

**Devis TUIA
Alexis BERNE
Jan SKALOUD**

Sensing and Spatial Modeling for Earth Observation

EPFL, spring semester
2024

Welcome to the SSMEO course!

You will learn foundations in:

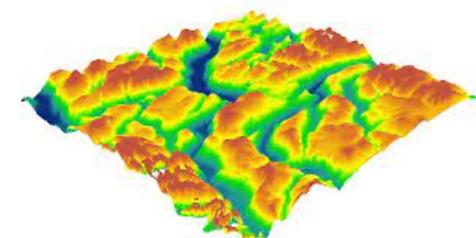
Sensing “metricity”

- How to convert camera-data into a mapping product of a certain quality?

Geo-information extraction

- How to extract information from a geo-rectified image & 3D digital model?

Geostatistical phenomena analysis & modelling


- How to analyze and model geographically related variables in space and time?

Welcome to the SSMEO course!

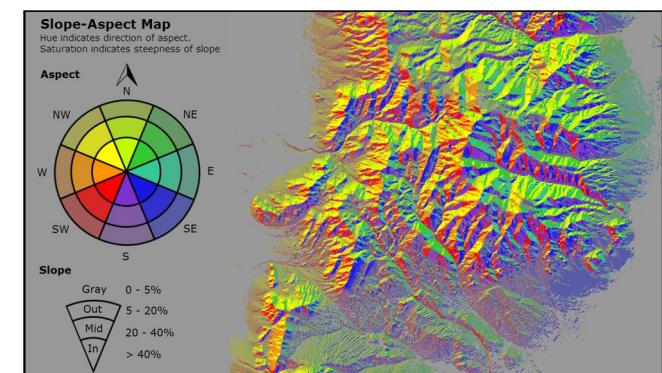
This translates into three rough big chapters

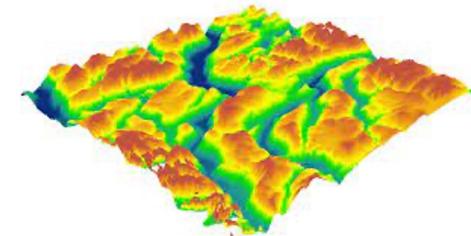
1. 3D reconstruction from images

- How to match images acquired by drones / planes
- How to create a 3D model from there

2. Feature extraction and learning

- How to extract variables of interest from said them
- How to build machine learning models to predict environmental targets

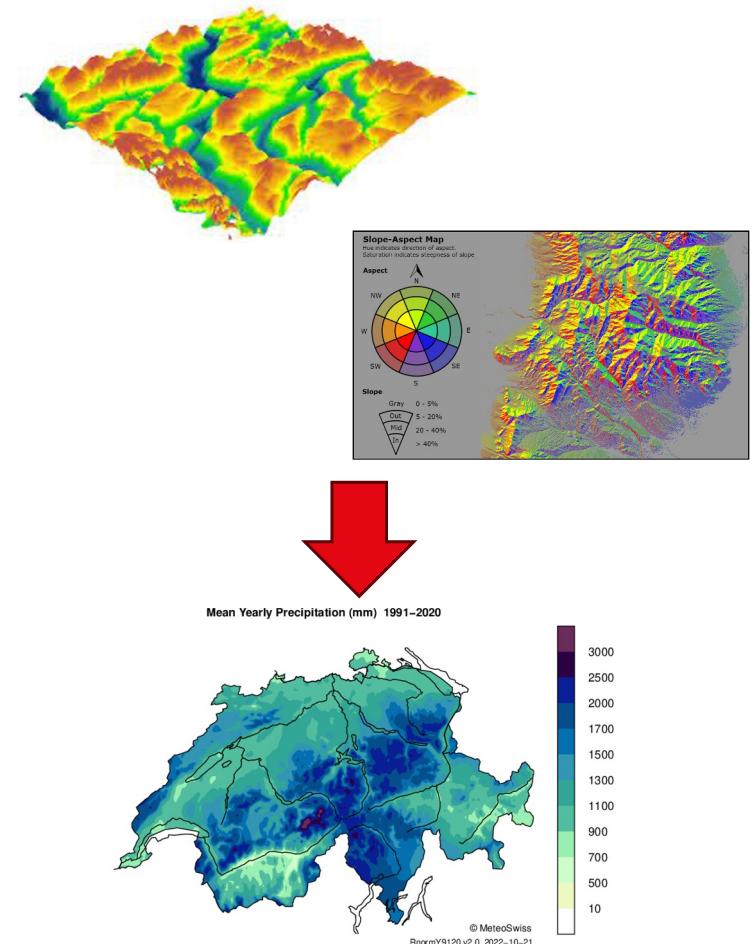



3. Geostatistics

- How to model spatially correlated processes
- How to interpolated spatialised measurements

Welcome to the SSMEO course!

This translates into three rough big chapters


1. 3D reconstruction from images
 - How to match images acquired by drones / planes
 - How to create a 3D model from there
2. Feature extraction and learning
 - How to extract variables of interest from said them
 - How to build machine learning models to predict environmental targets
3. Geostatistics
 - How to model spatially correlated processes
 - How to interpolated spatialised measurements

Welcome to the SSMEO course!

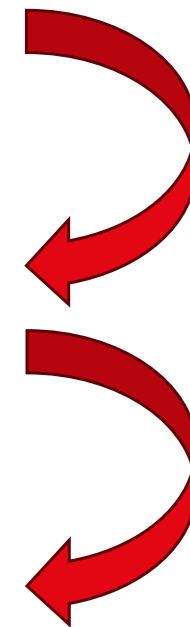
This translates into three rough big chapters

1. 3D reconstruction from images
 - How to match images acquired by drones / planes
 - How to create a 3D model from there
2. Feature extraction and learning
 - How to extract variables of interest from said them
 - How to build machine learning models to predict environmental targets
3. Geostatistics
 - How to model spatially correlated processes
 - How to interpolated spatialised measurements

Welcome to the SSMEO course!

The three parts are tightly related, we walk you through the entire processing chain

1. 3D reconstruction from images


- How to match images acquired by drones / planes
- How to create a 3D model from there

2. Feature extraction and learning

- How to extract variables of interest from said them
- How to build machine learning models to predict environmental targets

3. Geostatistics

- How to model spatially correlated processes
- How to interpolated spatialised measurements

You need the 3D model to move to this step

You will extend the AI models with geographical explicit approaches

Some admin about ENV-408

Core course

5 credits ECTS

5h / week,

~40% lectures: Thursday afternoon 16h-18h

~60% exercises (mostly Python-based, a bit of R): Friday morning 9h-12h

About the exercises

Key for understanding the content of the lectures!

They follow each other, and often you need the result of one as the input to the next!

Come prepared and be regular!

Do it yourself & right! (self-control possible)

No formal evaluation, but they will be part of the first mid-term

About the exercises (2)

Tools

- **Python** programming, Jupiter Notebooks (parts 1 and 2)
- **R** for geostat exercices (part 3)
- Professional photogrammetry/CV software (part 1)

The TA-s are there to help and we will provide solutions before the following week's one.

Evaluation

Mid-term #1: 15%:

- Evaluate understanding of exercises of part I (images-to-DEM)
- The mid term requires to have running pipelines from the exercises
- We will ask you to run your code and answer questions with it

Mid-term #2: 15%

- Theoretical about geostatistics (pen and paper!)

Final exam: 70%

- Theoretical exam covering all content

Schedule

Week	Date for lecture (Thursday)	Block	Exact topic	Teacher	Hours lecture (Thursday)	Hours exercise (Friday)
1	22.02.2024	Images to Ortho-DEM	Intro	devis	1	
			Image creation	jan	1	3
2	29.02.2024		Keypoint generation & matching	devis	2	3
3	07.03.2024		Orientation absolute	jan	2	3
4	14.03.2024		Orientation relative	jan	2	3
5	21.03.2024		Orthophoto and DEM creation	jan	2	3
6	28.03.2024	Machine learning	Features from a DEM	devis	2	no ex (vacances)
	04.04.2024			EASTER	EASTER	
7	11.04.2024		mid-term + intro ML	devis	2	3
8	18.04.2024		Regression with linear models, random forest	devis	2	3
9	25.04.2024		General intro - Structural analysis 1	alexis	2	3
10	02.05.2024	Geostat	Structural analysis 2	alexis	2	3
11	09.05.2024		Kriging - 1	alexis	2	3
12	16.05.2024			Ascension		
13	23.05.2024		mid-term + Kriging - 2	alexis	2	3
14	30.05.2024		Kriging - 3	alexis	2	3

Questions?