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Chap. 2 Structural analysis

Main questions:

● What are the values where no measurements (interpolation / mean estimation)?

● What is the error associated with these estimates?

Geostatistical framework (hypotheses, tools, methods) → objectives of this course!
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Regionalized variable Z:
- Temperature.
- Pollutant concentration.
- Content of an ore.
- ...
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Chap. 2 Structural analysis

Outline:

1. Some deterministic interpolation methods

2. Variogram

3. Estimating the variogram

4. Modeling the variogram
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Chap. 2 Deterministic interpolation methods

1. Thiessen polygons

Interpolated value = value of closest measurement

Mean value over domain:

2. Inverse distance weighting

Weight ~ inverse distance at a given power k 

3. Spline methods

Cubic spline: local fitting of 3rd order polynomials on intervals between
consecutive points + continuity and differentiation
at limits of intervals
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Chap. 2 Deterministic interpolation methods

There is a variety of other deterministic interpolation methods.

However:

1) They do not explicitly take into account the spatial structure of the data.

2) They do not provide any information on the error associated with 
interpolated values.

A different approach based on stochasticity has been proposed to cope with 
these limitations of deterministic interpolation techniques.

We will first see how to characterize the structure (i.e., the “similarity” 
between neighboring points) in spatial data.
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Chap. 2 Characterizing spatial processes
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(from D. Marcotte)

+

+

+

+

+
+

+

+
+

+
+ +

+



6

Chap. 2 Characterizing spatial processes

Z(x+h)

Z(x)

h2

h can vary in length and direction

(from D. Marcotte)
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Chap. 2 Characterizing spatial processes

h scattergram too much information → summarize these graphs
Use the covariance between Z(x+h) and Z(x): correlation + variability.

Z(x+h)

Z(x)

||h||=h1  Cov=1.3

Z(x+h)

Z(x)

||h||=h2  Cov=0.7

Z(x+h)

Z(x)

||h||=h3  Cov=0.2

h

Cov

1

h1 h2 h3

Covariogram

(from D. Marcotte)
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Chap. 2 Characterizing spatial processes

Example: tol. distance = ±1 km
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Chap. 2 Variogram

Covariance is sensitive to sampling effects, in particular because the mean 
is explicitly involved.

This issue is especially important in case of mono-realization RF.

Another tool has been proposed by Matheron to cope with this difficulty:
the (semi-)variogram

It is defined as half of the variance of the increments of a RF:

As the increments are involved, the variogram is not sensitive to the 
uncertainty affecting the mean (of Z) estimated from the sample, while 
the covariance is.
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Chap. 2 Variogram

For g to be defined, RF does not need to be SRF but only
an intrinsic random function (IRF).

1st order moment:

In the following, we assume that the linear drift has been corrected, hence

1st-order stationarity of the increments implies a linear drift in the RF!
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Chap. 2 Variogram

Because the class of IRF includes the class of SRF, the variogram is a 
more general tool than the covariance.

If Z is a SRF, the link between the covariance and the variogram is

2nd order moment:

From previous assumption:
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Chap. 2 Variogram

h (distance lag)

g(h)

Cov(h)

nugget effect

0

Variogram characterized by:

- nugget effect (name from mining): possible discontinuity at h=0, can be null.

- Slope: rate of increase of g reflects dissimilarity at increasing distance lags.

Physical interpretation of the variogram at “short” distance lags
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Chap. 2 Variogram

h (distance lag)

g(h)
sill = Var(Z)

range
0

If Z 2nd order stationary:

- Range: decorrelation distance → area of influence (if it exists).

- Sill: related to the variance of the RF (if it exists).

Physical interpretation of the variogram at “long” distance lags

nugget effect

Cov(h)
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Chap. 2 Questions

The variogram quantifies the spatial structure 
(variability + continuity) of the studied RF

Which vario corresponds 
to which time series?
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Chap. 2 Variogram

In 2D (or more), in addition to quantification of variability,
variogram also a useful tool to analyze anisotropy.

→ directional variograms reveal difference in structure / direction.
0

+90
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Chap. 2 Variogram

Geometric anisotropy

Through a linear change of coordinates, variation of Z becomes isotropic.

Variogram exhibits elliptic 
isovalue contours.

Transformation matrix

q
r1r2

where
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Chap. 2 Variogram

In this sense, the variogram is a relevant tool for the structural analysis of a 
spatial process (structure, anisotropy, variability).

The variogram is a 2nd order moment. But it is not enough to completely 
describe a RF and its variability.

2 RF can have identical 1st and 2nd order moments and still be very different.
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Chap. 2 Estimating the variogram

“The variogram is the corner stone of geostatistics, and it is therefore vital to 
estimate it and model it correctly.”
Geostatistics for Environmental Scientists, R. Webster and M. Oliver. 

Previous definitions describe the variogram of the random function, called 
theoretical variogram. It corresponds to the population of possible values.

We consider a regionalized variable (i.e., realization of the studied RF over a 
given finite domain)
→ variogram over this particular region = regional variogram.

Usually regional variogram ≠ theoretical variogram!

Ex. of stationary RF but domain D smaller than range of theoretical variogram

r

gth gregional
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Chap. 2 Estimating the variogram

Focus on RF over studied domain → focus on regional variogram to 
analyze and interpolate regionalized variable on this domain.

In practice, only access to a sample of 1 (or more) realization(s) of RF 
over studied domain.

Expectation is estimated as arithmetic mean:

→ sample or experimental variogram (assuming IRF), 
also called Matheron estimator

To obtain representative variogram estimates at each distance lag
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Chap. 2 Estimating the variogram

Example of 1D data:

Piezometric height from a well on a waste site (Bioley – Orjulaz, CH)
during 50 days.
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Chap. 2 Estimating the variogram

g values can be estimated at time lags = k time resolution (1 day)

→ variogram cloud: all estimates of g from data
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Chap. 2 Estimating the variogram

Sample variogram: mean of g values per time lag classes (ex: 1 day)
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Chap. 2 Estimating the variogram

Example in 2D: 2h rainfall amount 
Rainfall intensity

2D variogram
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Chap. 2

→ tolerance on distance lag h in order 
to increase number of points per class.

→ more representative variogram 
estimates.

Estimating the variogram

When measurements irregularly sampled
When only a few measurements → too few g estimates per h

25 points out of 50
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Chap. 2 Estimating the variogram

Class width = 1 day Class width = 3 days
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Chap. 2 Estimating the variogram

In 2D (or more)

If enough measurements → sample variogram per class of direction.
→ analysis of possible anisotropy.

tol. distance = ±1 km
tol angle = ±10 °

Similar approach with class of h per distance and direction.
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Chap. 2

●Why is the sample variogram usually different from the theoretical one?

●What is the minimum number of values per class to obtain a reliable estimate 
of the sample variogram?

●How can you detect anisotropy with the variogram?

●For irregular sampling, how can you increase the number of values per class?

Questions
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Chap. 2 Estimating the variogram

Sampling effects

Arithmetic mean is not very representative of distribution of g values
for small samples or when extreme values in the data set.

→ sample variogram sensitive to
- “outliers”: very large or very small values compared to the others
- position of these outliers within the studied domain:

- impact is ≠: vario ↗ if outlier on the edge, ↘ if in the middle.
- influence will be larger if outlier in the middle vs on the edge.

Sample variogram = mean of g values at given distance lags.
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Chap. 2 Estimating the variogram

Variogram cloud and sample variogram

Set 1 Set 2

Example:
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Chap. 2 Estimating the variogram

Variogram cloud and sample variogram

Set 1 Set 2
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Chap. 2 Estimating the variogram

h-scattergram
Set 1 Set 2
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Chap. 2 Estimating the variogram

Example with piezometric height data

Set 1

Set 2
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Chap. 2 Estimating the variogram

In case of heavy tailed or asymmetrical distribution of Z values, a possible 
way out is to transform Z values to get a more “regular” distribution. 
(log-transform, square-root transform, anamorphosis etc...)
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Chap. 2 Modeling the variogram

r ~ 6

s2 = 1.3

Water level at Bioley-Orjulaz

Sample variogram → structural analysis: Range ~ 6 days
Sill ~ 1.3 m2

No nugget effect
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Chap. 2

If we are interested in the estimation of mean value over a domain or in 
interpolating measured data points, we must know the variogram at every 
distance lags + fulfill math properties (see chapter on kriging).

→ Need to fit an appropriate model to the sample variogram.

x ?

?

x ?

x ?
x ? x ?

Modeling the variogram
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Chap. 2

Mathematical properties of acceptable covariance/variogram models:

All variances calculated from model must be positive.

If 2nd-order stationary RF:

Y = linear combination of Z

Variance of Y must be > 0

→ C() must be positive definite
C(h) = cov. of RF 

Modeling the variogram
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Chap. 2

If intrinsic RF:
(variance is defined only for increments because Var[Z] does not exist)

Allowable linear combinations:

→ g() must be conditionally negative definite

Variance of Y must be > 0

g(h) = vario. of 
RF 

Important property: if g1 and g2 are valid variogram models and given 
(a,b)>0, then g=ag1+bg2 is a valid model.

Modeling the variogram
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Chap. 2

Proof

Modeling the variogram
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Chap. 2

1. Spherical model

Explicit range
Related to overlapping volume of 2 spheres

Sill = c

Range = a

Examples of commonly used isotropic models

2a/3Tangent at the origin
reaches the sill at 2a/3 

Modeling the variogram

Simulated time series with spherical vario
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Chap. 2

2. Exponential model

No explicit range
pseudo-range: r / g(r) ~0.95 c → r ~ 3a

Sill = c

Pseudo-range ~ 3aa

Modeling the variogram

Simulated time series with exponential vario
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Chap. 2

3. Gaussian model

No explicit range
pseudo-range: r / g(r) ~0.95 c → r ~1.7a

Sill = c

1.7a ~ pseudo-rangea

Modeling the variogram

Simulated time series with Gaussian vario
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Chap. 2 Modeling the variogram

Simulated time series with power vario

4. Power model

No range / sill

b = 0.5 ; 1 ; 1.8
a = 1/(20^b)
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Chap. 2

5. Pure nugget model

c0

No structure!

Modeling the variogram

Simulated time series with nugget vario
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Chap. 2

Combination of models

Nugget variance = c0

Spherical + nugget

Sill = c0 + c

Range = a

Modeling the variogram
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Chap. 2 Fitting a variogram model

Fitting a model to a sample variogram is tricky and involves some arbitrary 
choices that can be based on “physical” knowledge of the studied process. 
Hence, the fitting procedure generally involves the practitioner rather than 
being entirely automatic.

Fitting the behavior near the origin

+
+

+
+ + + 1. Parabolic: very regular structure.

2. Linear: regular structure.

3. Discontinuous: nugget effect +
                            measurement errors.

The practitioner has to choose a type of behavior at the origin, depending on 
the knowledge he/she has on the process.

This choice has consequences on the subsequent interpolation...
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Chap. 2 Fitting a variogram model

Fitting the behaviour at medium and long distance lags

+

+

+
+ + +

Characteristics that needs to be correctly reproduced:

- Slope at the origin: evaluated from short distance lags.

- Sill: level at which sample variogram stabilizes.

- Range: variogram reaches the sill
(spherical model: tangent at origin intersects sill at 2/3 of the range)
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Chap. 2 Fitting a variogram model

Nested structure

2 structures appear in the sample variogram.

Model fitted = sum of 2 spherical models:

- 1st structure with range ~6 min and sill ~ 0.7 → convective cells.

- 2nd structure with range ~ 35 min and sill ~1 → precipitating system.

ex: time series of rain rate
      (1-min resolution)
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Chap. 2

●Why is it necessary to fit a variogram model to the sample variogram?

●Which variogram models (among those listed) have an explicit range?

●Demonstrate that the pseudo-range of the exponential model is 3a.

Questions
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Chap. 2 Fitting a variogram model

Automatic fitting procedures

Main difficulties in fitting a varioram model on a sample variogram:
1. Uncertainty associated with sample variogram (generally not known).
2. Most models are non-linear in one or more parameters.
3. Possible anisotropy.

1 and 2 → equal weight for all sample variogram estimates is not relevant
→ weighted least square approach.

p vector (npx1) of model parameters to be estimated so that Q(p) is min.
nh number of distance lags used to estimate 
hi distance lag of ith class.
  sample variogram.
  model variogram.
wi weight at hi, can take into account
number of pairs n(hi) used to estimate     at hi
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Chap. 2 Fitting a variogram model

Ex piezometric height from Bioley - Orjulaz

range: 5.9 days

sill: 1.14 m2

Nugget: 0
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Chap. 2

Variogram of R can be different from variogram of Y (even if      unbiased)

Variography in presence of a drift

Intrisic RF Z is sum of zero-mean RF Y and deterministic drift m:

Y and m are unknown!

Residuals: = estimate of m on sample Z(xi)

What to do?
- Rigorous approach: IRF-k, beyond the scope of this course!
(interested reader can refer to Chilès and Delfiner, p.238)

- 2D data: if drift strong directionality q0 → vario + q0 less affected by drift.
→ estimate of Y vario.

- Bias is negligible at short distance: → estimate      (e.g., least squares fitting)
→ assume vario R ~ vario Y (at short dist).

Fitting a variogram model
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Chap. 2

Example

Fitting a variogram model

Y simulated from sph. model 
(mean=0, r=20, s=60).

Z = Y + quadratic drift (~ x2)

R: residuals from linear drift 
estimated using least square 
fitting on Z.
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Chap. 2 Estimating the variogram

Guidelines

● Careful definition of the domain.

● Careful analysis of data: distribution, outliers?

● Sampling must be more or less homogeneous.

● Estimation and fitting of isotropic variogram:
n > 20-30 per class to have reliable estimates
→ adjust class width and angular tolerance.
→ general rule: distance lags up to ½ domain size...

● Check anisotropy using directional variograms.

● Emphasis must be on short distance lags for model fitting!
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Chap. 2 Summary Chap.2

1. Variogram

- Definition, link with covariance

- In 2D (or more), anisotropy

- Physical interpretation:
1. Nugget: small-scale variability, measurement error
2. Range: decorrelation distance
3. Sill: variance of the considered (stationary) random function

2. Estimating the variogram

- Sample or experimental variogram, Matheron estimator (min 20-30 pairs)
- Sampling effects

3. Modeling the variogram

- Mathematical properties (covariance, variogram)
- Variogram models (spherical, exponential, Gaussian, power)
- Fitting a variogram model (manual/automatic, in presence of a drift) 
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