriging

Regionalized variable Z:
- Temperature.

- Pollutant concentration.
- Content of an ore.

Main questions:

« What are the values where no measurements (interpolation / mean estimation)?

* What is the error associated with these estimates?

— kriging (from G. Matheron after D. Krige, SA mining engineer)



Chap. 3 Kriging

Outline:

1. Simple kriging

2. Ordinary kriging

3. Universal kriging + kriging with an external drift

4. Properties of kriging

5. Kriging data with uncertainty



Chap. 3 Kriging

Interpolation of spatial data (evenly spaced or not) based on existing
knowledge of spatial variability of studied process, as quantified by the
variogram (or covariance).

Notations:
Random function Z and regionalized variable z
(probabilistic calculations involve Z, numerical estimations involve z)

{Z(zx,w):x € D CR";weQ}
{2(x) = Z(x,wp) :x € D} wg € Q
S = set of points where Z has been sampled
S=x4:a=1,..,.N
To simplify notations, in the following: /, = Z(ma, (,u)

Objective:
Estimate Z* of Z at xo (unknown) as * .7
a linear combination of measured Z(x.) 0 2 : aa

Conditions: Z* is (1) unbiased and with (2) minimal estimation variance



Chap. 3 Kriging

https://www.ctech.com/user-showcase/st-john-mittelhauser-associates/

FID Results at 100,000 mV




Chap. 3 Kriging

We suppose that Z is a 2"-order SRF

Condition (1): unbiased estimator:

E[Z;]=E > XaZa| =) AaElZa] =E[Z]

Condition (2): minimal estimation variance:

Var|Zj — Zy] is min

€0 :ZS—ZO
—Var[Z* ZO]
0620 —O‘Z—I— Zlﬂzl)\ )\BC 5—2 Z AaCoa  eq(l)

(Caﬁ — COV[ZQ, Zﬁ])



Chap. 3 Simple kriging

Z is assumed to be 2" order stationary, and m = E[Z] is known
m known is equivalent to m = O: Y(:E) — Z(:I:‘) —m

N N
Yy = Z AoY (o) & Z5 =m + Z Ao | Lo — m]
a=1 a=1

— in this section, E[Z] =0

Condition (1): unbiased estimator: E[Z{)k — ZO] =0 VA, NOAS [1N]



Chap. 3 Simple kriging

Condition (2): minimal estimation variance: Var[ZE)k — Zp) is min

Do?
Ay, are calculated so that o2 is minimum - Y =0 VYo € [1N]

O

N
Z )\50@5 = (0 Va € [1N] eq(2)
B=1

Eq(2) in eq(1l) = estimation variance: o' — E A Ca()



Chap. 3 Simple kriging

oy  Cho Cin| | M C1o
Co1 0% Con | | A2 Ca0
Cn1 Cno oy | | AN Cno |
C A Co

Linear system of N equations with N unknowns

Unique solution if C is definite positive and sampled points are distinct

A=C1C,

: : : . 2 _ 2 t
Estimation variance: er = 0y — A CO



Chap. 3 Example simple kriging

Example: RF Z, known at (X1, X2). We want to estimate Z at Xo

Simple kriging (m=0) 001011 . 002012
Ci1A1 +Ci2A2 = Cor AL = C% — C%,
C21A1 + Ca2Aa = (o N, — Co2C11 — Co1C12

2 = 2 2
By definition: (19 = (g Cll — 012

Stationarity: Cll — 022

Zék = )\121 -+ )\222

1
= 55—z [Cu(CuZi — Ci2Zz) + Coa(—CraZ1 + C1i 2o)]
11 — Y12
2 2 1 2 2
0'60 = O'Z — 02 — 02 (001011 —+ 002011 — 2001002012)
11 12

If Zo is not correlated with both Z, and Z; (i.e. Cou=Cp,=0) then { Zzo _ 02

0-60 — O-Z
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iging

Example simple kr
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Est. variance

Distance lag [km]

Prescribed mean = sample mean
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Chap. 3 Ordinary kriging

Z is assumed to be 2" order stationary, and m = E[Z] is unknown
N
Z(Xo) is estimated as combination of known Z values: Zg — g AaZ o

a=1

Condition (1): unbiased estimator

=E[Z] [ ) X1

a=1

- N
E[Z; — Zo) =E | Y AaZa — Zo
La=1




Chap. 3 Ordinary kriging

(glven by eq(1)) is min
Condition (2): minimal estimation variance A, /

- optimization with constraint: Lagrange multiplier

Minimization of an expression G(A1,A2,...,An)
With the constraint F(A1,22,...,AN)
Equivalent to minimization with additional unknown parameter v

Q = G()\l, el >\N) + 2VF(>\1, el )\N)

- for OK N N N N
—O'% Z Z )\O)\BCQQ—Q Z )\QCQQ—I—2V<Z )\a—1>
a=1 =1 a=1 a=1
— derivatives with respect to A, AND v
0 0
99 _ o Vae[l.N] a2 _y

O\ Ov

12



Chap. 3

Ordinary kriging

which results in

Estimation variance: (7620

50 al
= 2; AgCap — 2000 +2v Yo € [1..N]
50 N
<=9 Ao — 1
N
Z AgCop =Cqo — v Va € |1..N] eq(3a)
B=1
N
d A =1 eq(3b)
a=1

eq(3ab) in eq(1)

N
a=1

13



Chap. 3

Ordinary kriging

0~ 012

021 O'%
Cn1 Cno

1 1

C F
St

Cin 1] | M C1o
Con 1] | A2 C'20
O'% 1 >\N CNO
1 0 1% 1
1LY, B
X B

SHESES

Linear system of N+1 equations with N+1 unknowns

Unique solution if C is positive definite and sample points are distinct

Estimation variance: g

_ 2 t
=07 —X'B

afO(SK) < JEO(OK)

14



Chap. 3 Example ordinary kriging

Ordinary kriging (m unknown) ( 1 Co1 — 002‘
M=gtteL—o
Ciidi + Ciada +v = Cy T O(l); B C(ﬁ'
Co1 A1 + Ca2A2 +v = Cpo /;>< )\225 1_|_C .
A+ X =1 o L 11— Gz
v == (Co1 + Coz — Ci1 — C
By definition: (12 = Co \ 2 ( 01 02 11 12)
Stationarity: Ci1 = Cse
A Co1 — Co2
Zy = 7, —Z
’ > " 2(C11 — Ch2) (21 = 22)
1 (Cor — Co2)?
2 2
=0y —Cop1 —C —(C Cqs) —
0., =0y 01 02 + 2( 11 + Ch2) 2(Cr1 — Cro)
C C
If Co1=Co2=0 then Zak — Zl i Z2 0'2 — 0—% 4+ 11 + G2

2 0 2 15



Chap. 3 Example ordinary kriging (2)

Ni
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[ ]
® . o o
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Large sample (259 values)
- sample mean is reliable
- OK ~ SK ,




Chap. 3 Universal kriging

Z is assumed to be: Z(x) = m(x) + Y (x)

where m is a deterministic smooth function, called the drift
Y is a 0-mean 2" order SRF, called the residual,
describing the erratic fluctuations of Z

- Z is not stationary in the mean and Covz does not exist

L
We assume that m can be written as m(x) = Z ar f'(x)
[=0

fl (CU) are a priori known basis functions (e.g., polynomials)

aj are unknown constant coefficients
N

Z(xo) is estimated as combination of known Z values: 7] = g AaZa
Similar approach to ordinary kriging: a=1
- no bias.

- minimum estimation variance (least square sense).

17



Chap. 3 Universal kriging

Condition (1): unbiased estimator
N
a=1
L
[=0

= 0

no bias whatever the unknown a, are, hence

N
(Z )\af(lx — fé) where fé
a=1

N
d XaSfh=f 1=0.L
a=1

This equation defines the universality conditions

Condition (2): minimal estimation variance

Var [Zy — Zy| = Var

N _
D AaYa
L a=0 i

where )\0 = —1

()

18



Chap. 3 Universal kriging

Z (givenbyeq(1)forY) is min
Z Mfl=f 1=0.L

- optimization with constraints: Lagrange multlpllers
Minimization of an expression G(A1,A2,...,An)
With (L+1) constraints F|(x1,x2,...,xN) |=0..L
Equivalent to minimize with additional unknown parameters v,

Q=G(A1, - AN) +2) vF(A1, . A)
[=0
- for UK Q—UY—I— Z Z A )\50

alﬁl

—22)\ C +22Vz<§: )\afé—fo
[=0

Minimal estimation variance A, /

— derivatives with respect to A, AND v,

00 0Q _



Chap. 3 Universal kriging

9Q N
_ [
ma_25§:1:A50a —20Y, +2§:ulf Va € [1..N]

, i
8—2 =2 %:Aafg—fg vl € [0..L]

N L
which results in Z AgC}{B = CY, — Z v fl Vo € [1..N] eq(4a)
—1 —
N
> Aafh=f VIe[0.L] eq(4b)

L
Estimation variance: U = Uy Z Aa C Z Vlf(l) eqg(4ab) in eq(1)

20



Chap. 3

Universal kriging

Matrix notation:

- 2 Y
Oy Ci
Cy, o}
A
/i /5

]
fEfE

OlN
C 2N

0
1

f2

7
0
0

f
f

i
0
0

fi

f

21



Chap. 3 Universal kriging

Linear system of N+L+1 equations with N+L+1 unknowns

Unique solution if CY is positive definite, sample points are distinct
F is of full rank (i.e., all columns are linearly independent)

Estimation variance: U?O — 0'32/ — XtB

22



Chap. 3 Universal kriging

Example of basis functions in 1D

1 VeeD
0 Vxe DandVle|l.L

m(x) unknown but constant fg(c)
fl
X

— Ordinary kriging m(:L‘) = ao

m(x) = linear trend fg = 1 VxelD
fl = x VozeD
flo= 0 VxeDandVlcl2.L]

m(x) = ag + a1

23



Example universal kriging

L
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Chap. 3 Questions

*Why is kriging a linear interpolator?

\What are the differences between simple, ordinary and universal kriging?

*How is evolving the estimation variance when the distance to measurements
Increases?

25



Chap. 3 Formulation in variogram

So far, we have assumed that we perfectly know the covariance function.
But variogram estimate is less affected by sampling effects than covariance

— Can we reformulate the kriging equations in terms of variogram?

Simple kriging — no constraints on weights from unbiased conditions
- but we must have allowable linear comb. for var of increments
- no formulation of simple kriging in variogram.

O + U kriging — we consider SRF (OK) or SRF residual (UK)
- direct link between covariance and variogram
— substitute -y in previous equations for OK (p.13) and UK (p.20).

26



Chap. 3

Universal kriging in variogram

Matrix notation:

- Y
T
V21

7]1\/]1
1

Y
2
Y22

27



Chap. 3 Kriging with an external drift

Kriging with an external drift (KED)

KED is a variant of UK using external auxiliary variables S, known over the
domain to estimate the drift, instead of the f, functions of the coordinates.

Basis function f, replaced by S, in matrix system on p.21/27

Data — external drift - residuals —» estimation of CY or y"

-’Y%}; 7%;2 ’y];jN 1 Sli S{;_ A\ _’y%};_
Y21 Vo2 oo+ Yon 1 Sy ... 5 A2 Y20
N1 N2 - Iwn 1 Sy oo S AN _ TNO
1 1 .. 1 O O ... 0 —1) 1
Sll 521 .. S}\, O O ... 0 —11 S(%
_Sf S{J S]% O 0 ... 0 —Vr, _S({J_

S'. must be linearly independent for matrix inversion!



Chap. 3 Kriging with an external drift

Example: drift in soil depth with slope (from Hengl, Geoderma, 2004)
Domain = 50x50 km?, central Croatia.
100 observations of soil depth (cm).

Auxiliary variable: slope (%) from DEM (100x100 m?).

Depth [cm] Slope [%]
1 1 | 1 1
. [
5010000 — * . ¢ " = 5010000
4 -
[ ]
L ]
5000000 | ¢ . - 4=3-1£ P000000
- L H ® (811 .2!3
° . ® (12.2,16.
L T ‘ ® (16.3.20.4
_ - N & (20.4,24.5
4990000 ’ , 24.5.28.6 4990000 S
. 28.6,32.
. 32.7.36.8
. . 36.8,40.9
4980000 — . L ol 40.9,45] 4980000
» L}
. n
L] & - o | .
49?0000 = .f .- ... [ ] . 49?0000 s
F) L ]

2380000 2390000 2400000 2410000 2420000 2430000

29



Chap. 3

Kriging with an external drift

Depth [cm]

40

Slope [%]

Variogram after drift removed

External drift provided by s as

m(x) = ag + a1s(x)

semivariance

80 —

60 —

20 —

5000

I
10000

distance

15000

20000

30



Chap. 3

Kriging with an external drift

Maps of interpolated values and estimation variance

Depth [cm] - OK

§
i

4980000

4970000

5010000 |

4990000

4970000

2390000 2400000 2410000 2420000

Depth variance [cm*2] - OK

2390000 2400000 2410000 2420000

5]

Depth [ecm] - KED

5010000

4990000

4980000

4870000

2380000 2400000 2410000 2420000

Depth variance [em*2] - KED

90
5010000 —

85

80
5000000

75

70
4990000

65

60
4980000

55

50
4970000

45

2390000 2400000 2410000 2420000

31



Chap. 3 Universal kriging

Warning!
In previous equations, we assume the true cov/vario of Z/Y to be known.

But - covariance/variogram estimated from sample;
- difficulties due to the drift (see Chap.2).

Possible ways to infer underlying covariance/variogram:
*In case of unidirectional drift: estimate the cov/vario in direction + to the drift.

*In case of mild drift: bias due to the drift negligible at short distance lags.
Choice between OK or UK in this case can be sorted by cross-validation.

32



Chap. 3 Questions

*Why is there no formulation of simple kriging in variogram?

*How can the cov/variogram needed for universal kriging be estimated?

What is the main difference between universal kriging and kriging with an
external drift?

33



Chap. 3 Properties of kriging

We will examine the following properties/characteristics of kriging:
- Linear, unbiased and optimal estimator.

- Exact interpolator.

- Quantify uncertainty in estimates (estimation variance).

- Smoothing effect.

- Kriging weights: screen and relay effects, negative weights.

- Kriging neighbourhood.

34



Chap. 3 Kriging: linear unbiased optimal estimator

By definition, the estimate Z" is:

- a linear combination of measured values Z.. For SK, OK and UK:

N
=Y AaZa
a=1

- unbiased, as imposed by condition 1: E[Z*] — E[Z]

- optimal, in the least square sense as imposed by condition 2:

Var|Z* — Z]| is minimum

35



Chap. 3 Kriging: exact interpolator (1)

“Deterministic interpolator”: A fixed for given Z, and variogram/covariance model

N
Simple kriging equation Z AgCap = Coo Va € [1..N]
B=1
1
0 Va # ag

because a are distinct

N
= 75 =Y AaZa = Za,
a=1

Aag
If g = Xq, , Qp € [1N] = A\

N
imation var 2 = g7 bWe;
Estimation variance Oy — 0z — aY a0
a=1
2 2 _
O-EOAO — O-Z - AQ{OCO‘OQ{O — O

36



Chap. 3

Kriging: exact interpolator (1)

Est. var

1.0

05 0.0 0.5

-1.0

1.0

0.8

0.6

0.2 04

0.0

Z,=-1;2Z,=1;spherical variogram (sill=1,nugget = 0)

Simple kriging (m is known and assumed =0 in this example)

T
3.0

T
0.0

05 10 15 20 25

range = 0.25

T
3.0

Est. var

o |
—

w
o

05 0.0

-1.0

1.0

0.8

0.6

0.2 04

0.0

00 05 10 15 20 25 30
T T T T T T T
00 05 10 15 20 25 30
X
range =1

Est. var
0.4

S
—

wn
o

0.5 0.0

-1.0

0.8

06

0.2

0.0

00 05 10 15 20 25 30
X
T T T T T T T
00 05 10 15 20 25 30
X
range = 2
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Chap. 3 Kriging: exact interpolator (2)

N L
Universal kriging equation Z )\5’70155 — ”73;0 + Z Vlf(lx Va € [1]\7]
B=1 [=0
N
ST Aafl = vielo.L)
a=1
(A, = 1
A = 0Va# ag
f To=Ta,, @0 € [1.N] =4 L
> Vifa, = O
N \ [=0
* because o are distinct
= Z5 =Y AaZa = Za,
a=1

N L
Estimation variance (7620 = E )\a’ygj@ — E Vlf(l) — U?ao = Woiz/oozo =0
a=1 =0 38



Chap. 3

Kriging: exact interpolator (2)

Est. var

1.0

0.5 0.0 0.5

-1.0

1.5

1.0

05

0.0

Z,=-1;2Z,=1;spherical variogram (sill=1,nugget = 0)
Ordinary kriging

o o
0 0
(=) o
o * (=]
N o N o
9 0
(=) CP_
o =
00 05 10 15 20 25 30 00 05 10 15 20 25 30 ‘00 05 10 15 20 25 30
o)
- ™
(=
o
2 o
“ =
g g
] = @
g =
9
= S
N
o
o (=
T T T T T T T ol T T T T T T ol T T T T T T
00 05 10 15 20 25 30 00 05 10 15 20 25 30 00 05 10 15 20 25 30
X X X
range = 0.25 range =1 range = 2
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Chap. 3 Kriging: smoothing effect

Interpolated values exhibit smoother behavior than real values

Variance of interpolated value Z*;

SK 0% _S‘S‘A )\BCQB—Z)\ Coo = 03 — 02,

a=1 =1

:>0%8< < O'Z

UK ay*_S‘S‘A AsCYy i+

N
= 2 Aaft, 1=0..L (p.17)

a=1 =1 \Cooé Z AsCop + Z;sza, a=1.N (p.19)
N L
2 2 Y l
o, =0y — Z AaClho — Zylfo
a=1 [=0
2 2 2

—> Ovs+ — Oy — O
YO Y €0 40



Chap. 3

Kriging: smoothing effect

h (m)

Example with piezometric height (at Biolay-Orjulaz)

574 575
I

573
|

572

571
I

570
I

Time (d)

41



Chap. 3 Kriging: quantification of associated uncertainty

Kriging provides estimation of uncertainty associated with interpolated values

N
Estimation variance: SK O, — 07 — E )\aCaO
a=1

N L

2 2 Y l

UK oL =0y — E AaClhp — E V1 fo
a=1 =0

575

If Z Gaussian
— 80% confidence interval = £1.280_

— 95% confidence interval = +20_ \

If Z continuous unimodal ZA\ \7%
— 95% confidence interval = 30 - _ ne

572 573 574
] I |

571

(Vysochanskij-Petunin, 1980)

570
|

I
0 10 20 30 40 50 60

Time (d) 42



Chap. 3 Kriging weights

Screening effect

Data points close to estimated point can “screen” data points beyond
(in particular when interdistances << range)

65.6% 34.4%
O O O
A B

0 = 1.1407%

49.1% 48.2% 2.7%
O O O O
A C

0 = 0.870%
From Wackernagel, 1998, p.93

Interpolation methods based on distance cannot take into account
such effects due to data point correlation.

43



Chap. 3

Kriging weights

Relay effect

Simple Kriging

01% 1% 9% 1%
® ® ® [ ]
1% 6% 30% 6%
® ® ® [ ]

-9% 30% 30%
° © X [
1% 6% 30% —6%
® © ® ®

01% 1% 9% 1%
® e ® ®

Am =29%
0% =0.65
—6% 285% —6%
® ® e
28.5% 28.5%
€ X [}
—6% 28.5% —6%
o ® ®
Am =11%

2 _
Ogy = 0.67

0.1%

1%
®

-9%
®

1 OA) -

0.1%

f=al?2

Ordinary Kriging

2% 2% 1% 2% 2%
& € [ € ©

2% 5% 32% -5% 2%
e € © e ®

Data points beyond the range may

* 2 B s = influence estimated point via their
% % 3% 5% 2% correlation with points within range

2% 2%  -T% 2% 2%
© € @ © ©

2
Ok =0.67

—4.5% 29.5% —4.5%

e o e Interpolation methods based on
ST distance cannot take into account
such effects due to data point
—4.5% 29.5% —4.5% .
c o e correlation.
65, =0.675
From Chiles and Delfiner, 2012, p.208 44



Chap. 3 Kriging weights

Kriging weights can be negative!

Interesting feature because it allows extrapolation beyond the range of
measured values.

Can be a problem when dealing with variables that must be positive!
(ex: concentration, rainfall amount, hydraulic conductivity, etc...)

Z, =-1;2Z,=1; Gaussian variogram (sill=1,nugget = 0)
Ordinary kriging

1.0
1.0

0.5
0.5

0.5
0.5

1.0
-1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

rangex= 0.2 rangé =1 rangé = 2 45



Chap. 3 Questions

*Why is kriging an exact interpolator?

*What is the smoothing effect?

What do negative kriging weights mean in terms of min/max interpolated
values?

46



Chap. 3 Kriging neighborhood

Formulation so far has involved all data points measured over the studied
domain. This can be a large number, and matrix computations can become
too cumbersome.

Because far points are less correlated, it is possible to select a neighborhood
around the point to estimate, and perform calculations only on this subset.

However, the selection of this neighborhood is usually not straightforward in
practice. Even if the variogram exhibits a clear range, using a circle with the
range as radius may not be correct, because of screening and relay effects.

A “rule of thumb” is to check if the results are significantly changing
when additional points are considered (larger neighborhood).
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Chap. 3 Kriging data with uncertainty

Measured values can be affected by uncertainty (e.g., due to sensor)
Y = measured value ; Z = true value ; e = error

Y(x)=Z(x) + e(x)

Z with unknown constant mean value (ordinary kriging)

Simplifying assumptions: white noise error eZ 2

—>E[€: — O (72 — O-e ee 2
o C4 = 0V(a # ) € [1.N]
E[Y] = E[Z + ¢] = E[Z]

0% =0, +o> e CrY =C%2 462 VYa € [l..N]

Cos = E[(Ya —E[Y])(Ys — E[Y])]

= E[(Zy + ea — E[Z])(Z3 + e — E[Z])]

5&04 _

:C’fz—|—5a Jg {
g P 504[3 — 48



Chap. 3 Kriging data with uncertainty

Estimated value Z* at xo: /£, = E A Yo

Condition 1: unbiased estimation

N N N
E[Z{]=E > AaYa| =) AE[Z] =) Ao =1
a=1 a=1 a=1
Condition 2: optimal estimation T N 27
ai:EWﬁzy}ﬂa<z}Mn ZQ
a=1
- N i
= —-2§£:A CYZ+) ) AagCYY
a=1pg=1
Coj = El(Ya — E[Y])(Zs — E[Z])]= E[(Za + ea — E[Z])(Z5 — E[Z])]

=C25 +C55 =C%5 V(a,B) € [1..N]?



Chap. 3

Kriging data with uncertainty

0_2

€0

N
o5 — 2 Z Ao C4E
a=1

- optimization with constraint (Lagrange multiplier)

N
Z )\B(CO%BZ + 5045(73) = Cg()z and
6=1

Nal4
Cll

Z
CQ 1

L7
CNl

1

47
012

iR

47
C(N2

1

Same system as OK, except for term o.?
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CQN

N N
+ ) ) AA(CZE + 6ap0?)

a=1 =1
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Chap. 3

Kriging data with uncertainty

VAl

Z>

Uncertain data: kriging no more exact interpolator!
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Chap. 3 Kriging data with nugget

Nugget variance = 02 Cog = C(|zo — 28]) + dagos

'011 C, . Oy 10 TA

Co1 C11 Can L] | A
Cn1 C'no CN 1 AN
1 1 1 0 1

Same system as uncertain data, except additional nugget variance in right-hand term
— exact interpolator

Z19
Z3

>

Data with nugget: kriging is

an exact interpolator! -



Chap. 3 Summary Chap.3

1. Kriging

N
- Interpolated value = linear combination of measurements: 7™ (x) = E AaZ(Ty)
- Weights A are estimated by fulfilling 2 conditions: 1

(i) unbiased estimation and and (ii) minimal estimation variance B

2. Simple kriging

- Mean of Z is known (Z is SRF2, no formulation in variogram)
- No conditions on weights

3. Ordinary kriging

- Mean of Z is constant but unknown (Z SRF or IRF)
- Formulation in covariance and variogram

N
- Conditions on weight A: Z A, = 1
4. Universal kriging a=1

- Z is not SRF or IRF but Z(x) = m(x) + Y(x), m=determ. trend and Y = SRF residual
- Formulation in covariance and variogram

- OK = UK with constant trend m.

- Difficulty: estimating the covariance or variogram of Y...
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