Chap. 2 Structural analysis

Regionalized variable Z:
- Temperature.

- Pollutant concentration.
- Content of an ore.

Main questions:

 What are the values where no measurements (interpolation / mean estimation)?

* What is the error associated with these estimates?

Geostatistical framework (hypotheses, tools, methods) - objectives of this course!
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Chap. 2 Structural analysis

Outline:

1. Some deterministic interpolation methods

2. Variogram

3. Estimating the variogram

4. Modeling the variogram



Chap. 2 Deterministic interpolation methods

1. Thiessen polygons
Z(Qio) — Z(mzo)

Interpolated value = value of closest measurement . .
io = argmin;||zg — ;||

N e 0
Mean value over domain: / = — Z)\Z—Z(xi) where \; = — !
2. Inverse distance weighting j=1
Weight ~ inverse distance at a given power k
- o — ||~
Z(xo) =Y MNiZ(xz;) where \; = —
 — k
i=1 2. |[wo — ]
7=1

3. Spline methods

Cubic spline: local fitting of 3™ order polynomials on intervals between
consecutive points + continuity and differentiation
at limits of intervals



Chap. 2 Deterministic interpolation methods

There is a variety of other deterministic interpolation methods.

However:

1) They do not explicitly take into account the spatial structure of the data.
2) They do not provide any information on the error associated with
interpolated values.

A different approach based on stochasticity has been proposed to cope with

these limitations of deterministic interpolation techniques.

We will first see how to characterize the structure (i.e., the “similarity”
between neighboring points) in spatial data.



Characterizing spatial processes

A
Z(X2)

>

Z(x+h)

Z(X1)

“h scattergram”

(from D. Marcotte)




Chap. 2 Characterizing spatial processes

h can vary in length and direction

Z(x+h)

hl

Z(x+h)

(from D. Marcotte)

Z(Xx)



Chap. 2 Characterizing spatial processes

h scattergram too much information - summarize these graphs
Use the covariance between Z(x+h) and Z(x): correlation + variability.

A A A
Z(x+h) Z(x+h) Z(x+h)
’ Z(x) Z(x) ) Z(x)
- -
||Ih|]|=h1 Cov=1.3 |lh||=h2 Cov=0.7 |Ih||=h3 Cov=0.2

Covariogram 1

M'

hl h2 h3 h (from D. Marcotte)



Chap. 2

Characterizing spatial processes

Example:

log10(R)
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Chap. 2 Variogram

Covariance is sensitive to sampling effects, in particular because the mean
is explicitly involved.

This issue is especially important in case of mono-realization RF.

Another tool has been proposed by Matheron to cope with this difficulty:
the (semi-)variogram

It is defined as half of the variance of the increments of a RF:

v(h) = %Var {Z(x+h)—Z(x)}

As the increments are involved, the variogram is not sensitive to the
uncertainty affecting the mean (of Z) estimated from the sample, while
the covariance is.



Chap. 2 Variogram

For y to be defined, RF does not need to be SRF but only
an intrinsic random function (IRF).

1st order moment:

E[Z(z1 4+ h) — Z(x1)] = E[Z(x2 + h) — Z(x2)] V(z1,29) € D?

= E|[Z(x+h) — Z(x)] =ah , aa=cst

1st-order stationarity of the increments implies a linear drift in the RF!

In the following, we assume that the linear drift has been corrected, hence

E[Z(z1)] = E[Z(22)] Y(x1,22) € D?
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Chap. 2 Variogram

2" order moment:

Var [Z(x1 + h) — Z(x1)] = Var [Z(z2 + h) — Z(22)] V(x1, 22) € D?
From previous assumption:

V() = Var(Z(z+h) — Z(x))

~ :E [(Z(a; +h) — Z(;I;))Q]

Because the class of IRF includes the class of SRF, the variogram is a
more general tool than the covariance.

If Z is a SRF, the link between the covariance and the variogram is

Cov|Z(x 4+ h), Z(x)] = Var|Z] — ~(h)

11



Chap. 2 Variogram

A
y(h) ~ ~
Cov(h)
~ ~
nugget effect i .
0

h (distance lag)

Physical interpretation of the variogram at “short” distance lags

Variogram characterized by:

- nugget effect (name from mining): possible discontinuity at h=0, can be null.

- Slope: rate of increase of y reflects dissimilarity at increasing distance lags.
12



Chap. 2 Variogram

A y(h)
sill =Vvar(Z);y, — — — — — — — _— | o
nugget effect |
\ |
\ |
» |
/
/ Cov(h) |
/ |
0 \ g

h (distance lag) range

Physical interpretation of the variogram at “long” distance lags

If Z 2" order stationary:

- Range: decorrelation distance — area of influence (if it exists).

- Sill: related to the variance of the RF (if it exists).

13



Chap. 2 Questions

Data 1 Variogram a
The variogram quantifies the spatial structure _ 3
(variability + continuity) of the studied RF . -
Data 2 Variogram b
Which vario corresponds . : /
to which time series? . 3
Data3 Variogram ¢

X Distance lag 1 4



Chap. 2 Variogram

In 2D (or more), in addition to quantification of variability,
variogram also a useful tool to analyze anisotropy.

— directional variograms reveal difference in structure / direction.
—
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Chap. 2 Variogram

Geometric anisotropy

Through a linear change of coordinates, variation of Z becomes isotropic.

Transformation matrix Variogram exhibits elliptic

A — ri1 O cos by sin O isovalue contours.
cos 0
....... I SR
Ax -
/Y(h) — /70( Where h — Ay 2|0 1|0 Cl) 1|0 2|0
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Chap. 2 Variogram

In this sense, the variogram is a relevant tool for the structural analysis of a
spatial process (structure, anisotropy, variability).

The variogram is a 2" order moment. But it is not enough to completely
describe a RF and its variability.

2 RF can have identical 1%t and 2" order moments and still be very different.

17



Chap. 2 Estimating the variogram

“The variogram is the corner stone of geostatistics, and it is therefore vital to
estimate it and model it correctly.”

Geostatistics for Environmental Scientists, R. Webster and M. Oliver.

Previous definitions describe the variogram of the random function, called
theoretical variogram. It corresponds to the population of possible values.

We consider a regionalized variable (i.e., realization of the studied RF over a
given finite domain)
- variogram over this particular region = regional variogram.

Usually regional variogram # theoretical variogram!

Ex. of stationary RF but domain D smaller than range of theoretical variogram
A A

Yth Yregional




Chap. 2 Estimating the variogram

Focus on RF over studied domain - focus on regional variogram to
analyze and interpolate regionalized variable on this domain.

In practice, only access to a sample of 1 (or more) realization(s) of RF
over studied domain.

n
1
Expectation is estimated as arithmetic mean: E[X] = — E X
n
1=1

- sample or experimental variogram (assuming IRF),
also called Matheron estimator

) = — 3 [Z(@s) - Z(x;))?

2
hiies

To obtain representative variogram estimates at each distance lag

nhZQO—SO
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Chap. 2 Estimating the variogram

Example of 1D data:

Piezometric height from a well on a waste site (Bioley - Orjulaz, CH)
during 50 days.

Piezometric height
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Chap. 2 Estimating the variogram

y values can be estimated at time lags = k time resolution (1 day)

— variogram cloud: all estimates of y from data
Variogram cloud
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Chap. 2 Estimating the variogram

Sample variogram: mean of y values per time lag classes (ex: 1 day)

Sample variogram
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Chap. 2 Estimating the variogram

Example in 2D: 2h rainfall amount

Rainfall intensity
—

.......

2D variogram

T T

......




Chap. 2

Estimating the variogram

572 573 574 575

571

When measurements irregularly sampled
When only a few measurements

Piezometric height

25 points out of 50

Day

} — too few y estimates per h

— tolerance on distance lag h in order
to increase number of points per class.

— more representative variogram
estimates.

24



Chap. 2

Estimating the variogram
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Chap. 2 Estimating the variogram

In 2D (or more)
Similar approach with class of h per distance and direction.

tol. distance = *1 km

log10(R tol angle =+10°
og10(R) g h=7.1 dir=45° cov=0.22

< ]
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If enough measurements — sample variogram per class of direction.
- analysis of possible anisotropy.
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Chap. 2 Questions

*Why is the sample variogram usually different from the theoretical one?

*What is the minimum number of values per class to obtain a reliable estimate
of the sample variogram?

How can you detect anisotropy with the variogram?

*For irreqular sampling, how can you increase the number of values per class?

27



Chap. 2 Estimating the variogram

Sampling effects

Sample variogram = mean of y values at given distance lags.

1
~ — — . . 2
() =5 Y [Z(:) ~ Z(a;)]
1,]ESH,
Arithmetic mean is not very representative of distribution of y values
for small samples or when extreme values in the data set.

- sample variogram sensitive to

- “outliers”: very large or very small values compared to the others
- position of these outliers within the studied domain:
- impact is #: vario ~ if outlier on the edge, v if in the middle.
- influence will be larger if outlier in the middle vs on the edge.

28



Chap. 2 Estimating the variogram

Variogram cloud and sample variogram

Example:
5(\ - 7\
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Chap. 2

Estimating the variogram

Set 1

Variogram cloud and sample variogram
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Chap. 2

Estimating the variogram

Z{x+h)
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Chap. 2

Estimating the variogram

Setl

Set 2

Example with piezometric height data
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Chap. 2 Estimating the variogram

In case of heavy tailed or asymmetrical distribution of Z values, a possible
way out is to transform Z values to get a more “reqular” distribution.
(log-transform, square-root transform, anamorphosis etc...)

Original set Log-transform set
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Chap. 2 Modeling the variogram

Water level at Bioley-Orjulaz

Piezometric height Sample variogram
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Sample variogram - structural analysis:

Range ~ 6 days
Sill ~ 1.3 m?

No nugget effect
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Chap. 2

Modeling the variogram

h (m)

572 573 574 575

571

Piezometric height
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| T
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Time lag (day)

- Need to fit an appropriate model to the sample variogram.

40 50

If we are interested in the estimation of mean value over a domain or in
interpolating measured data points, we must know the variogram at every

distance lags + fulfill math properties (see chapter on kriging).
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Chap. 2 Modeling the variogram

Mathematical properties of acceptable covariance/variogram models:

All variances calculated from model must be positive.

If 2"d-order stationary RF:

mn
Y = linear combination of Z Y = Z )\?:Z(x’i)
i=1

Variance of Y must be > 0 Var[Y] = Z Z Aid;C(z; — ;)
i=1 j=1

C(h) = cov. of RF
— C() must be positive definite

36



Chap. 2 Modeling the variogram

If intrinsic RF:
(variance is defined only for increments because Var[Z] does not exist)

n
Allowable linear combinations: Z A =0

i=1
n n
Variance of Y must be > 0 Var[Y] :@Z Z Aidiy (i — ;)
i=1 j=1
- y() must be conditionally negative definite y(h) = vario. of

RF

Important property: if y; and y, are valid variogram models and given
(a,b)>0, then y=ay:+by, is a valid model.

37



Chap. 2 Modeling the variogram
Proof Y =) ANZ(xi) =) MZ; with » X =0
i=1 i=1 i=1
Var[Y] = Var [i )\zZz] = Var [i )\’L<ZZ — Z(S)]
i=1 i=1
= F (i Ni(Z; — Z(;))
1=1
= 21 '21 NN E(Z — Zs5)(Z; — Zs))
1=1 )=
1 1
Yii = ?E [(Zz - Zj)Z} — §E [(Zz — Zv - (Zj _ Zv))Q]
= SE(Zi— 2,0 +(2- 2,0 —2(Zi - 2,)(Z; - Z,)]
= Yis + Vs — E(Zi — Z,)(Z; — Z,)]
= Var[Y] = — Z Z AiXj Vi

i=1 j=1
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Chap. 2 Modeling the variogram

Examples of commonly used isotropic models
( 3
3h 1 (h
, cl— — =1 — Vh<a
1. Spherical model v(h) = < 2a 2 \a
c Vh>a

Explicit range )

Related to overlapping volume of 2 spheres

Spherical Simulated time series with spherical vario

Al
. N Sph:|r=10 s=1
-—

Sill = ¢

0.8

0.4

i

50 100 150 200

0. . 10 15 20 g
Tangent at the origin . 23a/3
reaches the sill at 2a/3



Chap. 2 Modeling the variogram

2. Exponential model  y(h) = ¢

No explicit range
pseudo-range: r/y(r) ~0.95c-»r ~ 3a

_ ﬁ_

1l—e a

Simulated time series with exponential vario

Exponential

C\!_ o

— Exp: r=5 s=1
Sill = ¢ - N

o _ -

o

<

(a»] \

g_ | T ! T (<]

0 5 10 15 20 "
a Pseudo-range ~ 3a

50

100

150

200
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Chap. 2 Modeling the variogram

h2
i h) = 1—¢ a2
3. Gaussian model y = C €
No explicit range
pseudo-range: r/y(r) ~0.95c-»r ~1.7a
Gaussian Simulated time series with Gaussian vario
E 7] o Gau: r=3 s=1
Sill = ¢ -
© | -
o
= -
o
o \
o T T T @A
0 5 10 15 20 0 50 100 150 200

a 1.7a ~ pseudo-range



Chap. 2 Modeling the variogram

4. Power model y(h) =ah? 0< B <2

No range / sill

Power Simulated time series with power vario

1.2

0.8

0.4




Chap. 2

Modeling the variogram

5. Pure nugget model W(h) —
No structure!
Nugget

N
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Simulated time series with nugget vario
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Chap. 2

Modeling the variogram

Combination of models

Sill =co+ ¢ -

Nugget variance = ¢ { o |

v(h)

C\!_.

Q
o

<.
o

o

(0 h =

3h 1 (h\"
< Co+ C %—§(a> O< h<a
L ot h > a

Spherical + nugget

Spherical+nugget

10 15 20

Range = 44



Chap. 2 Fitting a variogram model

Fitting a model to a sample variogram is tricky and involves some arbitrary
choices that can be based on “physical” knowledge of the studied process.
Hence, the fitting procedure generally involves the practitioner rather than
being entirely automatic.

Fitting the behavior near the origin

A
4+

T

2. Linear: reqgular structure.

3. Discontinuous: nugget effect +
measurement errors.

— >

The practitioner has to choose a type of behavior at the origin, depending on
the knowledge he/she has on the process.

This choice has consequences on the subsequent interpolation... 45



Chap. 2 Fitting a variogram model

Fitting the behaviour at medium and long distance lags

A +

>

Characteristics that needs to be correctly reproduced:
- Slope at the origin: evaluated from short distance lags.
- Sill: level at which sample variogram stabilizes.

- Range: variogram reaches the sill
(spherical model: tangent at origin intersects sill at 2/3 of the range) 46



Chap. 2 Fitting a variogram model

Nested structure

1.4 .
- T min
1.2 N
[ @Q@% QOQQ%OQGQQ\A
1.0 -
ex: time series of rain rate 08l ra ]
(1-min resolution) o6l b
BF :
0.4 =
0.2 ;7 2
0.0 ‘ \ ‘ \ ‘ \ \ . ! . ]
0 10 20 30 40 50 60

Time lag (min)

2 structures appear in the sample variogram.
Model fitted = sum of 2 spherical models:
- 1st structure with range ~6 min and sill ~ 0.7 - convective cells.

- 2" structure with range ~ 35 min and sill ~1 - precipitating system. 47



Chap. 2 Questions

*Why is it necessary to fit a variogram model to the sample variogram?

*Which variogram models (among those listed) have an explicit range?

Demonstrate that the pseudo-range of the exponential model is 3a.

48



Chap. 2 Fitting a variogram model

Automatic fitting procedures

Main difficulties in fitting a varioram model on a sample variogram:

1. Uncertainty associated with sample variogram (generally not known).
2. Most models are non-linear in one or more parameters.

3. Possible anisotropy.

1 and 2 — equal weight for all sample variogram estimates is not relevant
— weighted least square approach.
np

Q(p) =Y wi [7(hs) = y(hi, p)]’

p vector (npx1) of model parameters to be estimated so that Q(p) is min.
nn number of distance lags used to estimate 7y

hi distance lag of i"" class.

7Y sample variogram.

~ model variogram. n(hz)

wi weight at h;, can take into account | w; =

number of pairs n(h;) used to estimate 7y at h; W(hi, p)2

49



Chap. 2 Fitting a variogram model

Ex piezometric height from Bioley - Orjulaz

Sample variogram

1.2 ° . ° o o |
o . = o ;
1|:| — o ] i o —
o range: 5.9 days
0.8 =
= sill: 1.14 m?
0.6 — ~
" i Nugget: O
024 fo n
SI 1IEI 1|5 2|III

Time lag [ day)



Chap. 2 Fitting a variogram model

Variography in presence of a drift

Intrisic RF Z is sum of zero-mean RF Y and deterministic drift m:
Z(aj‘) — Y(:E) -+ m(az) Y and m are unknown!

A

Residuals: R(SIJ) — Z(m) — m(x) 1M = estimate of m on sample Z(x;)

Variogram of R can be different from variogram of Y (even if munbiased)

What to do?
- Rigorous approach: IRF-k, beyond the scope of this course!

(interested reader can refer to Chilés and Delfiner, p.238)

- 2D data: if drift strong directionality 6, — vario + 6, less affected by drift.
— estimate of Y vario.

- Bias is negligible at short distance: - estimate m(e.g., least squares fitting)
— assume vario R ~ vario Y (at short dist).



Chap. 2

Fitting a variogram model

Example

Y simulated from sph. model
(mean=0, r=20, s=60).

Z =Y + quadratic drift (~ x?)

R: residuals from linear drift
estimated using least square

fitting on Z.
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Chap. 2 Estimating the variogram

Guidelines

» Careful definition of the domain.
» Careful analysis of data: distribution, outliers?
 Sampling must be more or less homogeneous.
» Estimation and fitting of isotropic variogram:
n > 20-30 per class to have reliable estimates
— adjust class width and angular tolerance.
— general rule: distance lags up to %2 domain size...

* Check anisotropy using directional variograms.

« Emphasis must be on short distance lags for model fitting!
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Chap. 2 Summary Chap.2

1. Variogram

- Definition, link with covariance
- In 2D (or more), anisotropy
- Physical interpretation:
1. Nugget: small-scale variability, measurement error

2. Range: decorrelation distance
3. Sill: variance of the considered (stationary) random function

2. Estimating the variogram

- Sample or experimental variogram, Matheron estimator (min 20-30 pairs)
- Sampling effects

3. Modeling the variogram
- Mathematical properties (covariance, variogram)

- Variogram models (spherical, exponential, Gaussian, power)
- Fitting a variogram model (manual/automatic, in presence of a drift)
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