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Examples

Throwing a dice → X0 = 1 or 2 or 3 or 4 or 5 or 6
Temperature in the room → X0    {10, .. , 30} (°C)

Chap. 1 Basic statistics

Random Variable (RV):

For a realization w from the space of all possible realizations W, a random 
variable X takes the value X0 in the subset A: 

If X is a discrete RV → A is a countable (or denumerable) set of values
If X is a continuous RV → A is a subset of 

The support of the RV is the volume that is associated with the RV

Measurement of temperature: support = point.
Measurement of incoming solar radiation: support = surface.
Measurement of a pollutant concentration: support = volume.
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Cumulative density function (CDF):

A random variable is fully described by its associated CDF Fx:

FX must satisfy the 3 following properties:

(1)

(2) FX is a monotonic, nondecreasing function, that is

(3) FX is continuous from the right, that is 
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Examples of CDF:

If X is a discrete RV:

X = temperature of the room

If X is a continuous RV:
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X = outcome of a dice

Temperature

1
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Which CDF corresponds to the most uniform distribution?

Chap. 1 Questions
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Probability density function (PDF):

A random variable can also be fully described by its associated PDF

if x = xi , i=1..n

if x ≠ xi

If X is a continuous RV:

If X is a discrete RV:
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Examples of PDF:

If X is a discrete RV:

If X is a continuous RV:
CDF

Temperature
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Expected value of a discrete RV:

Expected value of a function g of X:

Expected value of a continuous RV:

Expected value of a function g of X:

Descriptors of a RV

Expectation is a linear operator:
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Raw moments of a RV

Central moments of a RV

Descriptors of a RV

Binomial series identity:
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For a discrete RV:

Moment generating function MX(t)

For a continuous RV:

Therefore
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(1) Mean

To describe the “center” of a distribution 
(using mainly 1st order moments)

1

1 2 3 4 5 6

1/6

PDF

mean = 3.5

Discrete RV:

PDF

Continuous RV:

mean

Mean = x value of the center of gravity of PDF
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(2) Median

quantile y% means y% of the values are below q.
median : 50% of the values are below the median.
median is more robust than mean.

X in {xi,..,xn} if n odd median = x(n+1)/2

if n even median = 1/2(xn/2 + x1+n/2)

median

CDF

Discrete RV:

1/2

CDF

Continuous RV:

median
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1

1 2 3 4 5 6

1/6

PDF

median = 3.5

Discrete RV:

PDF

Continuous RV:

median

Integrated areas below and above median are equal
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(3) Mode

mode = most probable value = value at which fX is max (if any).

1

1 2 3 4 5 6

1/6

PDF

Discrete RV:

PDF

Continuous RV:

mode

no mode!

Unimodal:
1 mode

Multimodal:
several modes
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If PDF is symmetrical If PDF is asymmetrical

Indicate the relative locations of the mean, median and mode.
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Variance

To describe the “dispersion” of a distribution 
(using moments order > 1)

Quantify spread of the 
distribution around the mean

Standard deviation
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Coefficient of variation Quantifies variability 
normalized by the mean

s1

s2 = s1

CV1 > CV2

Coefficient of skewness

PDF mean

CS < 0

CS > 0

Coefficient of kurtosis

CK > 0 → dist. more peaked than Normal dist.
CK < 0 → dist. less peaked than Normal dist.
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Distributions can have same first 4 moments, but still be different!!!

From Mood et al., Introduction to the theory of Statistics, 1974
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The Normal distribution

c1 = m
c2 = s

80% of the values in

Normal (or Gaussian) dist. plays a major role because the dist. of the 
sum of n RV tends toward a normal distribution (central limit theorem).
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Let X be a RV with a Normal distribution

Hence
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Considering 2 RV X and Y, one possible way to characterize their 
relationship is to calculate their covariance or their correlation coefficient.

(r = Cov for RV with std = 1)

Both coefficients measures the linear relationship between X and Y.

Correlation coef. is better in this sense because it is dimensionless and 
normalized, so it eases comparison.

Covariance:

Correlation coefficient:
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Properties of variance

useful
in geostat
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Correlation and linear regression

Linear regression of Y as function of X

Best line Ŷ that fits XY cloud.

Least squares: G = E[(Ŷ-Y)2] is minimum

 rXY
2 represents the percentage of variance of Y explained by Ŷ. 

(line passes by gravity center)
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Scatter plots corresponding to different correlation coefficients

1 2

3

Sort graphs by decreasing 
correlation coefficient

Chap. 1 Questions
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Limitations and pitfalls when using (linear) correlation coefficient

1. Correlation = 0 does not mean independence

y = (x - 2.5)2

→ deterministic relationship
but r = 0!

Coef. correlation quantifies
the “amount of LINEARITY”
between 2 random variables
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2. Correlation can be biased by isolated values (outliers)

Limitations and pitfalls when using (linear) correlation coefficient
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3. High correlation does not mean causality.

- “Hidden” variable: energy used for heating and number of deaths by cold
  in winter are correlated but no causality!

- Co-fluctuation: 2 CDF will have high correlation, whatever they represent.

Limitations and pitfalls when using (linear) correlation coefficient
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Sampling and estimation

So far, RV with known distribution (CDF or PDF).

However, in practice, only access to a SAMPLE of the population.

Only access to estimates of descriptors (moments, quantiles), ex:

Usually, greek letters will denote population moments while latin 
letters will denote sample moments.

can and usually will be different from m

can and usually will be different from s
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Sampling and estimation

20 values 1000 values

Mean

Std

Example: generate 50 sets of 20 and 1000 normally distributed 
values. Mean = 10 and std = 5 for the population.
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