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1.7 Equation of State forAir

Except when water vapor is neal condensation, air is observed to obey the ideal gas

law. The ideal gas law (1.9) is written in extensive form, since the volume % and

number of moles n, are extensive variables. When applying the ideal gas law to the

aûnosphere, it is convenient to write the equation in terms of intensive variables.

This is accomplished by dividing both sides of (1.9) by mass, m, yieldlng

nS=ftn*r (1.10)

Using the definition of molecular weight, M = m/n, and the definition of specific

Yolume, (1.10) can be written as

(1. l r)

Aspecific gas constant, R, may be defined as R = R*/M, so that (1.11) becomes

ptt = RT (1.r2)

Strictly speaking, air does not have a molecular weight, since it is a mixture of
gases and there is no such thing as an "air molecule." However, it is possible to
assign an apparent molecular weight to air, since air as a mixture is observed to be-

have like an ideal gas. To apply the ideal gas law to the mixture of atmospheric gases,

consider first the mixture of "dry-air" gases, excluding for now the variable constitu-
ent water vapor. To understand the behavior of a mixture of gases, we employ D alton's
Iaw of partial pressures. Dalton's law states that the total pressure exerted by a mix-
ture ofgases is equal to the sum ofthe partial pressures that would be exerted by each

constituent alone if it filled the entire volume at the temperature o-f the mixture. That
is,

'=? 
ot (l'13)

wherep is the total pressure and thep, are the partial pressures.

Dalton's law implies that each gas individually obeys the ideal gas law and that the

ideal gas law (l.12) for a mixture of gases can be written using ( 1 . I 3) as

1.7 Equation of State for Air 19

where we have used o = V/m. We can now define a mean specific gas constant as

R-- ?:'\ (1.14)

The eqrtation of state for the mixture of dry-air gases can therefore be written in

intensive form as

pu = RaT (1. rs)

where R2 is the specific gas constant for dry air. Using Table I ' I and ( 1.14), a value

for R2 is determined to be 287.104 J K-l kg-l. The mean molecular weight of the

mixture is

n't

TRr<

TTpa

(1. l6)

Themeanmolecularweightfordry-air gases,Mo, isdeterminedtobe23.96gmole-l.
The equation of state for air is complicated by the presence of water vapor, which

has a variable amount in the atmosphere (Table I . I ). Assuming that the water vapor

is not near condensation, the ideal gas law may be used and we have

(1.17)

where the notation e is commonly used to denote the partial pressure of water vapor

and the subscript v denotes the vapor. The specific gas constant for water vapor is

Rr= R*IM,= 461.51J K-l kg-l. In amixture of dry air and water vapor (moist air),
the equation of state is

p = pa* , =(paRr+ p,R,)T (1.18)

The subscript d denotes the dry-air value, and the absence of a subscript denotes the

value for the mixture of dry air plus water vapor.

The specific gas constant for moist air is determined from (1.14) to be

^ maRa+ muR,
K=-

flt4* ffl, (r.19)

Dn,M,
ilf=Ln m

n

g = PtRrT

,4 ot=TZmiRi

where rn1 and m, arethemass of dry air and water vapor, respectively, and m = ma* m,
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An intensive variable, the specific humidity, qu, is defined as

Qr=
mv

ï1, * f/14
(1.20)

so that the specific gas constant for moist air can be wriften as

R ={l - qu) Ro+ quRu (1.2r)

Using the definition of the specific gas constant, the specific gas constant for water
vapor, Rv, may be written in terms of R7
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1.8 Equation of State for Seawater

For a one-component fluid such as pure water, density is a function only of tempera-

ture and pressure. Since seawater is a multi-component fluid owing to its dissolved

salts, its density is a function of temperature, pressure, and salinity: p = p(T,p,s)'

Seawater density is observed to increase with increasing pressure and salinity, but

decrease with increasing temperature.

An accepted theory for the density of pure water, analogous to the kinetic theory of
ideal gases, does not exist. Therefore, an empirically-determined equation of state is

used for seawater. An internationally agreed-upon equation of state (UNESCO, 1981)

fits the available ocean density méasurements to high accuracy. This equation has the

form

, p(r,o,s)
p= p(r,p,s)=Tifr,ù (t'27)

where Kr(|s,p) is the mean bulk modulus, which is inversely proportional to the

compressibility (see Section 1.9). Each quantity on the right-hand side of (1.27),

except pressue, is expressed as a-polynomial series in s and ?, expanded about values

for zero salinity and a pressure of 1 bar. The density at the surface pressure (p = 0) is
given by the polynomial form'

(t,22)

where t = M, /M 4 = 18129 = 0.622. The specific gas constant for moist air may then
be written as

^"=#Ra=€-tRa

R = Rah -n"(*- t)] = n, (r +0.608a,) (t.23)

Incorporating (1.23) into (1.18), the equaton of state for moist air becomes

pa=Ro(t +o.oosq")r (1.24)

It is awkward to have a variable gas constant, so it is the convention among meteo-
rologists to make the humidity adjustment to the temperature rather than to the gas
constant. Thus we define a viratal temperature, T,

T,=(l + 0.608 q,) T (1.2s)

so that the ideal gas law for moist air becomes

pa = R1T, (r.26)

The virtual temperature may be interpreted as the temperature of dry air having the
same values of p anda as the moist air under consideration. Since q, seldom exceeds
0.02, the virtual temperature correction rarely exceeds more than 2 or 3oC; however,
it is shown in Chapter 7 that the small virtual temperature correction has an important
effect on buoyancy and hence vertical motions in the atmosphere.

o(f,O,s) = A + Bs + Cs3tz + Ds2

The mean bulk modulus is given by

(1.28)

K r(7, s, p) = n + Fs + G s3D + (a + lt + t fn)r + (u + t't s)rz (t.2e)

The coefficients A, B, ... N in (1 .28) and (i.29) are polynomials up to fifth degree in
, temperature (Table 1.3). In Table 1.3 and (1.27)-(1.29), the temperature is specified

in "C, the pressure in bars, the salinityin psu, and density is m3 kg-t. This equation of
state is accurate to within a standard error of approximately 0,009 kg rn-3 over the

entire oceanic pressure range.

For seawater at standard atmospheric pressure, a contour plot of p is given in Fig-
ure 1.10 as a function of temperature and salinity. Values of constant density

are called isopycnals. Near the freezing point, the density of seawater is relatively

insensitive to tempelature variations and small salinity differences can play a major

role in density variations.
An expression for the temperature of maximum density of seawater, Zo, can be ob-

tained by differentiating with respect to temperature the équation of state for seawater.
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c) On February 3, 1989, sea-level pressure reached a North American record of
1078 hPa. Surface temperature reached a minimum value of 217 K. The verti-
cal temperature profile in the lower atmosphere was nearly isothermal. For an

aircraft flying at a pressure of 850 mb above a surface that is at sea level, esûmate

the error in the altimeter reading that would be made under these conditions.
(Note: The U.S. Federal Aviation Administration banned night and instrument

flights in Fairbanks, AK, because altimeters could not be accurately calibrated to
give altitude readings.)

Chapter 2 The First and Second Laws of
Thermodynamics

The classical physics principle of the conservation of mechanical energy states that while

energJ may manifest itself in a variety of forms (e.g., kinetic energy, graviAtional poæntial

energy), the sum of all difierent forms of energy in any particular sysæm is fixed Energt can

be nansformed from one typeto another, butûotal energy can be neithercreated nordestoyed.

Thermodynamics extends tle principle of conservation of energy to include heat.

T\e first law of thermodynamics arose from a series of experiments first carried

out in the lgth century. These experiments demonstrated that work can be converted

into heat and that the expenditure of a fixed amount of work always produces the

same amount of heat. The first law of thermodynamics places no limitations on the

transformation between heat and work. As long as energy is conserved, these trans-

formation processes do not violate the first law of thermodynamics'

Tlte seiond law of thermodynamics limits both the amount and the direction of

heat transfer. According to the second law, I ) a given amount of heat cannot be

totally converted into work, thus limiting the amount of heat transfer; and 2) the

spontaneous flow of heat must be from a body with a higher temperature to one with

a lower temperature, thus stipulating the direction of heat transfer.

2.1 Work

When a force of magnitude ,% is applied to a mass which consequently moves through

a distance dx, the mechanical work done is

dW =-,%cos? dx (2.1)

where 0 is the angle between the displacement dr and the applied force' Only the

component of the displacement along the force enters the computation of work. There

is no universal sign convention for work, so we adopt the following convention: work

done on a system is positive; work done ày a system is negative. It makes no differ-

ence which convention is adopted as long as it is used consistently.

An important kind of work in thermodynamics is the work systems do when they

expand or contract against an opposing pressure. Expansion work is defined as

35
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dW--.%dx=-pAd.x=-pdV

where Adx = dV is the differenlial volume change associated with the work done
against the external pressure, p. The specific work, rl = Wm, is an intensive variable,
independent of mass, and thus

dw--pda (2.2)

There are numerous examples of expansion work in the atmosphere (Figure 2.1),
wherein a parcel of air rises in the atmosphere and its pressure decreases and volume
increases. Some processes that cause air to rise are:
a) orographic lifting;
b) frontal lifting;
c) lowJevel convergence;
d) buoyant rising of warm air; and
e) mechanical imixing.
Analogous processes occur in the ocean. Work of expansion also occurs in the change
of phase of water from liquid to gas and from liquid to ice.

(a) (b)

warrner
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(d) (e)

Figure 2.1 Rising motion occurs in the atmosphere due to (a) orographic lifting, (b) frontal
lifting, (c) low-level convergence, (d) buoyant rising of warm air, and (e) mechanical mixing.
Expansion work is done by an air parcel when it rises.

For a finite expansion or compression from alto v2, work is determined by inte-

grating (2.2)i

Irtz

*=-l pda Q.3)
JO,

The expansion from al to a2is illustrated in Figure 2.2aby the top curve (A to B).

The work done in this expansion is represented geometrically by the area under the

curve. The area, and thus the work done, depends on the specific path followed

during the expansion. For example, the temperature may remain constant or may

uary iuring the expansion, resulting in different expansion paths. In fact, there is an

infinite number of curves connecting the initial state "l 
to the final state 

"2. 
If the

system is compressed back to a1 via a different process, net work will be done even

ttougir the syitem has returned to its initial state, as indicated by the shaded area

between the two curves in Figure 2.2b.

Cyclical processes have the same initial and final states. A cycle,thetefore, is a

transformation that brings the system back to its initial state. The total work done in

a cyclical process depenàs on the path, and is not necessarily zero. The work done by
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Figure 2.2 (a) The amount of work done in the expansion from a, to zr-, is equal to the area

unàer the curve. In (b), the system is compressed back to o, via a different process. Even

though the system has retumeà to its initial state, net work has been done, as indicated by the

shaded area between the two curves.

blob
of air
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(2.s)
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a system in going from one state to another is a function of the path between the
states. Therefore, generally

The final equilibrium temperature is thus

-, -CzfilzTz+ 
crmtT tt - çtara çtm1

ùo+O

To evaluate (2.3), the path of the expansion must be specified. Therefore, work is not
an exact dffirential since dus cannot be obtained by differentiating a function of the
state of the system alone, knowing only the initial and final states.

2.2 Heat

Heat is an extensive measure of the energy transferred between a system and its sur-
roundings when there is a temperature difference between them. When two systems
are placed in thermal contact, energy flows spontaneously from one system to the
other. This energy flow can occur by various mechanisms, such as the transfer of
vibrational energy between one solid and another whose surfaces are in contact, or
the exchange of electromagnetic radiation. Such a spontaneous movement of energy
is called a heat flow. It can be shown experimentally that if equal masses of water,
one at l00oF and the other at l50oF, are mixed, then the resulting temperature is
midway between the two extremes, or 125oF. If the same mass of warm mercury is
used in place of the warrn mass of water, however, the resulting final temperature is
not midway between the two extremes, but rather I l5'F, indicating that water has a
greater "capacity" for heating than does mercury. That is, it takes more heat to raise
the temperature of a given mass of water by one unit than it does to raise the tempera-
ture of the same mass of rnercury by the same amount.

\Vhen two bodies with different temperatures,.Zl and 72, are brought into contact
with each other, the temperature difference eventually disappears, and the final tem-
perature, T'is intermediate between the two initial temperatures. Experiments show
that this heat transfer is governed by the following formula:

c2m, (T' - T) + clmr(T' - Ir) = 0

where c is the specific heat capacity, which depends on the physical state and chemi-
cal composition of the substance. The amount of beat LQ lost by the warmer body is
equal in magnitude to the amount of heat gained by the cooler body, so that

In differential form, the equation for heat (2.a) is

dQ=rnc dT

The differential dQ is not exact since

dQ+0

To integrate dQ, one must know how the pressure and volume change during the
transformation and if any phase changes occur during the transformation (e.g., gas to
liquid).

Experiments have shown that the specific heat capacity is itself a function of tem-
perature and is defined in terms of the differential heat flow and temperature change

AS

L-
dq

(2.6)
dT

where q= Q/m is the intensive heat.

Heat transfer processes in the atmosphere and ocean include radiation, molecular
conduction, and the release oflatent heat in phase changes (see Chapter 3).

2.3 First Law

The first law of thermodynamics is an extension of the principle of conservation of
mechanical energy. We can use the conservation principle to define a function U
called the internal energy. When an increment of heat dQis added to a system, the
energy may be used either to increase the speed of the molecules (i.e., to increase the
temperature of the system), to create motion internal to each rnolecule (e.g., rotation
and vibration), or to overcome the forces of attraction between the molecules (e.g.,
change of state from liquid to vapor), all of which contribute to the internal energy of
the system. The internal energy of a system can increase when heat enters the system
from the surroundings, and/or when work is done on the system by the surroundings.A,Q = c1m1(Tt-T') = cztflz(T'-Tz) (2.4)
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If we take dU to denote an increment of internal energy, then

dU =dQ+dW (2.7)

This statement is the differential form of the first law of thermodynamics. The inten-
sive differential form of the first law of thermodynamics is written as

du=dq+ ùn (2.8)

' From the law of conservation of energy, the total energy of the system plus its
environment must be constant. That is, the total energy change in the system plus its
environment is zero:

O = L,U 
"r",+ 

LU 
"nu

What happens in a cyclical process?

2.3 First Law 4l

3. If the exact differential is written as d(= Mdx + Ndy,we obtain Euler's

relation:l

AN
?t (2.e)

If an experiment is conducted under conditions of constant volume, the first law of
thermodynam ics (2.7) becomes

dU =dQ (2.10)

since we are allowing only for the possibility of expansion work (dlv = -p dv) and

no other type of work, and since no expansion work is done during a process carried

out at constant volume (dV = 0). The change in heat at constant volume gives us an

experimental measure of ÂU for any process involving the same initial and final states.

lVhat happens when we do an experiment at constant pressure, and no work is

done except expansion work? Consider the changes accompanying a process at con-

stant pressurel

rL,U=Uz-Ur=Qo+W=Qp- pdV = Qp-n(Vz-V) (2.11)

where Qodenotes heating at constant pressure, and no work other than expansion

work is done. We can reiurange (2.1 I ) to obtain

(U2+ pV2)-(Ur+ pV)=Qp

It is convenient to define a new function called the enthalpy, H,by

H =U + pV (2.12)

so that

L,H = Hz-Ht = (U2+ prVr)-(Ur+ prV) = Qp

AMw

In a cyclical process, ÂU

ing energy. Therefore,
.ry.rr(A -+ B -+ A) = 0, since otherwise we would be creat-

0 =Âurrrr(A -+B -+A) = dU

and LU depends only on the initial and final states but not on the path followed be-
tween them. The first law thus states that although dQ and dW are not exact differen-
tials, their sum dU = dQ + dW is an exact differential and thus a thermodynamic state

variable.

An exact differential d(has the following properties:

I. The integral of d(about a closed path is equal to zero $ d€=O).
2. For f(ay), we have dÉ = (AÊnx) dx + (AÇlAy) dy where x andy are independent

variables ofthe system and the subscripts x and,y on the partial derivatives indi-
cate which variable is held constant in the differentiation.

I We depart here from the tradition in thermodynamics where it is customary to.enclose partial derivatives

in parentheses and.append subscripts to denote the variable(s) held constant in the differentiation, e.g.,

àM lày =(àM lây)_. fne subscripts on the partial differential are usually not required mathematically,

and their uà" se*eé-to make the equations unneccessarily cumbersome. In those cases where omitting

subscripts and parentheses may cause confusion, they are retained.
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Since l/ = H (U, p, V ) and U, p, andV are all state functions, H is also a state func-

tion; this is another way of saying that dH is an exact differential. In differential
form,

dH =dU + p dV +V dp=dgaY 6, (2.13)

and in intensive form

dh=dq+u dp (2.14)

where à = H/m. From (2.14), it is clear that when we allow an expansion at constant

pressure (dp = O), we obtain an experimental measure of a state property, enthalpy.

Equations (2.13) and (2.14) are equivalent forms of the first law of thermodynamics
to (2.7) and (2.8). The enthalpy form of the first law is advantageous when consider-

ing constant-pressure processes.

Since z and h are state functions, we can write

u=u(p,a,T)=u(zt,T)
h=h(p,a,T)=h(p,T)

Although u and h are functions of three variables (p, a, T), an equation of state allows
us to eliminate one of the three variables. Since u and h are exact differentials, we can

expand du and dft as follows:

(2.15a)

(2.1sb)

where c, and co are defined, respectively, asthe specffic heat at constant volume and

the specific heat at constant pressure. We may thus write

where qoand qrrefer to constant-volume and constant-pressure heating, respectively
From the defiriition of specific heat (2.6), we can write

dq, àu""- dr - aT

du=c,ar +(fr),a"

dh=coar +(!*),an

For an ideal gas, it has been shown experimentally that (àu/ào)r = 0, so that inter-
nal energy is a function only of temperature for an ideal gas, i.e., u : a(T). It can also

be shown that(àh/àùr = 0 and h = h(T). This implies that for ideal gases

and
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(2.16)

d4p

dT
cp= ah

AT

du = crdT
dh = codT

*=(#)n *(ft)a,

*=(#)*.(#)*

At constant volume da =0 and du = dqa,which leads to

a"=(fu)ar =aq,

In a constant-pressure process, dp = 0, and

How does c, differ frorn co quantitatively? In a constant-pressure process, some

of the added heat must be expended in doing work on the surroundings, while in a
constant-volume process, all of the heat is devoted to raising the temperature of the
substance. Therefore it takes more heat per unit temperature rise at constant pressure

than at constant volume, and co> cr. The difference between coand co canbe evalu-
ated from

ep-co = (#),-(#).

Using the definition of enthalpy, h= u * p7), we can write

àu

),* o(#),an=(ffi)ar=aqo cp-co = àT
àu
AT a

(2.17a)
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Expanding the differential du(o,T) as

a"=(fu),ar.(*),*

and dividing by dT while requiring constant pressure, we obtain

(2.t7b)

For an ideal gas, (àu/àa) =0 and p(àalàDp= R, so (2.17b) can be evaluated to be

CO-Co=R (2.17c)

where R is the specific gas constant. Hence for an ideal gas, the magnitude of the

difference between the two specific heat capacities is simply the specific gas constant.

2.4 Applications of the First Law to Ideal Gases

We now apply the first law of thermodynamics to ideal gases, which is useful in the

interpretation of thermodynamic processes in the atmosphere. The thermodynamic
characteristics of an ideal gas have been shown to be:

l. Theequation of state is pa = RT
2. The internal energy is a function of its temperature alone

(du = codT; dh = codT).
3. The specific heats are related by cp- ca = R.

The first law of thermodynamics for an ideal gas is thus written as

codT -- dq- pda

codT=dq+odp

in internal energy (2. I 8a) and enthalpy (2. I 8b) forms.

(2. I 8a)
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Consider the isothermal (dT = 0) expansion of an ideal gas. Because internal

energy is a function only of temperature, the internal energy of the gas is unchanged

in an isothermal expansion. The first law of thermodynamics (2. l8a) for an isother-

mal expansion may therefore be written as

dq= pdzt

assuming that the only work done is expansion work. In the isothermal expansion of
an ideal gas, the system does work, and the energy from this work comes from the

environment and enters the system as heat. Since work is not an exact differential, we

cannot integrate the right-hand side of the equation until we specify a path' As seen

from Figure 2.2b,an infinite number of paths can be specified. Here we consider the

path of an isothermal reversible expansion. Areversible path is one connecting inter-

mediate states, all of which are equilibrium states. Exact conditions for reversible

processes and how they differ from irreversible processes are described in Section

2.5. For now, we consider a reversible path where the equation of state is exactly

satisfied during all stages of the expansion. Therefore, p may be evaluated using the

ideal gas law, and the equation becomes

Inte$ating from u1 to zr2 yields

We can now write (2.17a) as

(#),=(#)". (#),(#),

cp- co=(Y),(#),. ,(#),

da
a=RTdq

Lq=Rr'"(i) =Rr-(u)

The solution states, for example, that the amount of heat required to expand a gas

from 106 Pa to 105 Pa is the same as that required to expand from lQ) Pa to 104 Pa.

For a constant-volume process (dzt = O), the first law (2.18a) may be written as

dqdu

From the definition of internal energy for an ideal gas, du = codT, the amount of heat

required to raise the temperature of the gas from Trto T2at constant volume is

Lq = ,o (Tz- Tr)

For a constant-pressure process (dp = O), it is advgntageous to use the first law in
enthalpy form (2.18b), so that the first law for a constant-pressure process becomes

(2. l 8b)
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dh= dq

From the definition of enthalpy for an ideal gas, dh = cpdT, the amount of heat re-

quired to raise the temperature ofthe gas from T1 to T2 at constant prefsure is

Lq=cp(rr-rr)

The constant-volume and constant-pressure results may be anticipated from the defi-

nitions of specific heat in Section 2.3.

An adiabatic process is one in which no heat is exchangedbetween the system and

its environment, so that dq= O. The first law for a reversible adiabatic process may

thus be written as

du=dut

An adiabatic compression increases the internal energy of the system. The first law

(2.18a,b) for an adiabatic expansion ofan ideal gas is thus written
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process (adiabatic compression), work is done on the gas and the temperature ln-

"r"ur"r. 
Using the ideal gas law and the relationship co- co = R, we may write (2'20)

in the following equivalent forms:

l,=(l)"'''

T2 [ pz\*/'n

-= 

l-l

Tt \hJ

(2.21)

(2.22)

Considering a reversible adiabatic expansion for an ideal gas' we have from (2.19a)

and the equation of state ( 1 . 1 2)

Equations (2.2O), (2.21), and (2.22) are commonly referred to as Poisson's equations.

It is noted here that (2.22) may also be derived directly by starting from the enthalpy

form of the first law (2.19b).

Figure 2.3 compares an isothermal expansion with a reversible adiabatic expan-

sion àn a p,V diagram. It is seen that a given pressure decrease produces a smaller

volume increase in the adiabatic case relative to the isothermal case, because the

temperature also decreases during the adiabatic expansion.

Isothermal

Adiâbatic

LYa L\* v ---)
Figure 23 tsothermal expansion compared with a reversible adiabatic expansion. For a given

arop in pressure, LViro> LVa4, since during the adiabatic expansion, the temperature also

decreases.

codT=-pdzt

codT =adp

(2.19a)

(2.tgb)

1
p

I
p2

,,#=_R+

which may be integrated between an initial and final state (assuming that c, is con-

stant) to give

,,^(?)=-*'"(A)

so that

7=(l)-^'
(2.2O)

During an adiabatic expansion of a gas, the temperature decreases. In the reverse
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P, T,

Qvt
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2.5 Entropy

Before discussing entropy, we first consider the difference between reversible and

irreversible processes. In all thermodynamic processes, the changes that occur in the

environment must be considered in conjunction with the changes that occur in the

thermodynamic system. A reversible process is one in which the system is in an

equilibrium state throughout the process. Thus the system passes at an infinitesimal
rate through a continuous succession of balanced states that are infinitesimally differ-

ent from each other. In such a scenario, the process can be reversed, and the system

and its environment will return to the initial state. Irreversible processeJ proceed at

finite rates: if the system is restored to its initial state, the environment will have

changed from its initial state. The term "irreversible" does not mean that a system

cannot return to its original state, but that the system plus its environment cannot be

thus restored.
A comparison between reversible and irreversible atmospheric processes is illus-

trated in Figure 2.4. If a mass of moist air rises adiabatically and then descends

adiabatically to the initial pressure level, the final temperature and mixing ratio of the

air will be equal to the initial values and the process is thus reversible. However, if
clouds form during the ascent and some of the cloud water rains out, then the air mass

when brought down to the initial pressure will have a higher temperature and lower
specific humidity than the initial valubs. Precipitation is an example of an irrevers-

ible process. If the rain falls to the ground and does not evaporate in the sub-cloud

layer, then the total water content of the atmosphere decreases irreversibly and the

temperature of the atmosphere increases irreversibly.
Consider the first law of thermodynamics in enthalpy form (2.l8b) for a reversible

process:

dq = cpdr -adP

Reversible heating is an abstract concept, whereby heating ofa system occurs infini-
tesimally slowly through contact with an infinite heat reservoir. For the reversible

expansion of an ideal gas, we may substitute for the specific volume from the equa-

tion of state and divide by temperature

dq
T = ,r#-R+ = cpd.(tnr)-naln p) (2.23)

The two terms on the right-hand side of (2.23) are by definition exact differentials,
and their sum must also be an exact differential. Therefore dq/T is an exact differen-
tial, i.e.,

(b)

Figure 2.4 Comparison of a reversible and an irreversible process in the atmosphere. In (a),

mùst air initially at pressure pr, and having temperature 1, and specific humidity 4",' risgs

adiabatically to the top ofa mountain. It then descends adiabatically on the other side to the

initial pressure. Because the process of passing over the mountain was done reversibly and

adiabaiically, the temperature and specific humidity are restored to their inital values, and the

process is thus reversible. In (b), clouds form as the mass of moist air rises, and some of the

àloud water rains out. When the mass of air descends on the other side to its initial pressure, its

specific humidity is lower and its temperature is higher than the original values, and the pro-

càss is thus irreversible: the total water content of the atmosphere decreases irreversibly and

the atmosphere is warmed irreversibly.

$(+) -.= ' (z'24)

where the subscript rev emphasizes that this relationship holds only for a reversible

process. Dividing heat by temperature converts the inexact differential dq into an

exact differential. We can now define a new thermodynamic state function, the en'

ffopy, n,with units J K-l kg-I, to be

(a)
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(2.25a)

It is important to remember that entropy is defined so that the change in entropy from
one state to another is associated with a reversible process connecting the two states.

When a change in entropy between two given states occurs via an irreversible
process, the change in entropy is exactly the same as for a reversible process: this is
because entropy is a state variable and d4 is an exact differential, which means that
integration of d4 does not depend on the path of integration. Although the change in
entropy is exactly the same for reversible and irreversible processes that have the

same initial and final states, the integral of dq/T is not the same for reversible and

irreversible processes. In fact,

2.5 Entropy 5l

Figure 2.5 Expansion ofan ideal gas illustrating the relationship between entropy and prob-

ability. Inirially, four molecules of the gas are placed in the left bulb, and the right bulb is

empty. When the stopcock is opened, the volume doubles, and the molecules are distributed

between the left bulb and the rig-ht bulb. In this process, the number of possible configurations

of molecules, and hence the entropy of the system, has increased.

As introduced above, entropy has arisen from purely mathematical considerations.

Entropy can be interpreted physically in the context of statistical mechanics. The

relationship between entropy and probabilities is illustrated using a simple example.

Consider the ideal gas expansion shown in Figure 2.5. Two isolated bulbs, each of
volume % are connected by a stopcock. Initially, four molecules of the gas are placed

in the left bulb, and the right bulb is empty. The stopcock is opened and the volume

doubles (this is an example of an irreversible adiabatic expansion). The change in

entropy from the intial (init) to final (fn) state is

dq
Tdr7

rey

where the subscript irrev indicates an irreversible process. This suggests that to ac-

complish a given change in entropy (or state) by an irreversible process, more heat is
required than when a reversible process is involved. This implies that reversible
processes are more efficient than irreversible processes

Entropy changes for an ideal gas in a reversible process can be determined from
(2.18a) and(2.25a):

L'r1>
l[+),,_"

dq = co d$nr) + Rd(lno)

or alternatively from (2.1 8b) and (2.25a):

dn=cpa(tnr)-Rd(tn p)

The entropy change for isobaric heating is thus

Ln=cp'"(*)

and for isothermal processes

(2.zsb)

(2.26a)

(2.26b)

Ln = Nk^(*)

where N is the number of molecules and k is the Boltzmann constant (gas constant per

molecule). Since N = 4 and (Vli,r lVin) = 2, we may write

Ln=4kln2=klnTa

The entropy change is thus proportional toln2a = ln 16.

In the final state, the molecules are distributed between the left bulb and the right
bulb. Table 2. I lists the numbers and probabilities of the possible configurations of
the final distribution of molecules. There are 16 ways of arranging the fourmol-
ecules between the two bulbs in the final state. There is only one configuration for
the inirial srare: all four molecules in the left bulb. The ratio of the final to the initial
probability, P,,/Pi,rit and the final to the initial number of possible configurations,

Cln/Ci17;1 are

Prtn 
=crt'=16=2aP,nr, C irnÂ4=R'"(i) =*'"(f)
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Tâble 2.1 Ways of arranging four molecules in two bulbs of equal volume.

# in left bulb # in right bulb # of ways to achieve
configuration, C

2.6 Second Law 53

which is known as Clausius' inequality. For a reversible process we cannot have

L1ror) 0, Since we would have Â4ror< 0 upon reversing the process, which would

uioiâte clausius' inequality' Therefore, L4nt= 0 for all reversible changes' For the

special case of a revèrsible adiabatic process' the entropy change is zero in the sys-

tàm, Â4rn", = 0. Reversible adiabatic processes are therefore isentropic. Using the

def,rnitiori of entropy in (2.25), we may write Clausius' inequality as4
3

2
I
0

0
I

2
3

4

I
4
6
4
I
l6

Probability of the

configuration, P

1t16
4n6
6n6
4n6
vt6

ITotal: {+,'

d4,o,=(#)*^.(*)*'

(2.27)

(2.28)

This suggests that we can associate entropies with probabilities, or numbers of pos-
sible configurations.

The equilibrium state of the four molecules distributed in two bulbs is more ran-
dom than four molecules in one bulb, since we are less definite about the location of
the molecules in the more random (or disordered) state. More rigorous developments
of this relationship can be done in the cpntext of quantum mechanics. However, the
present example suffices to associate entropy with randomness. The natural path of
all processes is from order to randomness. Entropy in an isolated system will tend to
increase as the probability spreads out over the possible states and the system ap-
proaches equilibrium.

2.6 Second Law

The second law of therrnodynamics forbids certain processes, even some in which
energy is conserved. The second law of thermodynamics may be stated in several
different ways, which appear to be different in content but can be shown to be logi-
cally equivalent.

The entropy statement of the second law is:

There exists an additive function of state known as the equilibrium entropy, which
can never decrease in a thermally isolated system.

In other words, a thermally isolated system cannot spontaneously regain order which
has been lost. The second law may be applied to a system and its surroundings to
determine the total entropy change Lt1r,

where the equal sign holds for a completely reversible process.

The temperature or Clausius statement of the second law is:

No process exists in which heat is transferredfrom a colder body to a less cold

boày white the constraints on the bodies and the state of the rest of the world are

unchanged.

A quantitative statement of this principle in terms of entropy can be made as follows'

Consider a process that transfers heat between two bodies A and B,leaving the sur-

roundings and the constraints on the bodies unchanged. After a small heat transfer,

dern = drlo+ dr1,

This can be expanded for a constant-volume process as

If the heat transfer is denoted by dqo - duA = - du, we have

àno èn,
\rot = Ar^- Art dqo2 O

We now define a quantity, T,the absolute thermodynamic temperature, as

1 _àn
T-àu

Lrlro,> o We may therefore write (2.28) in terms of 7 as
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(2.2e)

This equation shows that dqocannot be positive if llTB> llTA. It follows that the

thermodynamic temperature alone determines the direction of heat transfer between

bodies and that the heat transfer proceeds from warm to cold' The absolute thermo-

dynamic temperature can be shown to be proportional to the gas scale temperature

(Section 1.5) by evaluating the entropy change ofan ideal gas over a cyclic process.

Equality between these two temperatures is achieved by choosing the value 273.15 K
for the reference state (the Kelvin scale).

The third statement of the second law is the heat engine or Kelvin statement. This

statement derives its name from the problem that originally stimulated the formula-

tion of the second law: the efficiency of a heat engine, a device that turns heat ab-

stracted from a heat source into work. The heat engine statement of the second law is:

No process exists in which heat is extractedfrom a source at a single tempera'

ture and converted entirely into useful work, leaving the rest of the world un-

changed.

This statement tells us that a heat 
"ngine 

cannot have an efficiency of lOOVo. Part of
the heat absorbed must be rejected ù a heat sink. The second law implies a certain

degree of unavailability of heat for the production of work. If all of the heat were

converted into work, the total entropy would decrease, which is not physically pos-

sible.
The simplest possible heat engine is a device which works in a cycle, and in one

cycle takes heat q, from a source at a high temperature 71, converts part of the heat

,into useful work, t , and rejects waste hbat Q2to aheatsink at a lower temperature T2.

Such a syftem isthe Carnot engine illustrated in Figure 2.6. From the csnservation of
energy, w = 4t- qz.h" total entropy change is
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4.2

2.7 Equitibrium and the Combined First and Second Laws

By using the first and second laws of thermodynamics in combination, we can derive

some important results that apply to energy and entropy in the atmosphere and ocean.

For any reversible process with expansion work only, we can write the first law as

(2.30a)

The engine is at its highest efficiency when 42is as small as possible, which is whenever

the cycle is reversible. For a reversible Carnot engine, we have

Figure 2.6 Carnot heat engine. Heat q' is brought from the hot reservoir to the engine. The

engine does work æ and rejects heat 4" into the cold reservoir.

4' =I" nd s = t -* (2.30b)qr= \, 
LÎln,t=o, 

r I

Thus, the efficiency of a reversible Carnot heat engine depends only on the source

and sink temperatures.

2 The First and Second Laws of Thermodynamics

(+-+)dqo 2 o

L4tot = L4, + A,r7, = -* *
Tl

ql

w

4z
4t

7t)

4r
a

4z

T2
>0

This equation may be written as a condition on waste heat qr:

T"
4z> t'ar

The efficiency E of ttr- heat engine is defined as the ratio between the useful work of
the engine compared to the heat input. That is,

Cold Reservoir at It

Engine

Hot Reservoir at fl
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du = dqrrr- Pda

Since dqr"r= Tdq from (2-25a)' this becomes

du=TdIl- pd7) (2.31)

The natural independent variables for internal energy are entropy and volume. If the

enthalpy form of the first law is used, (2'14), we have

dh=Tdq +adp (2.32)

The natural independent variables for enthalpy are entropy and pressure.

For many applications in the atmosphere and ocean, it is useful to define a new

state function whose natural independent variables are temperature and pressure. The

Gibbs energy, g, is defined as

g = u-Tn+ Pa = h-Tr1 (2.33)

or in extensive form

G=H -T?1

where(l = mllis used to denote extensive entropy and G = mg isthe extensive Gibbs

energy. In differential form we have

dg =- r7 dT +adP (2.34)

The natural independent variables ofthe Gibbs energy are temperature and pressure.

The final basic thermodynamic relationship we consider here is the Helmholtz

energy, a, defined as

a= u -T4 (2.3s)

and in differential form

da--ndT-pda (2.36)

The extensive form of the Helmholtz energy is -4 = ma. The,natural independent

variables of the Helmholtz energy are temperature and volume.
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Equarions (2,31), (2.32), (2.34) and (2.36) are all equivalent forms of the com-

bined first and second laws. The particular form one uses is guided by the specific

application.
Consider the following statement of the combined first and second laws (2.31 ):

du=Tdn- pda

Equilibrium is a state of balance between a system and its environment, in which

small variations in the system will not lead to a general change in its properties, and

the system remains constant with time. In a process that occurs at constant entropy

and constant volume, the change in internal energy will be zero. In such a process,

the equilibrium state is thus specified for that state for which du = 0. It can be shown

that under conditions of constant 11 anda that d2u > 0, which says that intemal energy

is a minimum at equilibrium. Under conditions of constant internal energy and vol-

ume, the same version of the first and second laws combined shows that equilibrium

is reached when d4 = 0. It can also be shown that under conditions of constant a and

a that d2n < 0, which states that entropy is a maximum at equilibrium. The drive of

thermodynamic systems toward equilibrium is thus a result of two factors' One is the

tendency toward minimum energy. The other is the tendency towards maximum

"nt 
opy. only if a is held constant can 4 achieve its maximum; only if 4 is held

constant can a achieve its minimum.

Since processes are rarely studied under conditions of constant entropy or constant

energy, it is desirable to obtain criteria for thermodynamic equilibrium under practical

conditions such as constant pressure. The four alternative statements of the combined

firsr and second laws: (2.31), (2.32), (2.34), and (2.36)' can be used to establish equi-

librium criteria under different conditions. Under conditions of constant h and p,

equilibrium is reached lor dh = 0. Under conditions of constant T and p, equilibrium

is specified for the condition & = 0' The thermodynamic equilibrium conditions are

thus summarized as

At constant 4, ?r:

At constant 4, p:

At constant I "i
At constant I p:

du=0,
dh=0,
da=0,
ds-0,

dzu>O
d2h>o
d2a> 0
d2g>o

2.8 Calculation of Thermodynamic Relations

By manipulating the basic thermodynamic equations, we can derive relationships

among the thermodynamic variables and thus avoid many difficult laboratory experi-

ments by reducing the body of thermodynamic data to relations in terms of readily

measurable functions. The convenience of these relationships will also become ap-

parent through the simplicity introduced into many derivations.
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Consider the basic thermodynamic relations (2.31), (2-32), (2.34), and (2.36):

du = Tdq-pda
dh = Tdq+adp
la = _r1dT-pdo
ds = -r\dT +adP

If we set the left-hand sides of these equations equal to zero, we obtain
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If we compare (2.41)-(2.44) with (2.31), (2.32), (2.34), and (2.36) and equate coeffi-

cients, we obtain

(*),=-,

(#),="

(#),=- o

(H),=.

(#).=,

(#),=,

(#).=-,

(#),=-,

(2.4s)

(2.46)

(2.47)

(2.48)

(2.s0)

(2.s r )

(2.s2)

/ôn\ p
\do)u T

(H)^=-+

/ôa\ n
lar),=-v

(#),=-+

o,=(#),0".(rr),0,

an=(fr),ar.(#),0,

a"=(fr),a, .(ffi),ar

*=(H),".(#),*

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

Since da, dh, da, and dg are exact differentials, they obey the Euler condition (2.9).

Therefore from (2.31), (2.32), (2.34) and (2.36) we obtain the following set of useful

relations called Maxwell's equations:

(2.4e)AT
Aa )n = ),

ôp
anWe can write expressions for the four functions in functional form as

u= u (n,o)
n=h(n,p)
a= a (T,u)
g=g(T,p)

In differential form the fuitctions can also be written as

(#),=(#),

(#).=(#),

(#),=-(#),

2.9 HeatCapacity

In this section we determine values of the specific heats for air and seawater. The heat

capacities of ideal gases and crystalline solids can be determined theoretically by

applications of statistical thermodynamics; however, there is not a generally accepted

theory for the specific heat of liquids. Here we investigate theoretically the specific

heat of ideal gases and describe empirically the specific heat of seawater.

Values of crand crcanbe determined for an ideal gas by considering the mechanical

degrees of frédom and the equipartition of energy. A mechanical degree offreedom

(2.44)
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refers to an independent mode of motion (a translation, rotation, or vibration) of the

molecule in one of three mutually independent directions in space. The total number

of degrees of freedom of a mechanical system is equal to the number of variables

required to specify the motion of the system. For example, a mass point (e.g.' a

monatomic molecule) has three degrees of freedom, for motion in each of the x, y, and

Z directions. For a mechanical system with more than one mass point (e.g., a diatomic

or triatomic molecule), additional degrees of freedom arise from rotational and vibra-

tional motions (Figure 2.7). An N-atomic molecule has 3N degrees of
freedom:

Nonlinearmolecule Linearmolecule
Translation
Rotation
Vibration

-t -1

2

3N-5
3

Recall from elementary kinetic theory (Section 1.6) that the average molecular

kinetic energy ofan ideal gas is given by

2.9Hleat Capacity 6t

Figure 2.7 lllustration of molecular translational, rotational, and vibrational motions.

have temperature-dependent heat capacities; further, at low temperatures all heat ca-

pacities (except for helium) are much lower than the value predicted above. This

discrepancy was resolved by the development of quantum mechanics. The contribu-

tion of both the rotational and vibrational degrees of freedom to the heat capacity

depends on the extent to which the excited vibrational and rotational states are popu-

lated for a particular gas, which depends on temperature. The rotationally excited states

of the gases in the Earth's atmosphere are fully populated at Earth temperatures, while

63N

I2=]nRxT

This suggests that for one mole of a monatomic gas, we can associate (112)R*T ther-

mal energy per mole with each translational degree of freedom. In the case of a more

complex molecule, the energy is shared by rotational and vibrational degrees of free-

dom, rotational modes associated with (l/2)R*7" per mole, and vibrational modes

associated with R*7per mole. Thus the total energy is equally divided among the

translational, rotational, and vibrational degrees of freedom. This is called the

equipartition of energy. The heat capacity of an ideal gas can in principle be deter-

mined by summing the contributions to the thermal energy for each of the mechanical

degrees of freedom.
The specific heat capacity at constant volume for ideal gases can be determined

from the equipartition of energy law to be

co = (ln)n 7or a monatomic gas

co = (ln)n 7or a diatomic gas

co = 6R for a nonlineartriatomic gas

where R is the specific gas constant. The equipartition of energy predicts a heat

capacity that is independent of temperature. Real diatomic and polyatomic molecules
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the Earth is too cold for the vibrationally excited states to be significantly populated.

Thus the heat capacity of the major gases in the Earth's atmosphere do not have a

contribution from the vibrational modes and are essentially invariant'with tempera-

ture. The heat capacity of water vapor shows a weak temperature dependence, asso-

ciated with weak population of excited vibrational states.

For the major atmospheric gases at typical Earth temperatures, the specific heat

capacities at constant volume have been determined to be

c" = (ln)n 7or a monatomic gas

c"=(sn)n for a diatomic gas

ca=3R for anonlinearffiatomic gas

Since co = ca + R, we also have

c o = (Sn)n 7or a monatomic gas

c o = (l n)n 7or a diatomic gas

c p = 4R for nonlinear triatomic gas

Air is composed of 98.6Vo diatomic gases, and thus the values of co and co for air can

be estimated tobe7l'1.76 J K-l kg:l and 1004.86 J K-l kgl, respectively.

Specific heat capacities of liquids and solids depend on temperature, and are fre-
quently expressed by a polynomial expression with empirically determined coeffi-
cients. Heatcapacities ofliquids are generally greaterthan those ofsolids and gases.

The specific heat of pure water at surface pressure has been determined empirically to

be (Millero et al., 1973)

-10 0 l0 20

Temperature (oC)

30 40

Figure 2.8 Relationship between specific heat, temperature, and salinity for p = 6. At high

salinities, the specific heat increases with increasing temperature.,

cp(40, 40,0) = 3981 .050 J kgl K-l . For pure water, the specific heat decreases with

increasing temperature. The same effect is observed in seawater with low salinities

and low temperatures (Figure 2.8). If the salinity exceeds 25 psu, the temperature

effect is reversed and co increases with increasing temperature. This reversal in sign

occurs at lower temperatures for increases in salinity, The specific heat decreases

with increasing salinity.
The variation of specific heat with pressure can be derived as follows. V/e begin

with the definition of specific heat (2. l5b):

60

50

40

à30

q
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20

l0

0

where co is in J kg:l 1ç-1, T is in oC, and p = 0. The influence of salinity is accounted

for by

c o(O,f ,O) = 4217.4 - 3.72083 T + 0.1412855 T:

- 2.654387 x 104 T3 + 2.093236x 10-s T4

co(s,7,0) =cr(O,T,O) + s (-7.6M+0.1M2767- 1.3839x rc1Tz)

q s3/z 10.'t7 7 09 - 4.077 2 x r 0-3 r+ 5.3539 x lo-s T")

(2.s3)

(2.s4)

4197

3913

3971

4225

3857 3886

4055

4027

3942

4084

411

4141

4169

where s is in psu and p - 0. Applications of the formula can be checked against ,r=# =r(#) (2.s5)
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Substituting (2.31) into (2.55), we have

,o=#. r(#)

Tâking the derivative of (2.3 I ) with respect to pressure gives
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(2.s8)

which is determined easily from observations of temperature and specific volume'
The difference cp- ca for seawater can be evaluated in the following way. Since

entropy is an exact differential, we may write

Subtracting the pressure derivative of (2.56) from the temperature derivative of
(2.57) and using Maxwell's relation (2.52) gives the desired result

Using (2.51) we can write

*=-,(#)

rdn=r(Ê+).* *r(#),0'

Dividing by dZ while holding p constant, we find that

, (#),=, (#) .., (#),(#),

From (2.55), we see that co= T(à4tàT)n Since co = T(èr7tà7)", we have from (2.59)

cp=co-.(g)(#)

(2.60)

Hence the value of cp - co is easily obtained from (2.60) by measuring the com-
pressibility (l.3lb) and the thermal expansion coefficient (l.3la). Because of the

near incompressibility of water, there is very little difference in the values of co and

cr. It can be shown from (2.60) that the ratio cnlco for seawater at a salinity of 34.85

psu varies between I .004 at OoC and 1.0207 at 30oC. Thus, a distinction is commonly
not made between the specific heats at constant pressure and volume for seawater.

2.10 Dry Adiabatic Processes in the Atmosphere

In Section 2.4, the following relationship between pressure and temperature was de-

rived for a reversible adiabatic process for an ideal gas:

+=(3)-'" (2.61)

The lifting of air parcels by processes such as orographic lifting, frontal lifting, low-
level convergence, and vertical mixing causes pressure to decrease, with a corre-

sponding temperature decrease that is specified by (2.61). The lifting of air parcels

can be considered a dry adiabatic process as long as condensation does not occur.
If we choose po = 1000 mb to correspond to a temperature e, Q.61) becomes

'=,(3)*'"
(2.62)

where R/co for dry air is evaluated to be

4H)=#.,(#)

(2.s6)

(2.s7)

cp- c,=-r(H) (#)'

R= R ==R =2=o.286cp cu+R |n+n 7 -'---

(2.s9)

The temperature 0 is called the potential temperatare. It is the temperature a sample
of gas would have if it were compressed (or expanded) in an adiabatic reversible
process from a given state, p and I, to a pressure of I 000 mb. Since 0 is a function of
two variables of state (p and T), it is itself a variable of state. 0 is thus a characteristic
of the gas sample and is invariant during a reversible adiabatic process. Such a quan-
tity is called a conservative quantity. Because it is conserved for reversible adiabatic

)(#)cp=ca*T àp
AT

Using the chain rule for differentiation, we can write (àp/à7) = - (àp/ào) x @a/àT)
and thus
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processes in the atmosphere, 0is a useful parameter in atmospheric thermodynamics.

Potential temperature and other conserved variables will be used throughout the text

to simplify the thermodynamic equations and in the context describing air and water

mass characteristics.
Consider an atmospheric temperature profile with a lapse rate I. = 6oC km-l. For

atmospheric pressures less than 1000 mb, the potential temperature of a sample of air
is greater than the physical temperature since adiabatic compression must be done to

lower the parcel to 1000 mb. Conversely, the potential temperature of a sample of air
with pressure greater than 10fi) mb -will be less than the physical temperature. At a
pressure level of 1000 mb, I = 7-

A relationship between entropy and potential temperature for the atmosphere is

derived by logarithmically differen tiating (2.62):
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water vapor dependence of the exponent of (2.67a) and replacing the temperature by

the virtual temperature

a(tne)=a(tnr)-fta!"p1 (2.63)

Comparing (2.63) with (2.23) shows that

dn=cpa$ne) Q.64)

This means that for reversible processes in an ideal gas, potential temperature may be

considered an alternative variable for entropy.
Equation (2.62) does not account for water vapor: The specific heat of moist air is

co= (1 -q,)cpa + e,cp,= cp,t(l+0.87q,) Q'65)

where the subscripts d and v refer to dry air and water vapor, respectively. The ratio
R/crfor moist air can then be determined using (l.23) to be

(2.67b)

If we consider the adiabatic ascent of a parcel of air in the atmosphere, the tem-

perature of the parcel will decrease and the potential temperature will remain the

same. The rate of decrease of temperature with height in an adiabatic ascent can be

determined by considering the first law in enthalpy form for an adiabatic process (2. I 9b):

codT =odp

Ifwe assume that the ascent ofthe parcel does not involve any large vertical accelera-

tions and the hydrostatic relation applies, we can substitute the hydrostatic relation

into (2.19b) to give

crdT=-gdz

Recalling that the definition of lapse rate is f = -dT/dz, we can write an expression

for the dry adiabatic lapse rate,Td, as

0,=r,(#)^'''

ro=*

c
' = ,*1t *run1

(2.68)

R=R,
cp cprt

The potential temperature of moist air then becomes

(2.67a)

The difference between the dry-air and moist-air values of 0 is generally less than

0.1 oC, so that adiabatic expansion or compression of moist air can be treated as if it
were dry air. Note that 0 is not conserved if a phase change of water occurs (see

Section 6.7). We can also define avirtual potential temperature, 0,,by neglecting the

which has a value of approximately 9.8"C km-I. Both (2.62) and (2.68) describe the

temperature evolution of a parcel of air in dry adiabatic ascent, but (2.68) is slightly
more restrictive than (2.62) in that it applies only to a hydrostatic process. The adia-

batic lapse rate for moist air differs only slightly from (2.68) and can be expressed as(-ffi)=XQ-ozoq,) (2.66)

Po
pe=r( r,oo.26q u)(rR4

Outside of clouds, diabatic processes such as radiative heating operate on much
longer timescales than the characteristic time scale of vertical displacement of the air
parcel. Therefore, the lifting of air parcels by processes.such as orographic lifting,
frontal lifting, low-level convergence, and vertical mixing can be considered drj' adia-

batic processes as long as condensation does not occur.


