d’Information
Géographique

Introduction Python - 1
Gabriel Kathari

Stéphane Joost

GEOME/LGB

Les types natifs :

Les nombres (int, float)

Les booléens (:)

Les chaines de caracteres (string)
Les types séquentiels (listes)

Les nombres (entiers ou flottants)

Entiers (int) : Flottants (float) :
-5 1000000 hanEd
1 1_000_000 et

250

135843125498711354154815 AL

Les booléens
1: ouO:
+5=6, +5=5

Les objets vides ou nul tel que : « », 0, 0.0, [], {} donnent la
valeur

Les chaines de caractéres

"Je suls une chaine de caractere”

Délimité par des guillemets simples ou
doubles - Préféerer des guillemets doubles :

Le guillemet simple reconnu
comme une fin de caractere

print("on m'appelle 1'0OVNI")

print(‘on m'appelle 1'OVNI')

SyntaxError: invalid syntax. Perhaps you forgot a comma?

print("On m'appelle 1'OVNI™") On m'appelle 1'OVNI
print('On m\'appelle 1\'OVNI') On m'appelle 1'OVNI
. . " string = ''"Je suis ()utput:
Une chaine de caracteres peut étre une chaine de caractere e e

multiligne et sera affichée sur plusieurs =" ° e

lignes avec la commande print() print(string) sur 2 Henes

Des caracteres speciaux (\n, \t etc.) = pour
ne pas les interpréter il faut ajouter 1 comme
suit :

print('C:\Bureaulthierry\nouveau")

C:\Bureau hierry
ouveau

print(r'C:\Bureau\thierry\nouveau")

C:\Bureau\thierry\nouveau

une chaine de caractere

Les chaines de caractere - fonctions usuelles

blaze="Eminem"
print(blaze.replace("nem”, "whinehouse"))

replace()

Emiwhinehouse

Les espaces ont été enleves

strip() / rstrip() / Istrip()

text = " This is a test string.
text = text.strip()
c print (text)
right left
S;F)lit() / j()ir]() text = "This is a test string.” words = [‘This®, 'is’, ‘a’
words = text.split() text = ' '.join(words)
print (words) print(text)

[*This', "is"', "a', "test', 'string.']

Le séparateur par defaut est 'espace mais n’importe
quel caractere peut etre utilisé comme séparateur

au debut et a la fin.

'This is a test string’

, 'test', 'string.']

This is a test string.

Retournent
un booleen

Les chaines de caractere - fonctions usuelles

text = "12345"

ISdlgIt() Tous les caractéres sont des result = text.isdigit()
chiffres numériques ? print(result)
isu er() La chaine de caractere ne contient True
PP gue des majuscules ?
1cti La chain racter mmen
|st|tle() a chaine de caractéres commence

par une majuscule ?

La chainte de caracteres ne

IS|OW€F() contient que des minuscules ?

StratSWIth() / endSWIth() text = "This is a tes‘.c Stpi”g'"
result = text.startswith("This™)
print(result)

Ces deux fonctions sont “case
sensitive” et différencient les text = "This is a test string."

majuscules des minuscules. Sl S T R R)
print(result)

text = "12345abc”
result = text.isdigit()
print(result)

False

True

False

Les constructeurs de types natifs

str() Chaines de caractéres str("bonjour") “bonjour"
int() Nombres entiers int(5) 5
float() Nombres décimaux float(10.7) 10.7
bool() Booléens bool(True) True
St r (5) 11 5||
in.t (1 2||) 2
int (”bOnj ou r“) ValueError: invalid literal for int() with base 1@: 'bonjour'

AN

Les variables - Nomenclature

Ne peut pas commencer par un chiffre
Ne peut pas contenir d’espace

Ne peut contenir que des caracteres alphanumériques (A-z, 0-9) et
ne peuvent pas contenir le tiret du haut (-), seulement le tiret du bas

-

Certains mots sont réserves (print, , break etc.)
75Paris Paris75 paris_75
Site-Web Site_Web site_web
#lien video lienVideo lien_video
True true true

Attention : ma_variable Ma_variable - Sensible a la casse

Les variables - Affectations

Affectations simples : a=5
nom = objet

Affectations paralleles: a,b=5,8

a,b,¢c,d,e,f=1,2,3,4,5,6

Affectations multiples : a

|
U O
|
(o)
|
n U

I
(8}
|

b))
11

10

Les variables - Concaténation 1

On utilise le « + » pour concaténer deux chaines de caracteres.

On transforme une variable en chaine de caractere avec la fonction
() si la variable le permet :

note_intermediaire_SIG = 5.25
note_examen_final SIG = 5

print("J‘ai eu la note de "+str(note_intermediaire SIG)+" a 1l'examen intermediaire de SIG™)
print("J]'ai eu la note de "+str(note_examen_final SIG)+" a 1'examen final de SIG")

J'ai eu la note de 5.25 a 1'examen intermediaire de SIG
J'ai eu la note de 5 a 1'examen final de S5IG

Les operations arithmétiques
se font sur les variables de
type int et float et non sur les
caracteres.

note_finale = note_intermediaire SIG*0.4 + note_examen_final SIG*@.6

print("Ma note finale est de "+str(note_finale))

Ma note finale est de 5.1

11

Les variables - Concaténation 2

f-string: x-=1

y = 12

print(f"la multiplication de {x} par {y} donne {x*y}") La méthode _Strmg

est intéressante pour

la multiplication de 18 par 12 donne 120 un rempllssage

rapide.
Méthode format: La méthode format()
est intéressante pour
protocole = "https://" automatiser un
nom_du site= "mon_site web” ren1pHssage.
extension= "ch"
url = "{twww.{}.{}".format(protocole, nom du site,extension)
url = "Jwww.{}.{}".format("https://", "mon_site_web","ch") BLtes Sl nminonts tetneieh
note intermediaire SIG = 5.25

note examen final SIG = 5

NOTE = "J1'ai eu {note interm} a 1l'examen intermediaire et {note finale} a 1'examen final”
notification note = NOTE.format{note interm=note intermediaire 5IG, note finale=note examen final 5IG)

print{notification note) J'ai eu 5.25 a l'examen intermediaire et 5 a 1'examen final

Les opérateurs

Opérateurs calculatoires basiques (+ * - /)

+ et * permettent aussi d’effectuer des
opérations sur les chaines de caractere :

Modulo (%) permet de récupérer le reste de
la division entiere de deux nombres :

Division entiere (/) : permet de récupérer
I'entier de la division.

L'operateur puissance (**) :

13

print("Eminem"+"50Cent™)

Eminem58Cent
print("Drake"*3)
DrakeDrakeDrake

print(20 % 5)
5]

print(20 % 3)
2

print(1@ // 3)

3

print(2 ** 4)
16

Les operateurs - Assignation

Assignation :
1 += 1
1 -=1
1 *= 1
i /=1
i %= 1
i//=1
1 **= 1

I =i1**1

14

Les operateurs - Comparaison *

Chacun des ses operateurs de comparaison retourne si la
comparaison est respectée et si ce n'est pas le cas.

Ces opérateurs de comparaison sont souvent utilisés dans des
structures conditionnelles. (cf slide suivante)

> : plus grand que Exemples :

o) _ print(2 > 3) False
< : plus petit que print(3 > 3) False
>=: plus grand ou égal a print(3 >= 3) True

.) print(3 <= 3) True
<= plus petit ou égal a print(3 == 3) True
. print(4 == 3) False
== = Egal a print(4 1= 3) True

I= : Différent de print(3 != 3) False

Les structures conditionnelles

Outputs :

if / elif /else ; if user == "admin®:
print("access allowed")
elif user == "client":

print("access allowed")

gelse:

print("access refused”)

user = "admin” user = "client™ user = "intrus”

access allowed access allowed access refused

Opérateurs ternaires : La condition et I'association de la valeur de la

variable se font sur la méme ligne

age = 20

majeur = True if age »= 18 else False

Operateurs logiques (or and et not) :

8 » 3 and |(4 < 9|or|10 > 18)
True
True True
True

name = “Luca"
if not name=="Jhon":
print(“Le nom est incorrect")

Output :
Le nom est incorrect

16

Les listes

Une liste peut étre composée d’éléments de type différent :

liste 1 = [1,2,3,4,5,6] liste 2 = [258, "Python™, 12.5]

L'indice correspond a la position de I'élément dans la liste de 0 a n
Ajouter un élement . liste 1.append(7) liste_2.append("C++")
Ajouter une liste : liste 2.extend(["Java","React”,"Angular”])
Retirer un élément (pas l'indice) : liste_2.remove("Python™)
Retirer un élément par son indice : 1liste 2.pop(1)

Enléve I
élément a
I'indice 1
Acceéder a un élément : 0 . 2
liste 2[1]
liste 2 = [250, "Python", 12.5] "Python"
liste 2[-2]

-3 -2 il

Les listes

Accéder a une slice de la liste :

liste 3 = ["A2H","Kaaris","B20","Heuss","Ninho™,"JUL"]

On commence avec I’ élément d’index

liste 3[1:3 "Kaaris","B20" ~ ,
B3] 1 et on s’arréte avant l'index 3
liste_3[:] "AZ2H","Kaaris","B20", "Heuss", "Ninho"," JUL" On prend tous I?S
éléments de la liste
liste 3[:-2] "AOH" "Kaaris™ "B20" "Heusc® ONPrend tous les éléments depuis le
- ’ ’ ’ debut et on s’arréte avant I'indice -2
liste 3[©:5:2] "AZH" ,"B20", "Ninho'
On commence On fait un pas de 2 donc

NTTIE v on prend un élément sur 2
alindice 0 op, finj avant P

indice 5

18

Les listes *

Opérateurs d’appartenance (in / not in):

users = ["Julie”, "Annie","Marc"]

if "Paul" in users: Output:
print("C'est un utilisateur™)

Ce n'est pas un utilisateur
if "Paul™ not in users:

print("Ce n'est pas un utilisateur")
Liste imbriquée :

liste = ["Pierre", ["Marie","Julie",["Aude"]],"Emric"]
liste[@] "Pierre”
liste[1][1] "Julie®

liste[1][2] ["Aude"] liste[1][2][@] "Aude™

Méthode vs fonction "

def additionner(nombrel, nombre2):
somme = nombrel + nombre2
return somme

Déclaration d’une fonction :

nom de la function que I'on choisi Parameétres en entrée de la function dans
les parenthéses, séparés par une virgule
def : Mot-clé qui T
indique la définirion <«———— def additionner(nombre1, nombre2): Corps de la function :
d’une fonction somme = nombrel + nombre2 Opérations effectuées par la
return |somme function

:

Variable retournée par la fonction
Appel d’'une fonction :

Arguments donnés a la function : nombrel €5, nombre2 €< 3

Resultat de la function i
resultat € somme “‘% resultat = additionner(5, 3)

print(“"Le résultat de 1'addition est :", resultat)

Méthode vs fonction

Une méthode est une fonction qui appartient a un objet.

Fonction :)
liste = [10,9,3,6,4]

sorted|(liste)
liste sorted I sorted{liste)

Pour une fonction, il faut écraser ou assigner a
une autre variable la liste sur laquelle elle
s’applique pour sauvegarder la modification

Methode :

listesort()

Une methode modifie directement I'objet sur
lequel elle est appliquée

liste [10,9,3,6,4]

liste sorted

liste

AN

[3, 4, 6, 9, 1@]

[3, 4, 6, 9, 10]

21

Méthodes et fonctions utiles "

|en() len("Mathilde™) 8

len([1,2,3,4]) 4

round (10.2) 10
rOL”1d() round(10.7) 11

. min([1,2,3,4,5]) 1 min{"abcde") “q9”
mlno / max() max([1,2,3,4,5]) 5 max{"abcde™) “g?
sum() sum([1,2,3]) ° Ne fonctionne que sur des
sum([1,2,"jul"]) nombres

range() r’ange(S) [9:112:31‘11

range(2,5) [2,3,4]

Les boucles - for

Sur une liste :
for element in liste: 5 iterations
#effectuer des operations avec element for i in [@,1,3,5,8]:
print("cacluls sur element finis"™) print(i)
Sur une chaine de caracteres :
Output :
6 iterations P
for lettre in mot: for lettre in "Python™: y
print(lettre) print(lettre) E
0
n

Répeéter x (1000 ici) fois une opération :
for i in range(1008):
#Effectuer 1'operation

print(i)

Output :

GO LA L =

23

Les boucles - for "

La fonction permet de récupérer le compte de chaque
itération de al boucle de 0 a n-1 éléments de la liste comme suit :
Output :
liste = ["rouge”,"blanc”,"vert™, "orange"] ® rouge
1 blanc
for count, color in enumerate{liste): 2 vert
print(str(count)+" "+color) 3 orange
La variable commence a 0 et est incrementée de 1 a chaque

nouvelle itération de la boucle. On peut aussi utiliser cette variable
comme argument pour sortir de la boucle.

: : Output :
for count, color in enumerate(liste):
print(str(count)+" "+color) ® rouge
if count »=2: 1 blanc

break 2 vert

Les boucles - while y

Répeéter x (1000 ici) fois une opération : Output :
i-0 y
e . . p)
while N _:;?BB' A chaque iteration I'output sera
s la valeur de 'indice tel que : 997
1+=1 998
999

Arréter la boucle si la condition n’est plus remplie :

go to next = "y"
while go to next == "y":
Do calculation

go to next = input("Do you want to go to next iteration ? y/n")
print("We go to next iteration")

A chaque iteration I'output sera : we go to next iteration

Les boucles - continue et break)

continue: cette instruction permet de passer directement a la
prochaine itération. Elle est souvent associée a une condition dans
la boucle.

Si eSt un liStE = [Ifj_l'l::IlelfIIEII,IIBII,IIbII] Output:
nombre on passe a I for ?lement in }15’Fe5 =
itération suivante if element.isdigit(): b
continue
print(element)

break : cette instruction permet d'immédiatement quitter la boucle.

]_iS-tE = [IF1I1JIlel,lla",llgll,llbll]

_ Output :
On C}U'tte I? bouc(lje for element in liste: P
seu eme,n quan if not element.isdigit(): .
n'est pas un 2
break
nombre

print(element)

27

Les boucles - listes en compréhension

Ces listes permettent d’écrire de facon compacte des actions
simples itérées sur une liste :

liS_te — [”1“]”2","5",IIBII,“bII,“cII] Output:
chiffres = [1 for i in liste if i.isdigit()]

. . [*1*, '2', '3']
print(chiffres)

Il est aussi possible de modifier directement la valeur de I' élément
dans la liste en compréhension :

Output :
liste = [-2,-1,0,1,2,3,3,4,5] P

chiffres positifs = [i for i in liste if i30] [1, 2, 3, 3, 4, 5]
chiffres_positifs = [i*2 for i in liste if i>@] [2, 4, 6, 6, 8, 18]

