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1.7 Equation of State for Air

Except when water vapor is near condensation, air is observed to obey the ideal gas
law. The ideal gas law (1.9) is written in extensive form, since the volume V, and
number of moles 7, are extensive variables. When applying the ideal gas law to the
atmosphere, it is convenient to write the equation in terms of intensive variables.
This is accomplished by dividing both sides of (1.9) by mass, m, yielding

pY=DRsT (1.10)

Using the definition of molecular weight, M = m/n, and the definition of specific
volume, (1.10) can be written as

pv:Rﬁ*T (1.11)

A specific gas constant, R, may be defined as R = R*/M, so that (1.11) becomes
pv=RT (1.12)

Strictly speaking, air does not have a molecular weight, since it is a mixture of
gases and there is no such thing as an “air molecule.” However, it is possible to
assign an apparent molecular weight to air, since air as a mixture is observed to be-
have like an ideal gas. To apply the ideal gas law to the mixture of atmospheric gases,
consider first the mixture of “dry-air” gases, excluding for now the variable constitu-
ent water vapor. To understand the behavior of a mixture of gases, we employ Dalton’s
law of partial pressures. Dalton’s law states that the total pressure exerted by a mix-
ture of gases is equal to the sum of the partial pressures that would be exerted by each
constituent alone if it filled the entire volume at the temperature of the mixture. That
is,

p=2p (1.13)
where p is the total pressure and the p; are the partial pressures.

Dalton’s law implies that each gas individually obeys the ideal gas law and that the
ideal gas law (1.12) for a mixture of gases can be written using (1.13) as

V;pjﬂ;mjkj
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where we have used v = V/m. We can now define a mean specific gas constant as

; m;R;

R - (1.14)

The equation of state for the mixture of dry-air gases can therefore be written in
intensive form as

pv=R,T (1.15)

where Ry is the specific gas constant for dry air. Using Table 1.1 and (1.14), a value

for R, is determined to be 287.104 T K-1 kg-1. The mean molecular weight of the
mixture is

Zn’iMi
M= = = (1.16)

3|3

The mean molecular weight for dry-air gases, M, is determined to be 28.96 g mole-1.

The equation of state for air is complicated by the presence of water vapor, which
has a variable amount in the atmosphere (Table 1.1). Assuming that the water vapor
is not near condensation, the ideal gas law may be used and we have

e=p,R,T (1.17)

where the notation ¢ is commonly used to denote the partial pressure of water vapor
and the subscript v denotes the vapor. The specific gas constant for water vapor is
R, =R*/M,=461.51 T K-! kg-!. In a mixture of dry air and water vapor (moist air),
the equation of state is

p=ps+e=(psRy+p,R)T (1.18)

The subscript d denotes the dry-air value, and the absence of a subscript denotes the
value for the mixture of dry air plus water vapor.
The specific gas constant for moist air is determined from (1.14) to be

_myR,;+m,R,

R=—%+m, (1.19)

where mg and m,, are the mass of dry air and water vapor, respectively, and m = my+ m,.
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An intensive variable, the specific humidity, q,, is defined as

m

4y =vad (1.20)

so that the specific gas constant for moist air can be written as
R=(1-¢,)R;+q,R, (1.21)

Using the definition of the specific gas constant, the specific gas constant for water
vapor, R, may be written in terms of Ry

M
R, = V”Rd = 'R, (1.22)
v

where €= M, /M= 18/29 = 0.622. The specific gas constant for moist air may then
be written as

R = Rd[1+qv(%—l)] = R,(1+0.6084,) (1.23)
Incorporating (1.23) into (1.18), the equation of state for moist air becomes
pv=R,(1+0.608¢,) T (1.24)

Itis awkward to have a variable gas constant, so it is the convention among meteo-
rologists to make the humidity adjustment to the temperature rather than to the gas
constant. Thus we define a virtual temperature, T,

T,=(1+0.608q,) T (1.25)
so that the ideal gas law for moist air becomes
pv=R,T, (1.26)

The virtual temperature may be interpreted as the temperature of dry air having the
same values of p and v as the moist air under consideration. Since g, seldom exceeds
0.02, the virtual temperature correction rarely exceeds more than 2 or 3°C; however,
it is shown in Chapter 7 that the small virtual temperature correction has an important
effect on buoyancy and hence vertical motions in the atmosphere.
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1.8 Equation of State for Seawater

For a one-component fluid such as pure water, density is a function only of tempera-
ture and pressure. Since seawater is a multi-component fluid owing to its dissolved
salts, its density is a function of temperature, pressure, and salinity: p = p(Tp,s).
Seawater density is observed to increase with increasing pressure and salinity, but
decrease with increasing temperature.

An accepted theory for the density of pure water, analogous to the kinetic theory of
ideal gases, does not exist. Therefore, an empirically-determined equation of state is
used for seawater. An internationally agreed-upon equation of state (UNESCO, 1981)
fits the available ocean density méasurements to high accuracy. This equation has the
form

p(T.0,5)

= __p(r0s) 1.27
p=r(Tps)=h -

where K7 (T s,p) is the mean bulk modulus, which is inversely proportional to the
compressibility (see Section 1.9). Each quantity on the right-hand side of (1.27),
except pressure, is expressed as a'polynomial series in s and 7, expanded about values
for zero salinity and a pressure of 1 bar. The density at the surface pressure (p = 0) is
given by the polynomial form’

p(T,0,5)=A+Bs+Cs¥ + Ds? (1.28)
The mean bulk modulus is given by
KT(T, s, p) =E+Fs+Gs3? + (H +1Is +]s3/2)p + (M + Ns)p2 (129

The coefficients A, B, ... N in (1.28) and (1.29) are polynomials up to fifth degree in

, temperature (Table 1.3). In Table 1.3 and (1.27)—(1.29), the temperature is specified

in °C, the pressure in bars, the salinityin psu, and density is m3 kg~!. This equation of
state is accurate to within a standard error of approximately 0.009 kg m3 over the
entire oceanic pressure range.

For seawater at standard atmospheric pressure, a contour plot of p is given in Fig-
ure 1.10 as a function of temperature and salinity. Values of constant density
are called isopycnals. Near the freezing point, the density of seawater is relatively
insensitive to temperature variations and small salinity differences can play a major
role in density variations.

An expression for the temperature of maximum density of seawater, T}, can be ob-
tained by differentiating with respect to temperature the équation of state for seawater.
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c) On February 3, 1989, sea-level pressure reached a North American record of
1078 hPa. Surface temperature reached a minimum value of 217 K. The verti-
cal temperature profile in the lower atmosphere was nearly isothermal. For an
aircraft flying at a pressure of 850 mb above a surface that is at sea level, estimate
the error in the altimeter reading that would be made under these conditions.
(Note: The U.S. Federal Aviation Administration banned night and instrument
flights in Fairbanks, AK, because altimeters could not be accurately calibrated to
give altitude readings.)

Chapter 2 | The First and Second Laws of
Thermodynamics

The classical physics principle of the conservation of mechanical energy states that while
energy may manifest itself in a variety of forms (e.g., kinetic energy, gravitational potential
energy), the sum of all different forms of energy in any particular system is fixed. Energy can
be transformed from one type to another, but total energy can be neither created nor destroyed.
Thermodynamics extends the principle of conservation of energy to include heat.

The first law of thermodynamics arose from a series of experiments first carried
out in the 19th century. These experiments demonstrated that work can be converted
into heat and that the expenditure of a fixed amount of work always produces the
same amount of heat. The first law of thermodynamics places no limitations on the
transformation between heat and work. As long as energy is conserved, these trans-
formation processes do not violate the first law of thermodynamics.

The second law of thermodynamics limits both the amount and the direction of
heat transfer. According to the second law, 1) a given amount of heat cannot be
totally converted into work, thus limiting the amount of heat transfer; and 2) the
spontaneous flow of heat must be from a body with a higher temperature to one with
a lower temperature, thus stipulating the direction of heat transfer.

2.1 Work

When a force of magnitude & is applied to a mass which consequently moves through
a distance dx, the mechanical work done is

dW=-FcosOdx 2.1

where 8 is the angle between the displacement dx and the applied force. Only the
component of the displacement along the force enters the computation of work. There
is no universal sign convention for work, so we adopt the following convention: work
done on a system is positive; work done by a system is negative. It makes no differ-
ence which convention is adopted as long as it is used consistently.

An important kind of work in thermodynamics is the work systems do when they
expand or contract against an opposing pressure. Expansion work is defined as

35
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AW =-Fdx=—pAdx=—pdV

whc?re Adx = dV is the differential volume change associated with the work done
against the external pressure, p. The specific work, w = W/m, is an intensive variable,
independent of mass, and thus

dw=-pdv (2.2)

Thfare are numerous examples of expansion work in the atmosphere (Figure 2.1),
.\yherem a parcel of air rises in the atmosphere and its pressure decreases and volume
increases. Some processes that cause air to rise are:

a) orographic lifting;

b) frontal lifting;

c) low-level convergence;

d) buoyant rising of warm air; and

€) mechanical mixing.

Analogous processes occur in the ocean. Work of expansion also occurs in the change
of phase of water from liquid to gas and from liquid to ice.
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Eigure 2.1 Rising motion occurs in the atmosphere due to (a) orographic lifting, (b) frontal
lifting, .(c) low-level convergence, (d) buoyant rising of warm air, and (¢) mechanical mixing.
Expansion work is done by an air parcel when it rises.
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For a finite expansion or compression from v, to v,, work is determined by inte-

grating (2.2):

U2
w=_J pdv @23)

13!

The expansion from v, to ; is illustrated in Figure 2.2a by the top curve (A to B).
The work done in this expansion is represented geometrically by the area under the
curve. The area, and thus the work done, depends on the specific path followed
during the expansion. For example, the temperature may remain constant or may
vary during the expansion, resulting in different expansion paths. In fact, there is an
infinite number of curves connecting the initial state v, to the final state v,. If the
system is compressed back to v, via a different process, net work will be done even
though the system has returned to its initial state, as indicated by the shaded area
between the two curves in Figure 2.2b.

Cyclical processes have the same initial and final states. A cycle, therefore, is a
transformation that brings the system back to its initial state. The total work done in
a cyclical process depends on the path, and is not necessarily zero. The work done by
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Figure 2.2 (2) The amount of work done in the expansion from 7, to v, is equal to the area
under the curve. In (b), the system is compressed back to v via a different process. Even
though the system has returned to its initial state, net work has been done, as indicated by the

shaded area between the two curves.



38 2 The First and Second Laws of Thermodynamics

a system in going from one state to another is a function of the path between the
states. Therefore, generally

dwz0

To evaluate (2.3), the path of the expansion must be specified. Therefore, work is not
an exact differential since dw cannot be obtained by differentiating a function of the
state of the system alone, knowing only the initial and final states.

2.2 Heat

Heat is an extensive measure of the energy transferred between a system and its sur-
roundings when there is a temperature difference between them. When two systems
are placed in thermal contact, energy flows spontaneously from one system to the
other. This energy flow can occur by various mechanisms, such as the transfer of
vibrational energy between one solid and another whose surfaces are in contact, or
the exchange of electromagnetic radiation. Such a spontaneous movement of energy
is called a heat flow. It can be shown experimentally that if equal masses of water,
one at 100°F and the other at 150°F, are mixed, then the resulting temperature is
midway between the two extremes, or 125°F. If the same mass of warm mercury is
used in place of the warm mass of water, however, the resulting final temperature is
not midway between the two extremes, but rather 115°F, indicating that water has a
greater “capacity” for heating than does mercury. That is, it takes more heat to raise
the temperature of a given mass of water by one unit than it does to raise the tempera-
ture of the same mass of mercury by the same amount.

When two bodies with different temperatures, T, and T, are brought into contact
with each other, the temperature difference eventﬁally disappears, and the final tem-
perature, 77 is intermediate between the two initial temperatures. Experiments show
that this heat transfer is governed by the following formula:

where c is the specific heat capacity, which depends on the physical state and chemi-
cal composition of the substance. The amount of heat AQ lost by the warmer body is
equal in magnitude to the amount of heat gained by the cooler body, so that

AQ =cym (T)=T") = c;my (T'-T)) (2.4)
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The final equilibrium temperature is thus

T = cymy Ty +cymy T,
T eamy+omy

In differential form, the equation for heat (2.4) is
dQ=mcdTl (2.5)

The differential dQ is not exact since
dQ+0

To integrate dQ, one must know how the pressure and volume change during the
transformation and if any phase changes occur during the transformation (e.g., gas to
liquid).

Experiments have shown that the specific heat capacity is itself a function of tem-
perature and is defined in terms of the differential heat flow and temperature change

as

dq
c= d_T (26)

where g = Q/m is the intensive heat.
Heat transfer processes in the atmosphere and ocean include radiation, molecular
conduction, and the release of latent heat in phase changes (see Chapter 3).

2.3 First Law

The first law of thermodynamics is an extension of the principle of conservation of
mechanical energy. We can use the conservation principle to define a function U
called the internal energy. When an increment of heat dQ is added to a system, the
energy may be used either to increase the speed of the molecules (i.e., to increase the
temperature of the system), to create motion internal to each molecule (e.g., rotation
and vibration), or to overcome the forces of attraction between the molecules (e.g.,
change of state from liquid to vapor), all of which contribute to the internal energy of
the system. The internal energy of a system can increase when heat enters the system
from the surroundings, and/or when work is done on the system by the surroundings.
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If we take dU to denote an increment of internal energy, then
dU = dQ + dw @7

This statement is the differential form of the first law of thermodynamics. The inten-
sive differential form of the first law of thermodynamics is written as

du=dqg+dw (2.8)

- From the law of conservation of energy, the total energy of the system plus its
environment must be constant. That is, the total energy change in the system plus its
environment is zero:

0=AU,,,+AU

syst env

What happens in a cyclical process?

In a cyclical process, AU, ., (A = B — A) =0, since otherwise we would be creat-

Sysi
ing energy. Therefore,

0=AU,(A—B —>A)=i§dU

and AU depends only on the initial and final states but not on the path followed be-
tween them. The first law thus states that although dQ and dW are not exact differen-
tials, their sum dU = dQ + dW is an exact differential and thus a thermodynamic state
variable.

An exact differential d& has the following properties:

1. The integral of d§ about a closed path is equal to zero ($ d¢ = 0).

2. For &(x,y), we have d& = (9£/0x) dx + (0&£/3y) dy where x and y are independent
variables of the system and the subscripts x and y on the partial derivatives indi-
cate which variable is held constant in the differentiation.
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3. If the exact differential is written as d€ = Mdx + Ndy, we obtain Euler’s
relation:!

% - %% (2.9)

If an experiment is conducted under conditions of constant volume, the first law of
thermodynamics (2.7) becomes

dU =dQ (2.10)

since we are allowing only for the possibility of expansion work (dW = —p dV) and
no other type of work, and since no expansion work is done during a process carried
out at constant volume (dV = 0). The change in heat at constant volume gives us an
experimental measure of AU for any process involving the same initial and final states.

What happens when we do an experiment at constant pressure, and no work is
done except expansion work? Consider the changes accompanying a process at con-
stant pressure:

Va
AU = U,-U, = QP+W = QP—J pdV = Qp—p(V2—V,) (2.11)

vy

where Qp denotes heating at constant pressure, and no work other than expansion
work is done. We can rearrange (2.11) to obtain

(U +pVy) -, +pV =0,
It is convenient to define a new function called the enthalpy, H, by

H=U+pV 2.12)
so that

AH = Hy—H; = Uy +p, V) - (U +p V) = ©,

! We depart here from the tradition in thermodynamics where it is customary to enclose partial derivatives
in parentheses and append subscripts to denote the variable(s) held constant in the differentiation, e.g.,
oM /3y =(0M/dy),. The subscripts on the partial differential are usually not required mathematically,
and their use serves to make the equations unneccessarily cumbersome. In those cases where omitting
subscripts and parentheses may cause confusion, they are retained.
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Since H=H (U, p, V) and U, p, and V are all state functions, H is also a state func-
tion; this is another way of saying that dH is an exact differential. In differential
form,

dH=dU+pdV+Vdp=dO+Vdp 2.13)
and in intensive form
dh=dg+vdp (2.14)

where & = H/m. From (2.14), it is clear that when we allow an expansion at constant
pressure (dp = 0), we obtain an experimental measure of a state property, enthalpy.
Equations (2.13) and (2.14) are equivalent forms of the first law of thermodynamics
to (2.7) and (2.8). The enthalpy form of the first law is advantageous when consider-
ing constant-pressure processes.

Since u and h are state functions, we can write

u=u(p,0,T)=u(v,T)
h=h(p,0,T)=h(p,T)

Although u and 4 are functions of three variables (p, v, T), an equation of state allows
us to eliminate one of the three variables. Since u and h are exact differentials, we can
expand du and dh as follows:
du
du=(§)ar+ (35) a0

dh= (%) dT + (g—ﬁ) dp

Q.)|QJ

At constant volume dv = 0 and du = dg,, which leads to

du=(9%)dr = dg,

In a constant-pressure process, dp = 0, and

dh=(3%) T = g,
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where g, and g, refer to constant-volume and constant-pressure heating, respectively.
From the definition of specific heat (2.6), we can write

— dqv — au
and
dq
_%p _ ok
P=gT = oT (2.15b)

where ¢, and c,, are defined, respectively, as the specific heat at constant volume and
the specific heat at constant pressure. We may thus write

du=c,,dT+(g—;) do
T
dh=c dT+(gﬁ) dp

For an ideal gas, it has been shown experimentally that (du/dv)r = 0, so that inter-
nal energy is a function only of temperature for an ideal gas, i.e., u = u(T). It can also
be shown that (0h/dp); =0 and h = A(T). This implies that for ideal gases

du=c,dT (2.16)
dh = ¢, dT
How does ¢, differ from c,, quantitatively? In a constant-pressure process, some
of the added heat must be expended in doing work on the surroundings, while in a
constant-volume process, all of the heat is devoted to raising the temperature of the

substance. Therefore it takes more heat per unit temperature rise at constant pressure
than at constant volume, and p>Cp The difference between Cp and ¢, can be evalu-

ated from
e =(9k ou
=< = (31), (o7,

Using the definition of enthalpy, h = u + pv, we can write

e = (9% dv) _ (du
Cp—Cy (aT)p+ p(aT)p (3T)v (2.17a)
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Expanding the differential du(v,T) as

du= (g—;)vdT+ (%)Tdv

and dividing by dT while requiring constant pressure, we obtain
ERCRENE
T],7\aT), " \av/;\dT),
We can now write (2.17a) as

cp-0v=(3—5),(‘a%)p“’ (%) (2.17b)

For an ideal gas, (du/dv) = 0 and p(3v/0T), = R, so (2.17b) can be evaluated to be

c,~co=R (2.17¢)

where R is the specific gas constant. Hence for an ideal gas, the magnitude of the
difference between the two specific heat capacities is simply the specific gas constant.

2.4 Applications of the First Law to Ideal Gases
We now apply the first law of thermodynamics to ideal gases, which is useful in the

interpretation of thermodynamic processes in the atmosphere. The thermodynamic
characteristics of an ideal gas have been shown to be:

1. The equation of state is pv = RT.

2. The internal energy is a function of its temperature alone
(du=c,dT;dh = Cp dr).

3. The specific heats are related by ¢, —c, = R.

The first law of thermodynamics for an ideal gas is thus written as
c,dT=dgq— pdv (2.18a)
c,dT =dg+vdp (2.18b)

in internal energy (2.18a) and enthalpy (2.18b) forms.
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Consider the isothermal (dT = 0) expansion of an ideal gas. Because internal
energy is a function only of temperature, the internal energy of the gas is unchanged
in an isothermal expansion. The first law of thermodynamics (2.18a) for an isother-
mal expansion may therefore be written as

dg=pdv

assuming that the only work done is expansion work. In the isothermal expansion of
an ideal gas, the system does work, and the energy from this work comes from the
environment and enters the system as heat. Since work is not an exact differential, we
cannot integrate the right-hand side of the equation until we specify a path. As seen
from Figure 2.2b, an infinite number of paths can be specified. Here we consider the
path of an isothermal reversible expansion. A reversible path is one connecting inter-
mediate states, all of which are equilibrium states. Exact conditions for reversible
processes and how they differ from irreversible processes are described in Section
2.5. For now, we consider a reversible path where the equation of state is exactly
satisfied during all stages of the expansion. Therefore, p may be evaluated using the
ideal gas law, and the equation becomes

dg=RT4Y
Integrating from v, to v, yields

Ag = ern(ﬁ) = ern(ﬂ)
4] P2

The solution states, for example, that the amount of heat required to expand a gas
from 10° Pa to 10° Pa is the same as that required to expand from 10° Pato 10* Pa.
For a constant-volume process (dv = 0), the first law (2.18a) may be written as

du=dg

From the definition of internal energy for an ideal gas, du = ¢,dT, the amount of heat
required to raise the temperature of the gas from T to T, at constant volume is

Aq =Cy (TZ . Tl)

For a constant-pressure process (dp = 0), it is advantageous to use the first law in
enthalpy form (2.18b), so that the first law for a constant-pressure process becomes
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dh=dg

From the definition of enthalpy for an ideal gas, dh = c,dT, the amount of heat re-
quired to raise the temperature of the gas from T to T, at constant prefsure is

Ag=c, (T2 - T,)
The constant-volume and constant-pressure results may be anticipated from the defi-
nitions of specific heat in Section 2.3. A
" An adiabatic process is one in which no heat is exchanged between the system and

its environment, so that dg = 0. The first law for a reversible adiabatic process may
thus be written as

du =dw

An adiabatic compression increases the internal energy of the system. The first law
(2.18a,b) for an adiabatic expansion of an ideal gas is thus written

¢, dT =-pdv (2.19a)

c,dT=vdp (2.19b)

Considering a reversible adiabatic expansion for an ideal gas, we have from (2.19a)
and the equation of state (1.12)

cvdTT=—RdTU

which may be integrated between an initial and final state (assuming that ¢, is con-

stant) to give
T
Cy ln(ﬁ) =—RIn (Z—T)

so that

L (ﬁ)%’ 220
T] - 02 ( - )

During an adiabatic expansion of a gas, the temperature decreases. In the reverse

2.4 Applications of the First Law to Ideal Gases 47

process (adiabatic compression), work is done on the gas and the temperature in-
creases. Using the ideal gas law and the relationship ¢, — ¢, = R, we may write (2.20)
in the following equivalent forms:

Py _ (%) e 2.21)

141 2

T. R/

72 = (f,—f) r (2.22)
1

Equations (2.20), (2.21), and (2.22) are commonly referred to as Poisson’s equations.
It is noted here that (2.22) may also be derived directly by starting from the enthalpy
form of the first law (2.19b).

Figure 2.3 compares an isothermal expansion with a reversible adiabatic expan-
sion on a p,V diagram. It is seen that a given pressure decrease produces a smaller
volume increase in the adiabatic case relative to the isothermal case, because the
temperature also decreases during the adiabatic expansion.
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Figure 2.3 Isothermal expansion compared with a reversible adiabatic expansion. For a given
drop in pressure, AViso > AVy4, since during the adiabatic expansion, the temperature also
decreases.
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2.5 Entropy

Before discussing entropy, we first consider the difference between reversible and
irreversible processes. In all thermodynamic processes, the changes that occur in the
environment must be considered in conjunction with the changes that occur in the
thermodynamic system. A reversible process is one in which the system is in an
equilibrium state throughout the process. Thus the system passes at an infinitesimal
rate through a continuous succession of balanced states that are infinitesimally differ-
ent from each other. In such a scenario, the process can be reversed, and the system
and its environment will return to the initial state. Irreversible processes proceed at
finite rates: if the system is restored to its initial state, the environment will have
changed from its initial state. The term “irreversible” does not mean that a system
cannot return to its original state, but that the system plus its environment cannot be
thus restored.

A comparison between reversible and irreversible atmospheric processes is illus-
trated in Figure 2.4. If a mass of moist air rises adiabatically and then descends
adiabatically to the initial pressure level, the final temperature and mixing ratio of the
air will be equal to the initial values and the process is thus reversible. However, if
clouds form during the ascent and some of the cloud water rains out, then the air mass
when brought down to the initial pressure will have a higher temperature and lower
specific humidity than the initial values. Precipitation is an example of an irrevers-
ible process. If the rain falls to the ground and does not evaporate in the sub-cloud
layer, then the total water content of the atmosphere decreases irreversibly and the
temperature of the atmosphere increases irreversibly.

Consider the first law of thermodynamics in enthalpy form (2.18b) for a reversible
process:

dq=c,dT -vdp

Reversible heating is an abstract concept, whereby heating of a system occurs infini-
tesimally slowly through contact with an infinite heat reservoir. For the reversible
expansion of an ideal gas, we may substitute for the specific volume from the equa-
tion of state and divide by temperature

dg dT
T = CPT—R

S|§

= ¢, d(InT) - Rd(lIn p) (2.23)

The two terms on the right-hand side of (2.23) are by definition exact differentials,
and their sum must also be an exact differential. Therefore d¢/T is an exact differen-
tial, i.e.,
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Figure 2.4 Comparison of a reversible and an irreversible process in the atmosphere. In (a),
moist air initially at pressure p,, and having temperature 7, and specific humidity g,,, rises
adiabatically to the top of a mountain. It then descends adiabatically on the other side to the
initial pressure. Because the process of passing over the mountain was done reversibly and
adiabatically, the temperature and specific humidity are restored to their inital values, and the
process is thus reversible. In (b), clouds form as the mass of moist air rises, and some of the
cloud water rains out. When the mass of air descends on the other side to its initial pressure, its
specific humidity is lower and its temperature is higher than the original values, and the pro-
cess is thus irreversible: the total water content of the atmosphere decreases irreversibly and
the atmosphere is warmed irreversibly.

dq) _
(7 =0 (2.24)

where the subscript rev emphasizes that this relationship holds only for a reversible
process. Dividing heat by temperature converts the inexact differential dg into an
exact differential. We can now define a new thermodynamic state function, the en-
tropy, 1, with units J K-! kg1, to be
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dg
dn=|- (2.25a)

It is important to remember that entropy is defined so that the change in entropy from
one state to another is associated with a reversible process connecting the two states.

When a change in entropy between two given states occurs via an irreversible
process, the change in entropy is exactly the same as for a reversible process: this is
because entropy is a state variable and dn is an exact differential, which means that
integration of dn does not depend on the path of integration. Although the change in
entropy is exactly the same for reversible and irreversible processes that have the
same initial and final states, the integral of d¢/T is not the same for reversible and
irreversible processes. In fact,

An> J (d_ﬁ)f,m. (2.25b)

where the subscript irrev indicates an irreversible process. This suggests that to ac-
complish a given change in entropy (or state) by an irreversible process, more heat is
required than when a reversible process is involved. This implies that reversible
processes are more efficient than irreversible processes.

Entropy changes for an ideal gas in a reversible process can be determined from
(2.18a) and (2.25a):

dn=c,d(InT)+Rd(Inv) (2.26a)
or alternatively from (2.18b) and (2.25a):
dn=c, d(In T) - Rd(ln p) (2.26b)

The entropy change for isobaric heating is thus

An=c, ln(%)

1

and for isothermal processes

An = Rln(”—z) = Rln(ﬂ)
Uy P2
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Figure 2.5 Expansion of an ideal gas illustrating the relationship between entropy and prob-
ability. Initially, four molecules of the gas are placed in the left bulb, and the right bulb is
empty. When the stopcock is opened, the volume doubles, and the molecules are distributed
between the left bulb and the right bulb. In this process, the number of possible configurations
of molecules, and hence the entropy of the system, has increased.

As introduced above, entropy has arisen from purely mathematical considerations.
Entropy can be interpreted physically in the context of statistical mechanics. The
relationship between entropy and probabilities is illustrated using a simple example.
Consider the ideal gas expansion shown in Figure 2.5. Two isolated bulbs, each of
volume V, are connected by a stopcock. Initially, four molecules of the gas are placed
in the left bulb, and the right bulb is empty. The stopcock is opened and the volume
doubles (this is an example of an irreversible adiabatic expansion). The change in
entropy from the intial (init) to final (fin) state is

Vv
An = Nk 1n(vf"’)
. init

where N is the number of molecules and k is the Boltzmann constant (gas constant per
molecule). Since N =4 and (Vg, Vi) = 2, we may write

An = 4k1n2 = k1n2*

The entropy change is thus proportional to In 24 =In 16.

In the final state, the molecules are distributed between the left bulb and the right
bulb. Table 2.1 lists the numbers and probabilities of the possible configurations of
the final distribution of molecules. There are 16 ways of arranging the four mol-
ecules between the two bulbs in the final state. There is only one configuration for
the initial state: all four molecules in the left bulb. The ratio of the final to the initial
probability, P, /P;,;, and the final to the initial number of possible configurations,
Cﬁu/ Ciuit are

Pﬁ" = Cﬁn =16 = 24
Pim't C

init
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Table 2.1 Ways of arranging four molecules in two bulbs of equal volume.

# in left bulb # in right bulb # of ways to achieve Probability of the
configuration, C configuration, P
0 4 1 1/16
1 3 4 4/16
2 2 6 6/16
3 1 4 4/16
4 0 =l 1716
Total: 16 1

This suggests that we can associate entropies with probabilities, or numbers of pos-
sible configurations.

The equilibrium state of the four molecules distributed in two bulbs is more ran-
dom than four molecules in one bulb, since we are less definite about the location of
the molecules in the more random (or disordered) state. More rigorous developments
of this relationship can be done in the context of quantum mechanics. However, the
present example suffices to associate entropy with randomness. The natural path of
all processes is from order to randomness. Entropy in an isolated system will tend to
increase as the probability spreads out over the possible states and the system ap-
proaches equilibrium.

2.6 Second Law

The second law of thermodynamics forbids certain processes, even some in which
energy is conserved. The second law of thermodynamics may be stated in several
different ways, which appear to be different in content but can be shown to be logi-
cally equivalent.

The entropy statement of the second law is:

There exists an additive function of state known as the equilibrium entropy, which
can never decrease in a thermally isolated system.

In other words, a thermally isolated system cannot spontaneously regain order which
has been lost. The second law may be applied to a system and its surroundings to
determine the total entropy change A7,,,

ANy 20
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which is known as Clausius’ inequality. For a reversible process we cannot have
A, > 0, since we would have An,,, < 0 upon reversing the process, which would
violate Clausius’ inequality. Therefore, A7],,,=0 for all reversible changes. For the
special case of a reversible adiabatic process, the entropy change is zero in LI:se sys-
tem, A7,,,=0. Reversible adiabatic processes are therefore isentropic. Using the
definition of entropy in (2.25), we may write Clausius’ inequality as

% ﬂ;? <0 (2.27)

where the equal sign holds for a completely reversible process.
The temperature or Clausius statement of the second law is:

No process exists in which heat is transferred from a colder body to a less cold
body while the constraints on the bodies and the state of the rest of the world are

unchanged.

A quantitative statement of this principle in terms of entropy can be made as follows.
Consider a process that transfers heat between two bodies A and B, leaving the sur-
roundings and the constraints on the bodies unchanged. After a small heat transfer,

AN, =dn, +dn,

This can be expanded for a constant-volume process as
If the heat transfer is denoted by dg, = du, = — dup we have
0N, 0N
= - >
U ('au—A m qu 20 (2.28)

We now define a quantity, 7, the absolute thermodynamic temperature, as

We may therefore write (2.28) in terms of T as
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L _Llag 20 (2.29)
TA TB . )

This equation shows that dg, cannot be positive if 1/Tp> 1/T,. It follows that the
thermodynamic temperature alone determines the direction of heat transfer between
bodies and that the heat transfer proceeds from warm to cold. The absolute thermo-
dynamic temperature can be shown to be proportional to the gas scale temperature
(Section 1.5) by evaluating the entropy change of an ideal gas over a cyclic process.
Equality between these two temperatures is achieved by choosing the value 273.15 K
for the reference state (the Kelvin scale).

The third statement of the second law is the heat engine or Kelvin statement. This
statement derives its name from the problem that originally stimulated the formula-
tion of the second law: the efficiency of a heat engine, a device that turns heat ab-
stracted from a heat source into work. The heat engine statement of the second law is:

No process exists in which heat is extracted from a source at a single tempera-
ture and converted entirely into useful work, leaving the rest of the world un-
changed.

This statement tells us that a heat engine cannot have an efficiency of 100%. Part of
the heat absorbed must be rejected to a heat sink. The second law implies a certain
degree of unavailability of heat for the production of work. If all of the heat were
converted into work, the total entropy would decrease, which is not physically pos-
sible.

The simplest possible heat engine is a device which works in a cycle, and in one
cycle takes heat ¢, from a source at a high temperature T, converts part of the heat
.into useful work, w, and rejects waste heat g,toa heat sink at a lower temperature T5.
Such a system is the Carnot engine illustrated in Figure 2.6. From the conservation of
energy, w = 4, — g,. The total entropy change is

Antot = Anl +A772 = __+ﬂ 20

This equation may be written as a condition on waste heat 7,

q Z
q
2 T 1

The efficiency & of the heat engine is defined as the ratio between the useful work of
the engine compared to the heat input. That is,

2.7 Equilibrium and the Combined First and Second Laws 55

Hot Reservoirat7)

4

Engine

4,

Cold Reservoir atT,

Figure 2.6 Carnot heat engine. Heat g, is brought from the hot reservoir to the engine. The
engine does work w and rejects heat ¢, into the cold reservoir.

Fga=W 1B 2.30

9 91 (2.302)
The engine is at its highest efficiency when g, is as small as possible, which is whenever
the cycle is reversible. For a reversible Carnot engine, we have

7 _T T

-q% = T? An,=0, and &=1- Tf (2.30b)
Thus, the efficiency of a reversible Carnot heat engine depends only on the source
and sink temperatures.

2.7 Equilibrium and the Combined First and Second Laws

By using the first and second laws of thermodynamics in combination, we can derive
some important results that apply to energy and entropy in the atmosphere and ocean.
For any reversible process with expansion work only, we can write the first law as
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du=dg,,,—pdv
Since dg,,, = Tdn from (2.25a), this becomes
du=Tdn-pdv (2.31)

The natural independent variables for internal energy are entropy and volume. If the
enthalpy form of the first law is used, (2.14), we have

dh=Tdn+vdp (2.32)

The natural independent variables for enthalpy are entropy and pressure.

For many applications in the atmosphere and ocean, it is useful to define a new
state function whose natural independent variables are temperature and pressure. The
Gibbs energy, g, is defined as

g =u-Tn+pv=h-Tn (2.33)
or in extensive form
G=H-T7

where 77 = mn is used to denote extensive entropy and G = mg is the extensive Gibbs
energy. In differential form we have

dg =-ndT +vdp (2.34)

The natural independent variables of the Gibbs energy are temperature and pressure.

The final basic thermodynamic relationship we consider here is the Helmholtz

energy, a, defined as
a=u-Tn (2.35)
and in differential form
da=-ndT-pdv (2.36)

The extensive form of the Helmholtz energy is .4 = ma. The natural independent
variables of the Helmholtz energy are temperature and volume.
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Equations (2.31), (2.32), (2.34) and (2.36) are all equivalent forms of the com-
bined first and second laws. The particular form one uses is guided by the specific

application.
Consider the following statement of the combined first and second laws (2.31):

du=Tdn-pdv

Equilibrium is a state of balance between a system and its environment, in which
small variations in the system will not lead to a general change in its properties, and
the system remains constant with time. In a process that occurs at constant entropy
and constant volume, the change in internal energy will be zero. In such a process,
the equilibrium state is thus specified for that state for which du = 0. It can be shown
that under conditions of constant 71 and v that d2u > 0, which says that internal energy
is a minimum at equilibrium. Under conditions of constant internal energy and vol-
ume. the same version of the first and second laws combined shows that equilibrium
is reached when dn = 0. It can also be shown that under conditions of constant u and
 that d21 < 0, which states that entropy is a maximum at equilibrium. The drive of
thermodynamic systems toward equilibrium is thus a result of two factors. One is the
tendency toward minimum energy. The other is the tendency towards maximum
entropy. Only if u is held constant can 1 achieve its maximum; only if 7 is held
constant can u achieve its minimum.

Since processes are rarely studied under conditions of constant entropy or constant
energy, it is desirable to obtain criteria for thermodynamic equilibrium under practical
conditions such as constant pressure. The four alternative statements of the combined
first and second laws: (2.31), (2.32), (2.34), and (2.36), can be used to establish equi-
librium criteria under different conditions. Under conditions of constant & and p,
equilibrium is reached for dh = 0. Under conditions of constant T and p, equilibrium
is specified for the condition dg = 0. The thermodynamic equilibrium conditions are
thus surnmarized as

At constant 1), v: du = 0, dZu>0
At constant 1), p: dh = 0, d%h>0
At constant T, v: da = 0, d%a>0
At constant 7, p: dg =0, d%,>0

2.8 Calculation of Thermodynamic Relations

By manipulating the basic thermodynamic equations, we can derive relationships
among the thermodynamic variables and thus avoid many difficult laboratory experi-
ments by reducing the body of thermodynamic data to relations in terms of readily
measurable functions. The convenience of these relationships will also become ap-
parent through the simplicity introduced into many derivations.



58 2 The First and Second Laws of Thermodynamics

Consider the basic thermodynamic relations (2.31), (2.32), (2.34), and (2.36):

du
dh
da

dg

Tdn — pdv
Tdn + vdp
-ndT — pdv
-ndT + vdp

If we set the left-hand sides of these equations equal to zero, we obtain

We can write expressions for the four functions in functional form as

u=u(n,0v)
h=h(n,p)
a=a(T,v)

g=g(T,p)

In differential form the functions can also be written as

du= (a—;)ndv + (g—;")vdn
r=(3p), 2+ (3n), 7
da= (%)Tdv + (a—;’,)vdT
dg = (a—i)po + (?—g:)pdT

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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If we compare (2.41)—(2.44) with (2.31), (2.32), (2.34), and (2.36) and equate coeffi-

cients, we obtain

), ()
B @),
&), (@)
(g%)r;v (a—i)f—n (2.48)

Since du, dh, da, and dg are exact differentials, they obey the Euler condition (2.9).
Therefore from (2.31), (2.32), (2.34) and (2.36) we obtain the following set of useful
relations called Maxwell’s equations:

2.9 Heat Capacity

8,3
(),
)2,

3,2,

In this section we determine values of the specific heats for air and seawater. The heat
capacities of ideal gases and crystalline solids can be determined theoretically by
applications of statistical thermodynamics; however, there is not a generally accepted
theory for the specific heat of liquids. Here we investigate theoretically the specific
heat of ideal gases and describe empirically the specific heat of seawater.

Values of ¢, and ¢, can be determined for an ideal gas by considering the mechanical
degrees of freedom and the equipartition of energy. A mechanical degree of freedom
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refers to an independent mode of motion (a translation, rotation, or vibration) of the
molecule in one of three mutually independent directions in space. The total number
of degrees of freedom of a mechanical system is equal to the number of variables
required to specify the motion of the system. For example, a mass point (e.g., a
monatomic molecule) has three degrees of freedom, for motion in each of the x, y, and
zdirections. For a mechanical system with more than one mass point (e.g., a diatomic
or triatomic molecule), additional degrees of freedom arise from rotational and vibra-
tional motions (Figure 2.7). An N-atomic molecule has 3N degrees of
freedom:

Nonlinear molecule Linear molecule

Translation 3 3
Rotation 3 2
Vibration 3N-6 3N-5

Recall from elementary kinetic theory (Section 1.6) that the average molecular
kinetic energy of an ideal gas is given by

&e=3 nRAT

This suggests that for one mole of a monatomic gas, we can associate (1/2)R*T ther-
mal energy per mole with each translational degree of freedom. In the case of a more
complex molecule, the energy is shared by rotational and vibrational degrees of free-
dom, rotational modes associated with (1/2)R*T per mole, and vibrational modes
associated with R*T per mole. Thus the total energy is equally divided among the
translational, rotational, and vibrational degrees of freedom. This is called the
equipartition of energy. The heat capacity of an ideal gas can in principle be deter-
mined by summing the contributions to the thermal energy for each of the mechanical
degrees of freedom.

The specific heat capacity at constant volume for ideal gases can be determined
from the equipartition of energy law to be

(3/2)R Jfor a monatomic gas

/2)R for a diatomic gas

c
cy=(7
¢, =6R for a nonlinear triatomic gas

where R is the specific gas constant. The equipartition of energy predicts a heat
capacity that is independent of temperature. Real diatomic and polyatomic molecules
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Figure 2.7 Illustration of molecular translational, rotational, and vibrational motions.

have temperature-dependent heat capacities; further, at low temperatures all heat ca-
pacities (except for helium) are much lower than the value predicted above. This
discrepancy was resolved by the development of quantum mechanics. The contribu-
tion of both the rotational and vibrational degrees of freedom to the heat capacity
depends on the extent to which the excited vibrational and rotational states are popu-
lated for a particular gas, which depends on temperature. The rotationally excited states
of the gases in the Earth’s atmosphere are fully populated at Earth temperatures, while
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the Earth is too cold for the vibrationally excited states to be significantly populated.
Thus the heat capacity of the major gases in the Earth’s atmosphere do not have a
contribution from the vibrational modes and are essentially invariant' with tempera-
ture. The heat capacity of water vapor shows a weak temperature dependence, asso-
ciated with weak population of excited vibrational states.

For the major atmospheric gases at typical Earth temperatures, the specific heat
capacities at constant volume have been determined to be

(3/2)R for a monatomic gas
(5/2)R for a diatomic gas
3R for a nonlinear triatomic gas

Cy
Cy
Cy

Since ¢, = ¢, + R, we also have

¢, =(5/2)R for a monatomic gas
cp= (7/2)R for a diatomic gas
¢, =4R for nonlineartriatomic gas

P

Air is composed of 98.6% diatomic gases, and thus the values of ¢, and ¢, for air can
be estimated to be 717.76 J K-1 kg-! and 1004.86 J K-! kg-!, respectively.

Specific heat capacities of liquids and solids depend on temperature, and are fre-
quently expressed by a polynomial expression with empirically determined coeffi-
cients. Heat capacities of liquids are generally greater than those of solids and gases.
The specific heat of pure water at surface pressure has been determined empirically to
be (Millero et al., 1973)

¢,(0,T,0) = 4217.4—-3.72083 T +0.1412855 T*

(2.53)
—2.654387x 10> T3 +2.093236x 107> T*

where ¢, is in T kg=} K-1, T'is in °C, and p = 0. The influence of salinity is accounted
for by

c,(5,7,0) =¢,(0,T,0) +5 (- 7.644 +0.107276 T — 1.3839 107°7%)

. X (2.54)
+52(0.17709-4.0772x 1073 T+ 5.3539x 10> T?)

where s is in psu and p = 0. Applications of the formula can be checked against
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Figure 2.8 Relationship between specific heat, temperature, and salinity for p = 0. At high
salinities, the specific heat increases with increasing temperature.

¢,(40, 40, 0) = 3981.050J kg-! K-!. For pure water, the specific heat decreases with
increasing temperature. The same effect is observed in seawater with low salinities
and low temperatures (Figure 2.8). If the salinity exceeds 25 psu, the temperature
effect is reversed and ¢, increases with increasing temperature. This reversal in sign
occurs at lower temperatures for increases in salinity. The specific heat decreases
with increasing salinity.

The variation of specific heat with pressure can be derived as follows. We begin
with the definition of specific heat (2.15b):

c =9k _ T(a—") (2.55)
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Substituting (2.31) into (2.55), we have

c,= g—; + p(g—;{) (2.56)

Taking the derivative of (2.31) with respect to pressure gives

5)-55++(3)

Subtracting the pressure derivative of (2.56) from the temperature derivative of
(2.57) and using Maxwell’s relation (2.52) gives the desired result

9 T(i’z—”) (2.58)

which is determined easily from observations of temperature and specific volume.

The difference c,, - ¢, for seawater can be evaluated in the following way. Since

entropy is an exact differential, we may write

Tdn= T(S—?)vdT + T(g%)rdv

Dividing by dT while holding p constant, we find that

an) _ (an) (an ov
T.(W =Tl57) 7 %)T(B_T),, 2.59)
From (2.55), we see that ¢, = T(an/an,,. Since ¢, = T(dn/aT),, we have from (2.59)

e

Using (2.51) we can write

er=cr+7(57)(35)

Using the chain rule for differentiation, we can write (dp/dT) = — (dp/dv) x (dv/0T)
and thus
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cpmcy=— T(%) (g—;)z (2.60)

Hence the value of c, — ¢y is easily obtained from (2.60) by measuring the com-
pressibility (1.31b) and the thermal expansion coefficient (1.31a). Because of the
near incompressibility of water, there is very little difference in the values of ¢, and
¢y It can be shown from (2.60) that the ratio c,/c, for seawater at a salinity of 34.85
psu varies between 1.004 at 0°C and 1.0207 at 30°C. Thus, a distinction is commonly
not made between the specific heats at constant pressure and volume for seawater.

2.10 Dry Adiabatic Processes in the Atmosphere

In Section 2.4, the following relationship between pressure and temperature was de-
rived for a reversible adiabatic process for an ideal gas:

5_ (pn)R/cn
7 \P 2.61)

The lifting of air parcels by processes such as orographic lifting, frontal lifting, low-
level convergence, and vertical mixing causes pressure to decrease, with a corre-
sponding temperature decrease that is specified by (2.61). The lifting of air parcels
can be considered a dry adiabatic process as long as condensation does not occur.

If we choose p, = 1000 mb to correspond to a temperature 6, (2.61) becomes

R/,
P “) r (2.62)

"”(7

where R/c,, for dry air is evaluated to be

ey ek e
p v 2

The temperature 8is called the potential temperature. It is the temperature a sample
of gas would have if it were compressed (or expanded) in an adiabatic reversible
process from a given state, p and 7, to a pressure of 1000 mb. Since 0 is a function of
two variables of state (p and T), it is itself a variable of state. @is thus a characteristic
of the gas sample and is invariant during a reversible adiabatic process. Such a quan-
tity is called a conservative quantity. Because it is conserved for reversible adiabatic
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processes in the atmosphere, O1is a useful parameter in atmospheric thermodynamics.
Potential temperature and other conserved variables will be used throughout the text
to simplify the thermodynamic equations and in the context describing air and water
mass characteristics.

Consider an atmospheric temperature profile with a lapse rate I' = 6°C km~!. For
atmospheric pressures less than 1600 mb, the potential temperature of a sample of air
is greater than the physical temperature since adiabatic compression must be done to
lower the parcel to 1000 mb. Conversely, the potential temperature of a sample of air
with pressure greater than 1000 mb will be less than the physical temperature. At a
pressure level of 1000 mb, 6=T.

‘A relationship between entropy and potential temperature for the atmosphere is
derived by logarithmically differentiating (2.62):

d(1n6) = d(InT) - & 4(inp) (2.63)
14

Comparing (2.63) with (2.23) shows that
dn=c,d(In6) (2.64)

This means that for reversible processes in an ideal gas, potential temperature may be
considered an alternative variable for entropy.
Equation (2.62) does not account for water vapor. The specific heat of mioist air is

¢p=(1-q,)cpa+aq,cp=cp(1+087g,) (2.65)

where the subscripts d and v refer to dry air and water vapor, respectively. The ratio
R/cp for moist air can then be determined using (1.23) to be

R_Ri (ﬂi@) ~ R4 (1 _026g,) (2.66)

cp de 1 + 0-87qp de

The potential temperature of moist air then becomes

oer (g

(2.67a)
The difference between the dry-air and moist-air values of 0 is generally less than
0.1°C, so that adiabatic expansion or compression of moist air can be treated as if it
were dry air. Note that 0 is not conserved if a phase change of water occurs (see
Section 6.7). We can also define a virtual potential temperature, 6,, by neglecting the
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water vapor dependence of the exponent of (2.67a) and replacing the temperature by
the virtual temperature

Ra/,
) Ve (2.67b)

o.n(3

If we consider the adiabatic ascent of a parcel of air in the atmosphere, the tem-
perature of the parcel will decrease and the potential temperature will remain the
same. The rate of decrease of temperature with height in an adiabatic ascent can be
determined by considering the first law in enthalpy form for an adiabatic process (2.19b):

c,dT =vdp

If we assume that the ascent of the parcel does not involve any large vertical accelera-
tions and the hydrostatic relation applies, we can substitute the hydrostatic relation
into (2.19b) to give

c,dT =—-gdz

Recalling that the definition of lapse rate is I" = —d7/dz, we can write an expression
for the dry adiabatic lapse rate, T4, as

y=—— (2.68)

which has a value of approximately 9.8°C km~!. Both (2.62) and (2.68) describe the
temperature evolution of a parcel of air in dry adiabatic ascent, but (2.68) is slightly
more restrictive than (2.62) in that it applies only to a hydrostatic process. The adia-
batic lapse rate for moist air differs only slightly from (2.68) and can be expressed as

N S
Cpd [l + 0.87q,]

Outside of clouds, diabatic processes such as radiative heating operate on much
longer timescales than the characteristic time scale of vertical displacement of the air
parcel. Therefore, the lifting of air parcels by processes-such as orographic lifting,
frontal lifting, low-level convergence, and vertical mixing can be considered dry adia-
batic procésses as long as condensation does not occur.



