

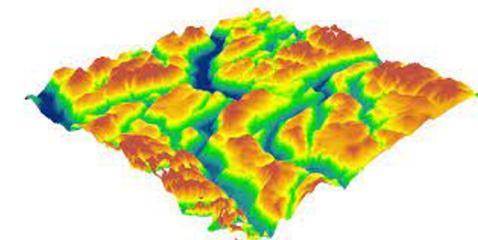
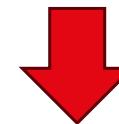
Devis TUIA
Alexis BERNE
Jan SKALOUD

Sensing and Spatial Modeling for Earth Observation

Welcome to the SSMEO course!

You will learn foundations in:

- Sensing “metricity”
 - How to convert camera-data into a mapping product of a certain quality?
- Geo-information extraction
 - How to extract information from a geo-rectified image & 3D digital model?
- Geostatistical phenomena analysis & modelling
 - How to analyze and model geographically related variables in space and time?



▪

Welcome to the SSMEO course!

- This translates into three rough big chapters

1. 3D reconstruction from images

- How to match images acquired by drones / planes
- How to create a 3D model from there

2. Feature extraction and learning

- How to extract variables of interest from said them
- How to build machine learning models to predict environmental targets

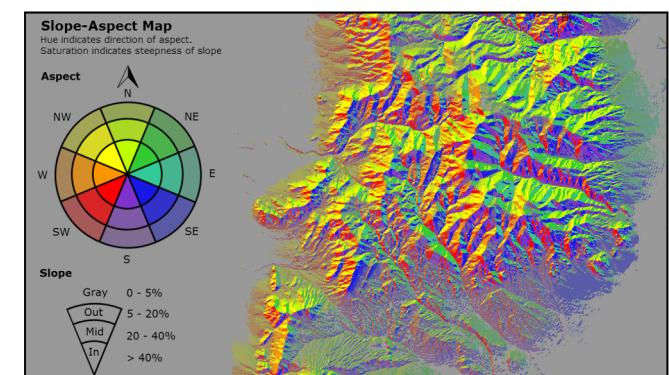
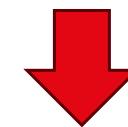
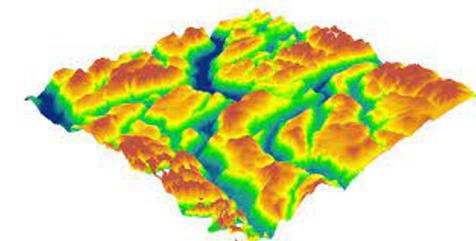
3. Geostatistics

- How to model spatially correlated processes
- How to interpolated spatialised measurements

Welcome to the SSMEO course!

- This translates into three rough big chapters

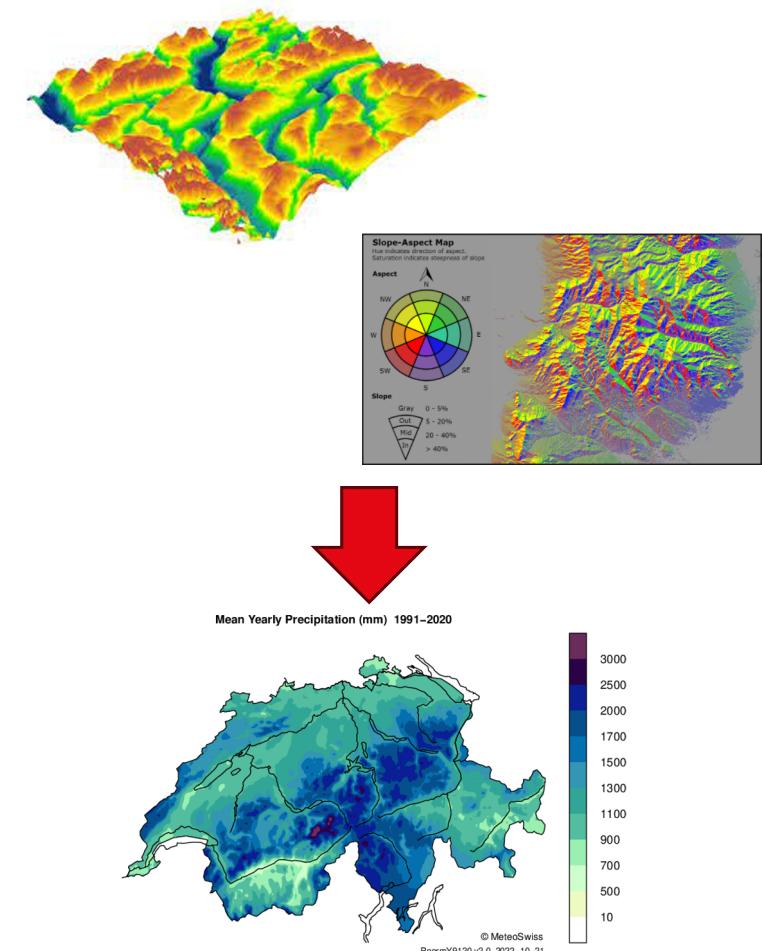
1. 3D reconstruction from images




- How to match images acquired by drones / planes
- How to create a 3D model from there

2. Feature extraction and learning

- How to extract variables of interest from said them
- How to build machine learning models to predict environmental targets

3. Geostatistics


- How to model spatially correlated processes
- How to interpolated spatialised measurements

Welcome to the SSMEO course!

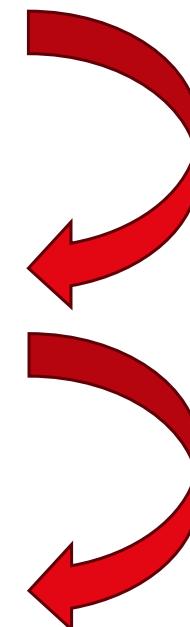
- This translates into three rough big chapters

1. 3D reconstruction from images
 - How to match images acquired by drones / planes
 - How to create a 3D model from there
2. Feature extraction and learning
 - How to extract variables of interest from said them
 - How to build machine learning models to predict environmental targets
3. Geostatistics
 - How to model spatially correlated processes
 - How to interpolated spatialised measurements

Welcome to the SSMEO course!

- The three parts are tightly related, we walk you through the entire processing chain

1. 3D reconstruction from images


- How to match images acquired by drones / planes
- How to create a 3D model from there

2. Feature extraction and learning

- How to extract variables of interest from said them
- How to build machine learning models to predict environmental targets

3. Geostatistics

- How to model spatially correlated processes
- How to interpolated spatialised measurements

You need the 3D model to move to this step

You will extend the AI models with geographical explicit approaches

Some admin about ENV-408

- Core course
- 5 credits ECTS
- 5h / week,
 - ~40% lectures: Thursday afternoon 16h-18h
 - ~60% exercises (mostly Python-based, a bit of R): Friday morning 9h-12h

About the exercises

- Key for understanding the content of the lectures!
- They follow each other, and often you need the result of one as the input to the next!
- Come prepared and be regular!
- Do it yourself & right! (self-control possible)

- No formal evaluation, but they will be part of the first mid-term

About the exercises (2)

- Tools
 - Python programming, Jupiter Notebooks (parts 1 and 2)
 - R for geostat exercices (part 3)
 - Professional photogrammetry/CV software (part 1)
- The TA-s are there to help and we will provide solutions (in data and/or code) before the following week's one.
-

Evaluation

- Mid-term #1: 15%:
 - Evaluate understanding of exercises of part I (images-to-DEM)
 - The mid term requires to have running pipelines from the exercises
 - We will ask you to run your code and answer questions with it
- Mid-term #2: 15%
 - Theoretical about geostatistics (pen and paper!)
- Final exam: 70%
 - Theoretical exam covering all content

Schedule

Week	Date for lecture (Thursday)	Block	Exact topic	Teacher	Hours lecture (Thursday)	Hours exercise (Friday)
1	22.02.2024	Images to Ortho-DEM	Intro	devis	1	
			Image creation	jan	1	3
2	29.02.2024		Keypoint generation & matching	devis	2	3
3	07.03.2024		Orientation absolute	jan	2	3
4	14.03.2024		Orientation relative	jan	2	3
5	21.03.2024		Orthophoto and DEM creation	jan	2	3
6	28.03.2024	Machine learning	Features from a DEM	devis	2	no ex (vacances)
	04.04.2024				EASTER	EASTER
7	11.04.2024		mid-term + intro ML	devis	2	3
8	18.04.2024		Regression with linear models, random forest	devis	2	3
9	25.04.2024		General intro - Structural analysis 1	alexis	2	3
10	02.05.2024	Geostat	Structural analysis 2	alexis	2	3
11	09.05.2024		Kriging - 1	alexis	2	3
12	16.05.2024				Ascension	
13	23.05.2024		mid-term + Kriging - 2	alexis	2	3
14	30.05.2024		Kriging - 3	alexis	2	3

Questions?