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Chap. 3 Kriging

Main questions:

● What are the values where no measurements (interpolation / mean estimation)?

● What is the error associated with these estimates?

→ kriging (from G. Matheron after D. Krige, SA mining engineer)
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Regionalized variable Z:
- Temperature.
- Pollutant concentration.
- Content of an ore.
- ...
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Chap. 3 Kriging

Outline:

1. Simple kriging

2. Ordinary kriging

3. Universal kriging + kriging with an external drift

4. Properties of kriging

5. Kriging data with uncertainty
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Chap. 3 Kriging

Interpolation of spatial data (evenly spaced or not) based on existing 
knowledge of spatial variability of studied process, as quantified by the 
variogram (or covariance).

Notations:
Random function Z and regionalized variable z
(probabilistic calculations involve Z, numerical estimations involve z)

S = set of points where Z has been sampled

Objective:
Estimate Z* of Z at x0 (unknown) as 
a linear combination of measured Z(xa)

Conditions: Z* is (1) unbiased and with (2) minimal estimation variance

To simplify notations, in the following:
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Chap. 3 Kriging

https://www.ctech.com/user-showcase/st-john-mittelhauser-associates/
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Chap. 3 Kriging

Condition (1): unbiased estimator:

Condition (2): minimal estimation variance:

eq(1)

We suppose that Z is a 2nd-order SRF
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Chap. 3 Simple kriging

Z is assumed to be 2nd order stationary, and m = E[Z] is known

m known is equivalent to m = 0:

Condition (1): unbiased estimator:

→ in this section, E[Z] = 0
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Chap. 3 Simple kriging

Condition (2): minimal estimation variance:

are calculated so that se0
2 is minimum →

eq(2)

Eq(2) in eq(1) → estimation variance:
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Chap. 3 Simple kriging

Linear system of N equations with N unknowns

Unique solution if C is definite positive and sampled points are distinct

C C0l

Estimation variance:
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Chap. 3 Example simple kriging

Example: RF Z, known at (x1, x2). We want to estimate Z at x0

Simple kriging (m=0)

Stationarity:

If Z0 is not correlated with both Z1 and Z2 (i.e. C01=C02=0) then

By definition:
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Chap. 3 Example simple kriging (2)

Prescribed mean = sample mean

Est. variance
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Chap. 3 Ordinary kriging

Z is assumed to be 2nd order stationary, and m = E[Z] is unknown

Condition (1): unbiased estimator

Z(x0) is estimated as combination of known Z values:
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Chap. 3 Ordinary kriging

→ optimization with constraint: Lagrange multiplier

Minimization of an expression G(l1,l2,...,lN)
With the constraint F(l1,l2,...,lN)
Equivalent to minimization with additional unknown parameter n

→ derivatives with respect to la AND n

and

→ for OK

Condition (2): minimal estimation variance



13

Chap. 3 Ordinary kriging

which results in eq(3a)

Estimation variance: eq(3ab) in eq(1)

eq(3b)
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Chap. 3 Ordinary kriging

Linear system of N+1 equations with N+1 unknowns

Unique solution if C is positive definite and sample points are distinct

A BX

Estimation variance:
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Chap. 3 Example ordinary kriging

Ordinary kriging (m unknown)

If C01=C02=0 then

Stationarity:

By definition:



16

Chap. 3 Example ordinary kriging (2)

Large sample (259 values)
→ sample mean is reliable
→ OK ~ SK

Est. variance
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Chap. 3 Universal kriging

Z is assumed to be:

where m is a deterministic smooth function, called the drift
Y is a 0-mean 2nd order SRF, called the residual,

describing the erratic fluctuations of Z

→ Z is not stationary in the mean and CovZ does not exist

We assume that m can be written as

are a priori known basis functions (e.g., polynomials)

are unknown constant coefficients

Similar approach to ordinary kriging:
- no bias.
- minimum estimation variance (least square sense).

Z(x0) is estimated as combination of known Z values:
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Chap. 3 Universal kriging

no bias whatever the unknown al are, hence

Condition (1): unbiased estimator

where

This equation defines the universality conditions

Condition (2): minimal estimation variance

where
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Chap. 3

→ optimization with constraints: Lagrange multipliers
Minimization of an expression G(l1,l2,...,lN)
With (L+1) constraints Fl(l1,l2,...,lN) l=0..L
Equivalent to minimize with additional unknown parameters nl

→ derivatives with respect to la AND nl

→ for UK

Minimal estimation variance

Universal kriging

and
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Chap. 3

which results in

Estimation variance: eq(4ab) in eq(1)

Universal kriging

eq(4a)

eq(4b)
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Chap. 3

A BX

Universal kriging

Matrix notation:
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Chap. 3

Unique solution if CY is positive definite, sample points are distinct
F is of full rank (i.e., all columns are linearly independent)

Estimation variance:

Universal kriging

Linear system of N+L+1 equations with N+L+1 unknowns
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Chap. 3 Universal kriging

Example of basis functions in 1D

m(x) unknown but constant

→ Ordinary kriging

m(x) = linear trend
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Chap. 3 Example universal kriging

Ni  +  drift = 8X Est. variance
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Chap. 3 Questions

●Why is kriging a linear interpolator?

●What are the differences between simple, ordinary and universal kriging?

●How is evolving the estimation variance when the distance to measurements 
increases?
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Chap. 3 Formulation in variogram

So far, we have assumed that we perfectly know the covariance function.

But variogram estimate is less affected by sampling effects than covariance

→ Can we reformulate the kriging equations in terms of variogram?

Simple kriging → no constraints on weights from unbiased conditions
→ but we must have allowable linear comb. for var of increments
→ no formulation of simple kriging in variogram.

O + U kriging → we consider SRF (OK) or SRF residual (UK)
→ direct link between covariance and variogram
→ substitute -g in previous equations for OK (p.13) and UK (p.20).
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Chap. 3

Matrix notation:

Universal kriging in variogram
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Chap. 3 Kriging with an external drift

KED is a variant of UK using external auxiliary variables Sl known over the 
domain to estimate the drift, instead of the fl functions of the coordinates.

Basis function fl
a replaced by Sl

a in matrix system on p.21/27

Data → external drift → residuals → estimation of CY or gY

Sl
a must be linearly independent for matrix inversion!

Kriging with an external drift (KED)
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Chap. 3 Kriging with an external drift

Example: drift in soil depth with slope (from Hengl, Geoderma, 2004)

Domain = 50x50 km2, central Croatia.

100 observations of soil depth (cm).

Auxiliary variable: slope (%) from DEM (100x100 m2).
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Chap. 3 Kriging with an external drift

External drift provided by s as 

Variogram after drift removed
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Chap. 3 Kriging with an external drift

Maps of interpolated values and estimation variance
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Chap. 3 Universal kriging

Warning!

In previous equations, we assume the true cov/vario of Z/Y to be known.

But - covariance/variogram estimated from sample;
- difficulties due to the drift (see Chap.2).

Possible ways to infer underlying covariance/variogram:

●In case of unidirectional drift: estimate the cov/vario in direction ᚆ to the drift.

●In case of mild drift: bias due to the drift negligible at short distance lags.
Choice between OK or UK in this case can be sorted by cross-validation.
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Chap. 3 Questions

●Why is there no formulation of simple kriging in variogram?

●How can the cov/variogram needed for universal kriging be estimated?

●What is the main difference between universal kriging and kriging with an 
external drift?
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Chap. 3

We will examine the following properties/characteristics of kriging:

- Linear, unbiased and optimal estimator.

- Exact interpolator.

- Quantify uncertainty in estimates (estimation variance).

- Smoothing effect.

- Kriging weights: screen and relay effects, negative weights.

- Kriging neighbourhood.

Properties of kriging
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Chap. 3 Kriging: linear unbiased optimal estimator

By definition, the estimate Z* is:

- a linear combination of measured values Za. For SK, OK and UK:

- unbiased, as imposed by condition 1:

- optimal, in the least square sense as imposed by condition 2:

is minimum
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Chap. 3 Kriging: exact interpolator (1)

Simple kriging equation

If 

Estimation variance

because a are distinct

“Deterministic interpolator”: l fixed for given Za and variogram/covariance model
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Chap. 3 Kriging: exact interpolator (1)

Z1 = -1 ; Z2 = 1 ; spherical variogram (sill=1,nugget = 0)
Simple kriging (m is known and assumed =0 in this example)

range = 0.25 range = 1 range = 2
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Chap. 3

Universal kriging equation

If 

Estimation variance

because a are distinct

Kriging: exact interpolator (2)
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Chap. 3 Kriging: exact interpolator (2)

Z1 = -1 ; Z2 = 1 ; spherical variogram (sill=1,nugget = 0)
Ordinary kriging

range = 0.25 range = 1 range = 2
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Chap. 3

Interpolated values exhibit smoother behavior than real values

Kriging: smoothing effect

Variance of interpolated value Z*:

UK

SK
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Chap. 3 Kriging: smoothing effect

Example with piezometric height (at Biolay-Orjulaz)
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Chap. 3

Kriging provides estimation of uncertainty associated with interpolated values

Kriging: quantification of associated uncertainty

Estimation variance: SK

UK

If Z Gaussian
→ 80% confidence interval = ±1.28seo

→ 95% confidence interval = ±2seo 

If Z continuous unimodal
→ 95% confidence interval ≤ ±3seo 
(Vysochanskij-Petunin, 1980)
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Chap. 3

Screening effect

Kriging weights

Data points close to estimated point can “screen” data points beyond
(in particular when interdistances << range)

From Wackernagel, 1998, p.93

Interpolation methods based on distance cannot take into account
such effects due to data point correlation.

A B

65.6% 34.4%

A B

49.1% 2.7%

C

48.2%
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Chap. 3

Relay effect

Kriging weights

Data points beyond the range may 
influence estimated point via their 
correlation with points within range

Interpolation methods based on 
distance cannot take into account 
such effects due to data point 
correlation.

From Chilès and Delfiner, 2012, p.208
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Chap. 3

Kriging weights can be negative!

Kriging weights

Interesting feature because it allows extrapolation beyond the range of 
measured values.

Can be a problem when dealing with variables that must be positive!
(ex: concentration, rainfall amount, hydraulic conductivity, etc...)

range = 0.2 range = 1 range = 2

Z1 = -1 ; Z2 = 1 ; Gaussian variogram (sill=1,nugget = 0)
Ordinary kriging
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Chap. 3 Questions

●Why is kriging an exact interpolator?

●What is the smoothing effect?

●What do negative kriging weights mean in terms of min/max interpolated 
values?
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Chap. 3 Kriging neighborhood

Formulation so far has involved all data points measured over the studied
domain. This can be a large number, and matrix computations can become
too cumbersome.

Because far points are less correlated, it is possible to select a neighborhood
around the point to estimate, and perform calculations only on this subset.

However, the selection of this neighborhood is usually not straightforward in
practice. Even if the variogram exhibits a clear range, using a circle with the
range as radius may not be correct, because of screening and relay effects.

A “rule of thumb” is to check if the results are significantly changing
when additional points are considered (larger neighborhood). 
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Chap. 3

Measured values can be affected by uncertainty (e.g., due to sensor)
Y = measured value ; Z = true value ; e = error

Kriging data with uncertainty

Simplifying assumptions: white noise error

Z with unknown constant mean value (ordinary kriging)

→
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Chap. 3

Estimated value Z* at x0:

Kriging data with uncertainty

Condition 1: unbiased estimation

Condition 2: optimal estimation
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Chap. 3 Kriging data with uncertainty

→ optimization with constraint (Lagrange multiplier)

and

Same system as OK, except for term se
2
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Chap. 3 Kriging data with uncertainty

Z1

Z2

Z3

Uncertain data: kriging no more exact interpolator!
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Chap. 3 Kriging data with nugget

Z1

Z2

Z3

Data with nugget: kriging is 
an exact interpolator!

Nugget variance = sn
2 

Same system as uncertain data, except additional nugget variance in right-hand term
→ exact interpolator 
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Chap. 3 Summary Chap.3

1. Kriging

- Interpolated value = linear combination of measurements: 
- Weights l are estimated by fulfilling 2 conditions:

(i) unbiased estimation and and (ii) minimal estimation variance

2. Simple kriging

- Mean of Z is known (Z is SRF2, no formulation in variogram)
- No conditions on weights

3. Ordinary kriging

- Mean of Z is constant but unknown (Z SRF or IRF)
- Formulation in covariance and variogram
- Conditions on weight l: 

4. Universal kriging

- Z is not SRF or IRF but Z(x) = m(x) + Y(x), m=determ. trend and Y = SRF residual
- Formulation in covariance and variogram
- OK = UK with constant trend m.
- Difficulty: estimating the covariance or variogram of Y...


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

