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Session 4 Numerical modelling of the atmosphere - 1

We have seen various processes and phenomena taking place in the atmosphere, on 
different spatial and temporal scales.

The coming 2 session focuses on the numerical modelling of those processes in order to 
- predict weather and climate phenomena;
- Interpolate/complement observations.

Main objective: explain key concepts.

We will cover today:
1.The governing equations
2.The numerical solutions

Book:
Warner, “Numerical weather and climate prediction”, 2011 → W2011



  
2

Session 4 Numerical modelling of the atmosphere - 1

There are different types of models 
depending on the atmospheric 
processes of interest and their typical 
spatial and temporal scales

Steyn, 2015

What is a numerical model?

A model is an abstract analogue of the actual phenomena (occurring in the atm)

A numerical model is the numerical implementation of an ensemble of equations assumed 
to represent the way actual physical variables are behaving.
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Session 4 1. Governing equations

Conservation equations

Any atm model is based on a set of conservation principles (all relevant proc. are considered):

Mass: no source or sink, overall mass is constant.

Heat: atm supposed to be in thermodynamic equilibrium (~ideal gas)

Motion: Newton’s 2nd law (                   ) with forces: Coriolis + pressure grad. + gravity + friction

Water: keep track of phase changes and mass fluxes (with source/sink terms)

Gaseous and aerosol material: same as water but for gaseous and aerosol matter...

Those equations are called the primitive equations.
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Session 4 1. Governing equations

Quantity f in a fluid parcel advected with velocity

Conservation equations

Total or material derivative:

Advection operator for a scalar

Advection operator for a vector
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Session 4 1. Governing equations

In mathematical (vector) terms

Conservation equations

Mass:

Heat:

Motion:

Water:

Gas/aerosols:

density [kg m-3]

velocity [m s-1]
pot. temp [kg m-3]

source/sink heat [K s-1]

pressure [Pa]

vector from Earth center [-]

angular vel. [s-1]

mixing ratio water [kg kg-1]

source/sink water [s-1]

mixing ratio gas/aerosol [kg kg-1]

source/sink gas/aerosol [s-1]

friction force / mass [N kg-3]
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Session 4 1. Governing equations

In the equations seen before, 3 characteristic propagation velocities:
sound velocity (acoustic waves), gravity wave velocity and wind velocity

To properly resolve those features, time step must smaller than dx/u (see section 5.2)

If fast wave phenomena are not relevant for our problem (ex: sound waves), we can simplify 
the equations.

Hydrostatic approximation: fluid at rest and pressure gradient = gravity.

Approximations

In hydrostatic atm, no sound waves…

Valid for     , usually on horizontal scales > 10 km
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Session 4 1. Governing equations

The variations in density are neglected except for buoyancy:

Boussinesq approximation

If so, the mass conservation equation leads to

with

Anelastic approximation

The elasticity of the air is neglected, but air still compressible.
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Session 4 1. Governing equations

Horizontal length scale is much greater than the vertical length scale
+ homogeneous, incompressible, hydrostatic fluid.

Mass conservation → vertical velocity scale << horizontal velocity scale.

Motion conservation → ver. pressure gradients ~ hydrostatic
hor. pressure gradients due to displacement of pressure surface

Hor. velocity is constant in the vertical and integrating over the atm column remove ver. vel.

Shallow fluid (or water) equations
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Session 4 Questions

1. What is a numerical model?

2. What are the conservation equations?

3. What is the hydrostatic approximation? 
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Session 4 2. Numerical solutions

No analytical solution to those PDEs → numerical solutions. To do so, we need:

● Discretization of the domain of interest (global / regional for atm).

● Approximation of functions, derivatives, values…

● Initial + boundary conditions

We will see:
1. Numerical methods
2. Spatial grids
3. Vertical coordinates
4. Focus on Finite-difference method
5. Effects of numerical approximations

Primitive equations must be solved numerically
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Session 4 2. Numerical solutions

4 main numerical frameworks to deal with the spatial dependence of the primitive equations

● Finite-difference methods: approximation of derivatives as finite differences.
Pros: simple to implement, computationally less expensive than other approaches.
Cons: not suitable for complex geometry, not always conservative.

● Spectral methods: Fourier or Legendre transform to obtain ODE instead of PDEs
Pros: No non-linear instability, no spatial truncation error.
Cons: spurious signal in the large gradients, computationally more expensive, non-conservative.

● Finite-element methods: local approximation over each element then globally optimized.
Pros: can handle more complex geometry, usually more accurate.
Cons: computationally more expensive.

● Finite-volume methods: integrated value over volume instead of grid point.
Pros: conservative (mass, energy…) by design.
Cons: computationally more expensive.

1. Numerical methods

4 main numerical frameworks to deal with the spatial dependence of the primitive equations

● Finite-difference methods: approximation of derivatives as finite differences.
Pros: simple to implement, computationally less expensive than other approaches.
Cons: not suitable for complex geometry, not always conservative.

● Spectral methods: Fourier or Legendre transform to obtain ODE instead of PDEs
Pros: No non-linear instability, no spatial truncation error.
Cons: spurious signal in the large gradients, computationally more expensive, non-conservative.

● Finite-element methods: local approximation over each element then globally optimized.
Pros: can handle more complex geometry, usually more accurate.
Cons: computationally more expensive.

● Finite-volume methods: integrated value over volume instead of grid point.
Pros: conservative (mass, energy…) by design.
Cons: computationally more expensive.
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The domain of interest must be discretized as a grid (Cartesian, lat-lon, spherical geodesic)

Grid increment (or spacing): time or space step in the grid.
Resolution: capability to distinguish parts or features of an object.
So resolution > grid increment...

Map projections: projection of 3D spherical coordinates on a 2D map. Ex: Mercator, Eckert, 
Lambert…

Conformal projections: the angle of two crossing curves is preserved (at local scales). Area 
is not preserved. Ex: Mercator, Lambert, stereographic.
Relevant for atm modelling (ex: wind direction) over regions with limited distorsion.

Map projection is important for limited-area (regional) models that work on Cartesian grids.

2. Spatial grids
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Session 4 2. Numerical solutions

Examples of projections

W2011, fig3.3
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Horizontal coordinates = latitude and longitude, vertical along radial from Earth’s center.

Grid = increments in latitude and longitude.

Pros: no deformation.

Cons:
- Distances become smaller towards poles
  (requires short time steps → comp. cost)
- Singularities at the poles.

Latitude-longitude grids

W2011, fig3.8
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Reduced grid: longitude increment is not 
constant (larger close to the poles)

Reduce the density of points near the poles
so the computational cost.

But singularities still there...

Latitude-longitude grids

W2011, fig3.18: reduced Gaussian T106 grid
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Geodesic = shortest distance between 2 points on a curved surface.

Spherical geodesic grid = ensemble of spherical, equilateral triangles (edges = geodesics)

Basic pixel shape = triangles or hexagons

Pros:
- Nearly homogeneous density of points over the sphere
- Easy to locally increase resolution (e.g. near mountains)

Cons:
- Pixel indexing is more complicated

Spherical geodesic grids

W2011, fig3.12
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Spherical geodesic grids

W2011, fig3.10
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Nesting grids

W2011, fig3.10

Applications focused on small-scale regions or local processes require higher horizontal 
resolutions that what can be achieved for a global model → domains/grids are nested

Ex: nested domains for COSMO
at MeteoSwiss
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Consistency between vertical and horizontal increments

The physical features of atm phenomena must be properly resolved in the horizontal and the 
vertical to obtain realistic simulations.

→ horizontal and vertical increments cannot be independently set:
where s  = slope of the front (0.005 – 0.02).

This relationship is valid overall
(order of magnitude).

If not properly set, spurious gravity waves
may appear...

W2011, fig3.16
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3. Vertical coordinates

1. Height above sea level

Seems most logical, but issue in complex terrain: altitude contours intersect terrain → 
undefined atm properties at those points…

2. Pressure level

Similar issues to height level, exacerbated because variability of pressure in time…

3. Potential temperature

In adiabatic atm, air parcel remains at same q, and vertical movement related to change in q.
Pros: const res. in q implies better resolution where strong gradients of q.
Cons: same as above in complex terrain + non-adiabatic regions (PBL, phase change)
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Session 4 2. Numerical solutions

W2011, fig3.37
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Session 4 2. Numerical solutions

4. Sigma-p

Terrain-following coordinate: 

constant pressure at top of domain

pressure at surface

pressure at a given location in domain

s follows terrain and is in [0,1]
but varies in time (as P)

W2011, fig3.38

Sigma-z is similar but with altitude ref levels,
does not vary in time.
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5. Hybrid isentropic-sigma

Terrain-following coordinate s in the lower troposphere, isentropic coordinates above 

constant pressure at top of domain

pressure at surface

pressure at a given location in domain

reference pressure as function of
geometric height z
geometric height at interface
between model layers

h or step-mountain coordinates:

W2011, fig3.39
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Session 4 Questions

1. Cite the 3 main types of spatial grids we have seen.

2. Can the vertical increment be set independently of the horizontal one?

3. What is the issue with pressure vertical coordinates in complex terrain? 
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4. Finite-difference methods

Recall that finite-difference methods are easy to implement and computationally cheap...

1. Time-differencing methods

Time-differencing methods can be explicit, implicit or a combination of both

Explicit: left term of prognostic eq → variable at new time,  right term → at previous time(s)

Implicit: variable at new time in both left and right terms → iterative solution

Semi-implicit: some terms are solved explicitly, some implicitly (ex: Krank-Nicolson method)

Explicit scheme: Implicit scheme:

For a given variable f:
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Session 4 2. Numerical solutions

Sankaran, 2019
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2. Space-differencing methods

Similarly to time-differencing, you can have explicit or implicit methods based on grid points.

This is a Eulerian approach (fixed grid in space and time). Various schemes: forward-
upstream, leapfrog, Adams-Bashford...

But this approach requires short time steps for numerical stability so large computational 
costs.

The Lagrangian approach follows the air parcel → total derivative.
Conserved quantity → pure advection

Semi-Lagrangian approach to address Lagrangian deficiencies: after a few iterations parcels 
would be very unevenly distributed in space (following winds). To do so, regularly spaced 
parcels are released at each time step. Not always conservative...
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Session 4 2. Numerical solutions

Tuinenburg HESS (2019)
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Session 4 2. Numerical solutions

3. Grid staggering

Different variables are defined on staggered grids (typically by 0.5 increment).
So derivatives can be estimated on smaller intervals.
→ Gain in resolution + decrease in truncation errors.

Arakawa-C grid-staggering

W2011, fig3.21
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Session 4 2. Numerical solutions

5. Effects of numerical approximations

All the listed numerical methods are based on approximations → errors in obtained solutions

1. Truncation error

Derivatives are approximated by truncated Taylor’s series.

3-point differencing scheme:

→ 2nd-order accuracy approx:
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Example: sine function

Plot shows ratio between approx and true 
value, as a function of number of 
increments per wavelength.

Ratio > 0.9 for n ~ 8-10

So you need ~8-10 increments to properly 
capture the derivative of a wave...

W2011, fig3.22
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2. Time integration

Stability of an (atm) numerical model: whether amplitudes of waves in (numerical) solutions 
grow exponentially because of non-physical reasons.

Advection terms in the conservation equations are the most problematic for stability.

Courant-Friedrichs-Lewy (CFL) linear stability condition:

C = Courant number and Cmax ~1

→ The time step must be small enough so the fastest features are properly approximated.

If model allows sound waves, U ~ 300 ms-1 → strong constraint on the time step!
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3. Diffusion

Diffusion: spatially spread features in heat, moisture and momentum fields.

Due to physical processes (turbulence) but also numerical methods (explicit, implicit, grid)*.

Explicit diffusion: introduced in models to clean up unrealistic features (due to boundary-
conditions noise, computational scheme, energy aliasing).

Implicit diffusion: some numerical schemes selectively filter wavelength bands (ex. Runge-
Kutta). If well controlled, may relax the need to add explicit diffusion.

Grid diffusion: derivative at a given grid point is influenced by neighboring grid points → 
diffusion of properties depending on grid increment and time step, for spatial-differencing 
schemes.

* terminology from W2011
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Session 4 2. Numerical solutions

W2011, fig3.36
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Session 4 Questions

1. Explain the difference between a Eularian and a Lagrangian approach.

2. What are the truncation errors?

3. Why is there diffusion in numerical models? 
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Why all this?

Let’s have a look at the description of the dynamical core of the IFS model given by ECMWF:

“The dynamical core of IFS is hydrostatic, two-time-level, semi-implicit, semi-Lagrangian and 
applies spectral transforms between grid-point space (where the physical parametrizations 
and advection are calculated) and spectral space. In the vertical the model is discretised 
using a finite-element scheme. A reduced Gaussian grid is used in the horizontal.”

https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-dynamics
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Session 4 Summary

1.Governing equ. → Conservation equations (mass, heat, motion, water...)
     → Approximations (hydrostatic, Boussinesq, anelastic, shallow fluid)

2.Numerical sol. → Main types of numerical methods (finite-diff/element/volume, spectral)
                        → Spatial grids (projections, lat-lon, geodesic)
     → Vertical coordinates (height, pressure, potential temp., sigma-p/z)
     → Finite-difference methods (time/space-differencing, grid staggering)
      → Effects of numerical approximations (truncation, time constraint, diff.)

Numerical modelling - 1
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