
SIG –
Systèmes
d’Information
Géographique

Introduction Python - 1

Gabriel Kathari

Stéphane Joost

GEOME/LGB

Les bases de Python pour
le cours de SIG

Les types natifs

Les opérateurs

Les structures conditionnelles

Les boucles

2

▪ Les nombres (int, float)

▪ Les booléens (True, False)

▪ Les chaines de caractères (string)

▪ Les types séquentiels (listes)

Les types natifs :
3

▪ Entiers (int) :

Les nombres (entiers ou flottants)
4

▪ Flottants (float) :

Les booléens

▪ 1 : True ou 0 : False

▪ True + 5 = 6 , False + 5 = 5

▪ Les objets vides ou nul tel que : « », 0, 0.0, [], {} donnent la
valeur False

▪ Délimité par des guillemets simples ou
doubles → Préférer des guillemets doubles :

▪ Une chaine de caractères peut être
multiligne et sera affichée sur plusieurs
lignes avec la commande print()

▪ Des caractères spéciaux (\n , \t etc.) → pour
ne pas les interpréter il faut ajouter r comme
suit :

Les chaînes de caractères
5

Output :

Le guillemet simple reconnu

comme une fin de caractère

Les chaines de caractère – fonctions usuelles
6

▪ replace()

▪ strip() / rstrip() / lstrip()

▪ split() / join()

right left

Les espaces ont été enlevés

au debut et a la fin.

Le séparateur par defaut est l’espace mais n’importe

quel caractere peut etre utilisé comme séparateur

Les chaines de caractère – fonctions usuelles
7

▪ isdigit()

▪ isupper()

▪ istitle()

▪ islower()

▪ stratswith() / endswith()

Tous les caractères sont des

chiffres numériques ?

La chaîne de caractère ne contient

que des majuscules ?

La chaîne de caractères commence

par une majuscule ?

La chaînte de caractères ne

contient que des minuscules ?

Ces deux fonctions sont “case

sensitive” et différencient les

majuscules des minuscules.

Retournent

un booleen

Les constructeurs de types natifs
8

La conversion n’est possible que si le changement de type convient a l’objet

Les variables - Nomenclature
9

▪ Ne peut pas commencer par un chiffre

▪ Ne peut pas contenir d’espace

▪ Ne peut contenir que des caractères alphanumériques (A-z, 0-9) et
ne peuvent pas contenir le tiret du haut (-), seulement le tiret du bas
(_)

▪ Certains mots sont réservés (print, True, break etc.)

▪ Attention : ma_variable Ma_variable → Sensible a la casse

Les variables - Affectations
10

▪ Affectations simples :

▪ Affectations parallèles :

▪ Affectations multiples :

Les variables – Concaténation 1
11

▪ On utilise le « + » pour concaténer deux chaines de caractères.

▪ On transforme une variable en chaine de caractère avec la fonction
str() si la variable le permet :

Les operations arithmétiques

se font sur les variables de

type int et float et non sur les

caracterès.

Les variables – Concaténation 2
12

▪ f-string:

▪ Méthode format:

La méthode f-string

est intéressante pour

un remplissage

rapide.

La méthode format()

est intéressante pour

automatiser un

remplissage.

Les opérateurs
13

▪ Opérateurs calculatoires basiques (+ * - /)

▪ + et * permettent aussi d’effectuer des
opérations sur les chaines de caractère :

▪ Modulo (%) permet de récupérer le reste de
la division entière de deux nombres :

▪ Division entière (//) : permet de récupérer
l’entier de la division.

▪ L’operateur puissance (**) :

Les operateurs - Assignation
14

▪ Assignation :
i = i + 1

i = i - 1

i = i * 1

i = i / 1

i = i % 1

i = i // 1

i = i ** 1

Les operateurs - Comparaison 15

▪ Chacun des ses operateurs de comparaison retourne True si la
comparaison est respectée et False si ce n’est pas le cas.

▪ Ces opérateurs de comparaison sont souvent utilisés dans des
structures conditionnelles. (cf slide suivante)

▪ > : plus grand que

▪ < : plus petit que

▪ >= : plus grand ou égal a

▪ <= : plus petit ou égal a

▪ == : Egal a

▪ != : Différent de

Exemples :

Les structures conditionnelles
16

▪ if / elif /else :

▪ Opérateurs ternaires : La condition et l’association de la valeur de la
variable se font sur la même ligne

▪ Operateurs logiques (or and et not) :

True False

TrueTrue

True

Outputs :

Output :

True

Les listes
17

▪ Une liste peut être composée d’éléments de type différent :

L’indice correspond a la position de l’élément dans la liste de 0 a n

▪ Ajouter un élément :

▪ Ajouter une liste :

▪ Retirer un élément (pas l’indice) :

▪ Retirer un élément par son indice :

▪ Accéder a un élément :

-3 -2 -1

0 1 2

Enlève l’

élément a

l’indice 1

Les listes
18

▪ Accéder a une slice de la liste :

On commence avec l’ élément d’index

1 et on s’arrête avant l‘index 3

On prend tous les

éléments de la liste

On prend tous les éléments depuis le

debut et on s’arrête avant l’indice -2

On commence

à l’indice 0 On fini avant

l’indice 5

On fait un pas de 2 donc

on prend un élément sur 2

Les listes
19

▪ Opérateurs d’appartenance (in / not in):

▪ Liste imbriquée :

Output :

Méthode vs fonction
20

▪ Déclaration d’une fonction :

▪ Appel d’une fonction :

def : Mot-clé qui

indique la définirion

d’une fonction

nom de la function que l’on choisi Paramètres en entrée de la function dans

les parenthèses, séparés par une virgule

Corps de la function :

Opérations effectuées par la

function

Variable retournée par la fonction

Arguments donnés à la function : nombre1  5, nombre2  3

Resultat de la function

resultat  somme

Méthode vs fonction
21

▪ Une méthode est une fonction qui appartient a un objet.

Pour une fonction, il faut écraser ou assigner a

une autre variable la liste sur laquelle elle

s’applique pour sauvegarder la modification

Fonction :

Methode :

Une methode modifie directement l’objet sur

lequel elle est appliquée

Ce n’est pas valable pour les

chaines de caracteres ou les

nombres (objets immuables)

Méthodes et fonctions utiles
22

▪ len()

▪ round()

▪ min() / max()

▪ sum()

▪ range()

8

4

10

11

1

5

“a”

“e”

6

error
Ne fonctionne que sur des

nombres

Les boucles - for
23

▪ Sur une liste :

▪ Sur une chaine de caractères :

▪ Répéter x (1000 ici) fois une opération :

5 iterations
Output :

6 iterations
Output :

Les boucles - for
24

▪ La fonction enumerate() permet de récupérer le compte de chaque
itération de al boucle de 0 a n-1 éléments de la liste comme suit :

▪ La variable count commence a 0 et est incrémentée de 1 a chaque
nouvelle itération de la boucle. On peut aussi utiliser cette variable
comme argument pour sortir de la boucle.

Output :

Output :

Les boucles - while
25

▪ Répéter x (1000 ici) fois une opération :

▪ Arrêter la boucle si la condition n’est plus remplie :

A chaque iteration l’output sera :

A chaque iteration l’output sera

la valeur de l’indice tel que :

…

Output :

Les boucles – continue et break
26

▪ continue: cette instruction permet de passer directement a la
prochaine itération. Elle est souvent associée a une condition dans
la boucle.

▪ break : cette instruction permet d’immédiatement quitter la boucle.

Output :Si element est un

nombre on passe à l’

itération suivante

Output :On quitte la boucle

seulement quand

element n’est pas un

nombre

Les boucles – listes en compréhension
27

▪ Ces listes permettent d’écrire de façon compacte des actions
simples itérées sur une liste :

▪ Il est aussi possible de modifier directement la valeur de l’ élément
dans la liste en compréhension :

Output :

Output :

Merci pour votre attention !

28

