Chap. 1 Basic statistics

Random Variable (RV):

For a realization w from the space of all possible realizations Q, a random
variable X takes the value Xo in the subset A:

X(w):Xo,XQEA

If X is a discrete RV — A is a countable (or denumerable) set of values
If X is a continuous RV — A is a subset of [R

The support of the RV is the volume that is associated with the RV

Measurement of temperature: support = point.
Measurement of incoming solar radiation: support = surface.
Measurement of a pollutant concentration: support = volume.
Examples
Throwing a dice - Xo=1lor2or3or4or5o0rb6

Temperature in the room - XOE {10, .., 30} (°C)
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Cumulative density function (CDF):

A random variable is fully described by its associated CDF Fy:

P[X(w) < a] = Fx(a)

Fx must satisfy the 3 following properties:

1) lim Fx(z)=0 and lim Fx(z)=1

Tr—>— 00 r——+0o0

(2) Fx is @ monotonic, nondecreasing function, thatis p, (a) < Fx(b) Va <b

(3) Fx is continuous from the right, that is lim+ Fx (:1: 4 h) — Fy ($>
h—0
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Examples of CDF:

If X is a discrete RV:

X = outcome of a dice

If X is a continuous RV:

X = temperature of the

room
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Questions

Which CDF corresponds to the most uniform distribution?
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Probability density function (PDF):

A random variable can also be fully described by its associated PDF

If X is a discrete RV:  fx (:1;) — P[X — ZEZ] if X = xi, i=1..n

0 if X # x
Z fx(zi) =1
If X is a continuous RV: fX (gj) _ dF;( (33)
i

Plr < X(w) < (z+dx)| = fx(z)dx

/fX
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Examples of PDF:

If X is a discrete RV:

A CDF A PDF
1 — 1
——C
 — ) P[X — l’z] — fx(aﬁz)
1/2 1 —C
—C
1/6+  =—C 1/6
—t > T T T T T T >
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If X is a continuous RV:
A CDF N PDF
1 t2
c Pt <X <ta] = /fX(:U) iz
AN\ t1
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Descriptors of a RV

Expected value of a discrete RV:

Expected value of a function g of X:

Expected value of a continuous RV:

Expected value of a function g of X:

Expectation is a linear operator:
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Descriptors of a RV

Raw moments of a RV qun (X) — E[Xn]

Central moments of a RV 1 (X) = ,u’l (X)

pn(X) = E[(X — E[X])"]

pn(X) = (=)™ * () gy ™"
k=0
Binomial series identity:
n - n n— n TL'
(a+b)" =) (a*o"" (1) =

k=0
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Moment generating function Mx(t)

Mx (t) = E[e""]

1 1
Mx(t) =E[1+ Xt + 1 (X1)? + 3'(Xt)3 + ...]
Mx(t) =14 pit + gﬂ'th + gu’gﬁ +
- 1 /41
MX(t) — ZO 5:“@75
d"™ M x
Theref 0) = 1/
erefore T (0) =
For a discrete RV: Mx (t) = Z ol Fx(x;)

For a continuous RV: M~ (t) — / etfo (:U) dx
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To describe the “center” of a distribution
(using mainly 1st order moments)

(1) Mean ILL(X) — E[X] Mean = x value of the center of gravity of PDF
Discrete RV: Continuous RV:
A PDF A PDF
1 -
mean

1/6] e TW, | g
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(2) Median

quantile y% means y% of the values are below q.
median : 50% of the values are below the median.

median is more robust than mean.

X in {xi,..,Xn} {

Discrete RV:

1/2

1/6 |

A

CDF

If n odd
if N even

median
median

1/2

X(n+1)2
1/2(Xn2 + Xi+n2)

Continuous RV:

A CDF

ﬁ

median

11
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Discrete RV: Continuous RV:
A PDF A PDF

1
median

S

Integrated areas below and above median are equal

1/6

12
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(3) Mode

mode = most probable value = value at which fx is max (if any).

Discrete RV: Continuous RV:
A PDF A PDF
1 -
mode

no mode! E
1/6 i
T \ T \ T T . : >
1 2 3 4 5 6
A A _ _
Unimodal: Multimodal:
1 mode several modes

13
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Indicate the relative locations of the mean, median and mode.

If PDF is symmetrical If PDF is asymmetrical

14
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To describe the “dispersion” of a distribution
(using moments order > 1)

Variance VaT[X] — E[(X — E[X])Q]
= E[X?] - E[X]?

Standard deviation O‘[X] = \/V&f[X] — \/E[(X — E[X])Z]

Loi normale, m=5
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O

Coefficient of variation OV = — ngggiﬁizeesdvt?;i?r?ie“xean
A M1
pi,2 > H1,1 G = O
CV1 > CV2
Hi1,1 o1
-

A PDF

Mmean

M3 M3
o

Coefficient of skewness

4
Coefficient of kurtosis CK = 'u— —
0'4
CK > 0 - dist. more peaked than Normal dist. 16
CK < 0 - dist. less peaked than Normal dist.
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Distributions can have same first 4 moments, but still be different!!!

From Mood et al., Introduction to the theory of Statistics, 1974

17
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The Normal distribution

1 { (x — c1)? }
exp { —
Co\/ 27T P 20%

Normal Distribution

qio = — 1.280

do0 = (1 i 1.280'} 80% of the values in [,u — 1.28(7, ) -+ 1,280]

Normal (or Gaussian) dist. plays a major role because the dist. of the

sum of n RV tends toward a normal distribution (central limit theorem). 18
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Let X be a RV with a Normal distribution

—+ 00 1 —+ 00
My (t) = / ) dn = [ e
2
— OO tgog — OO

Mx(t) — €tcl+ 2

Hence
dM
p1 = TX(O) = C1
2 dQMX 2 2

19
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Considering 2 RV X and Y, one possible way to characterize their
relationship is to calculate their covariance or their correlation coefficient.

Covariance: COV[X, Y] = E[(X — E[X])(Y — E[Y])]
— E[XY] — E[X]E[Y]
Cov| X, Y]

Correlation coefficient: PpXYy = (p = Cov for RV with std = 1)
OXO0y

Both coefficients measures the linear relationship between X and Y.

Correlation coef. is better in this sense because it is dimensionless and
normalized, so it eases comparison.

20
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Properties of variance

useful
In geostat <

Var[aX + b] = a*Var[X]

e

Var| X 4+ Y| = Var|X| + Var|Y| + 2Cov| X, Y]

Var

Var

- _
E a; X;| =
L 1=1 i

/ cZ(x) da

LA

n n

> h >: Oﬂ,;CLjCOV[Xi, X]]

i=1 j=1

— 2 / / Cov[Z(z), Z(y)] dz dy
A A

21
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Chap. 1
Correlation and linear regression
. . . y=0.50x + 2 Op
Linear regression of Y as function of X r-0.88 5
O
A . o) C?’fs,@
Y =aX +b =8 g%
S - O,@"b
: - : o o Q@OO ?7
Best line Y that fits XY cloud. o OPmg O
€ 5 O
R . o N 5 O ?{Q OQ'Q’%\\CC; O O
Least squares: G = E[(Y-Y)?] is minimum L5 SN
“ OU /‘\ - O ©
0G 0G LA
— =0 and — =0
aa ab o © O . o
Cov [X, Y] PX Y °
a — > — T T |
O'X O'X 0 5 10 15 20
< x

b = E[Y] — CLE[X] — E[Y] — E[Y] (line passes by gravity center)
Var[Y — Y] = Var[Y](1 — p%y)
22

— pxy? represents the percentage of variance of Y explained by Y.
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Scatter plots corresponding to different correlation coefficients
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Limitations and pitfalls when using (linear) correlation coefficient

1. Correlation = 0 does not mean independence

y = (x - 2.5)?

— deterministic relationship
but p = 0!

Coef. correlation quantifies

the “amount of LINEARITY"” N

between 2 random variables
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Limitations and pitfalls when using (linear) correlation coefficient

2. Correlation can be biased by isolated values (outliers)
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Limitations and pitfalls when using (linear) correlation coefficient

3. High correlation does not mean causality.

- “Hidden” variable: energy used for heating and number of deaths by cold
in winter are correlated but no causality!

- Co-fluctuation: 2 CDF will have high correlation, whatever they represent.
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Sampling and estimation
So far, RV with known distribution (CDF or PDF).
However, in practice, only access to a SAMPLE of the population.

Only access to estimates of descriptors (moments, quantiles), ex:

n
1
m = — E €T; can and usually will be different from u
n -
1=1
mn
2 1 2 - -
g% — — E (x; — m) can and usually will be different from o
T
1=1

Usually, greek letters will denote population moments while latin
letters will denote sample moments.

27
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Sampling and estimation

Example: generate 50 sets of 20 and 1000 normally distributed
values. Mean = 10 and std = 5 for the population.
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