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Organic carbon
and ecosystem energetics
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Where does the organic energy come from in lakes and river

Different surface-to-perimeter ratios
Different sources and forms of energy
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Various forms of organic carbon in aguatic ecosystems
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Allochthonous (produced outside the ecosystem
boundaries) versus autochthonous (produced

inside the ecosystem boundaries) sources of
organic carbon

Particulate organic matter (POC)
Dissolved organic carbon (DOC)
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How much DOM, FPOM and CPOM is transported by streams”

Decadal carbon discharge by a mountain stream is dominated by
coarse organic matter

Jens M. Turowski'™, Robert G. Hilton2, Robert Sparkes?#
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Figure 1. A: Location of the Erlenbach catchment in Switzerland. B: Map of
the catchment.




How much DOM, FPOM and CPOM is transported by streams”

Decadal carbon discharge by a mountain stream is dominated by
coarse organic matter

Jens M. Turowski'™, Robert G. Hilton2, Robert Sparkes?#
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The Natural Wood Regime in Rivers

ELLEN WOHL, NATALIE KRAMER, VIRGINIA RUIZ-VILLANUEVA, DANIEL N. SCOTT, FRANCESCO COMITI,
ANGELA M. GURNELL, HERVE PIEGAY, KATHERINE B. LININGER, KRISTIN L. JAEGER, DAVID M. WALTERS, AND

KURT D. FAUSCH

e Overview Articles

Bio-geomorphic
interactions

Magnitude
Frequency

Duration
Timing
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* Ecological and geomorphic
. integrity and diversity
—

Organic matterand
nutrient dynamics

Figure 1. Characteristics of the river corridor influenced by interactions among water, sediment, and wood.
Characteristics listed around the margins (e.g., physical habitat template) are influenced by the presence of mobile and

stored wood. In the central box, Mode* refers only to the wood regime.

The roles of wood

« Geomorphic and environmental
heterogeneity foster biodiversity

« Geomorphology and lateral
connectivity / floodplains

* Nutrient and organic matter dynamics

Figure 6. Examples of structures used to limit downstream mobility of wood. (a and b) Rienz River, Italy; (c) Chiene
River, Switzerland (the chair is outlined in yellow for scale); (d) Sihl River, Switzerland (people are outlined in yellow for
scale). The structure on the Sihl River is unique in size and design. It is installed parallel to the flow in the outer bend of a
meander to retain wood (which might otherwise reach the City of Zurich) but to allow sediment to be transported.



DOC (or DOM): Energy basis for microbial heterotrophs

Respiration
Photosynthesis (CHO) DOC metabolism
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DOC as the largest pool of reduced
carbon in the world’s aquatic

ecosystems
A major intermediary to the global carbon cycle
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Browning of surface waters

o Light regime
o Metabolism
o Contaminant transport



DOM pool
Humic substances (majority of the

beta-glucose C1-to-C4 bonds
. 7'€ Cellulose B-
» / .( \

WA

DOC)

The formation of humic substances occurs during hydrogen borcs --( .,(
the degradation of aquatic and terrestrial plant
material (celluloses, hemicelluloses, and lignin) by
fungi and bacteria.

Humic substances in soils and sediments can be
divided into three main fractions:
humic acids, fulvic acids, humin

Generally highly abundant in freshwaters, colored
(brown, yellow) and conferring color to the water
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DOM Pool
Non-humic substances
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Pigments... « Biomolecules that also contain N and P
* Low concentrations in freshwaters
« High bioavailability to the microbial metabolism
« High turnover
« Important to biogeochemical cycling
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in lakes driven by climate and hydrology .
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Figure 1 | Molecular distributions of FT-ICR-MS detected compounds across Swedish lakes. (a) Number of unique molecules with each added
lake. Confidence intervals are calculated over 1,000 permutations. The red dotted line indicates 95% of compounds. (b) Rank abundance of the
compounds across all lakes shows that the compounds with the highest total relative intensity are most ubiquitous. Molecular compounds are colour

coded by the percentage of samples in which they occurred.

« Thousands of DOM molecules contained within the water of streams,

rivers and lakes

 Distribution skewed towards relatively few abundant molecules and

numerous non-abundant molecules




Van Krevelen diagram

Summary van Krevelen Schematic of formula assignments
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Chemodiversity of dissolved organic matter
in lakes driven by climate and hydrology

Anne M. Kellerman', Thorsten Dittmar?, Dolly N. Kothawala' & Lars J. Tranvik!

Precipitation, hydrological residence time,
annual temperature and chemodiversity as
drivers of molecular-level patters DOM
composition across Swedish lakes

Shown are chemical groups assigned to
combustion derived polycyclic aromates,
vascular plant-derived polyphenols,
unsaturated phenolic compounds and
aliphats
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Figure 3 | Moleculardevel DOM patterns across 120 Swedish boreal lakes. Significant Spearman rank correlation coefficients (P-value <0.02674) of
individual molecules with (a) mean annual precipitation, (b) water residence time, (€} mean annual temperature and (d) the chemodiversity index.
The colour scale indicates Spearman correlations between the intensity of individual molecules and mean annual precipitation, water residence time, mean

annual temperature and chemodiversity index (red, positive; blue, negative). Circles indicate compounds without N and diamonds indicate MN-containing
compounds. Compound groups include combustion-derived polycyclic aromatics (aromaticity index> (Al)>0.66), vascular plant-derived polyphenols
(066=Al=050), highly unsaturated and phenoclic compounds (Al<0.50 and H/C <1.5), and aliphatic compounds (2.0=H/C=15). Compound
category labels for delineation in panels (b) and (d) also apply to delineated regions in (a) and (€). Lines separating compound categories on van Krevelen
diagrams are for visualization only and exact categorization may slightly differ. The number of positive and negative significant correlations can be
found in Supplementary Table 2.

1]

PFL



Wildfires and black carbon in streams and rivers

Global Charcoal Mobilization from . The incomplete combustion of organic molecules produces a

Soils via Dissolution and Riverine chemically diverse suite of pyrogenic residues termed black carbon.
Transport to the Oceans - The significance of black carbon cycling on land has long been

Radolt o, f Yan D, Juta Niggemann, Anse V- Vihtalo.™ Aron Stubbins. recognized, and the recpgnition of dissqlved BC as a major
www.sciencemag.org SCIENCE VOL 340 19 APRIL 2013 component of the aquatic carbon cycle is developing rapidly.
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Fig. 1. Map of global freshwater DBC sampling sites. Black stars indicate major world rivers, and white stars indicate all other sites, including minor to
intermediate rivers and wetland-assodated streams, including Long-Term Ecological Research (LTER) sites. BNZ, Bonanza Creek; KNZ, Konza Prairie; HBR,
Hubbard Brook; CWT, Coweeta; GCE, Georgia Coastal Ecasystems; FCE, Florida Coast Everglades. EPFL




Wildfires and black carbon in streams and rivers

Global Charcoal Mobilization from
Soils via Dissolution and Riverine
Transport to the Oceans

Rudolf ]affe’,l*‘r Yan Ding,1 Jutta Niggemann,z Anssi V. Vihitalo,>* Aron Stubbins,®
Robert G. M. Spencer,® John Campbell,” Thorsten Dittmarz*‘r

www.sciencemag.org SCIENCE VOL 340 19 APRIL 2013

30 « Black carbon: ca. 26.5+1.8 x 106 tons per
DOC concentration categories: . ye ar
25 Average values and confidence intervals (p<0.05) ——= 0 .
Linear regression with confidence intervals (p<0.05) 7 __/ i Ca 10 A) Of DOC COncentrathn
' * Interesting because black carbon was
long thought to be insoluble
« Highly oxidized, hence potentially of little
relevance to the carbon metabolism

DBC = 0.106 x DOC - 0.09
201 R?=0.95

Standard errors of regression:
slope: 0,106 £ 0.007
intercept: -0.089 £0.07 =

151

1.0 1

Dissolved black carbon (DBC, mg I'")

051 * Major world rivers
* Minor and intermediate rivers
headwaters, wetlands
0 5 10 15 20 25

Dissolved organic carbon (DOC, mg I')

Fig. 2. DBC versus DOC concentrations of global rivers. The regression parameters are for the
average values of 15 DOC concentration groups (crosses). Raw data regression yields the same slope and
intercept, but the confidence intervals are smaller because of the larger number of samples. E PFL




Wildfires and black carbon in streams and rivers

LIMNOLOGY AND OCEANOGRAPHY ASLO
E@—*——

Special Issue-Current Evidence & Open Access (€ (®
Dissolved black carbon in aquatic ecosystems

Sasha Wagner 5% Rudolf Jaffé, Aron Stubbins

e LT Fate of dissolved black carbon

Photodegradation by solar radiation
Biodegradation (low) by microorganisms
Flocculation and deposition (estuaries)
Storage in oceans

,... Mesopelagic
Abyssal

1Tg=10"g
1Pg=1

of DBC are BPCA-DBC
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Mountain glaciers as a
component of the carbon
cycle

Glacier ice includes ancient DOM (ca. 4000 to 8000 years
BP, terrestrial organic carbon from climate optimum )

Upon release, this DOC is highly available to the
downstream metabolism

Potentially contributing to CO, outgassing from streams, and
sustaining their food webs
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although the negative regression coefficient for the slope agrees with a

downstream pressure effect. Epco, values greater (respectively, less) than 1

denote supersaturation (respectively, undersaturation) of the streamwater E PF L
pco, relative to the atmospheric pco, .



Impacts of DOC (1)

Light and production in lakes

Brown-water lake
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nature

LETTERS

Vol 46023 July 2009 |doi:10.1038/nature08179

Light limitation of nutrient-poor lake ecosystems

Jan Karlsson!, Pér Bystrém?, Jenny Ask?, Per Ask? Lennart Persson® & Mats Jansson®

Yy

Common wisdom

* Nutrients stimulate primary production (i.e., phytoplankton)
« Primary production stimulates zooplankton production
* Increases fish biomass and ‘catch per unit effort’ (CPUE)

Fish biomass (g m-2)

CPUE (kg net")

Median total

phosphorus
(see text) CPUE

G T T T T D
0 100 200 300 400 500 600

Total phosphorus (ug 1)
1 Oligotrophic and mesotrophic lakes

New Zealand

41 O -

0 O
O
5 | A a0 Sweden
A x X
A X %¢¥ Finland
ﬂ‘._. KA ><><
O mI T T 1
0 10 20 30 40

Total phosphorus (ug )

Figure 1| Fish biomass and yield in temperate lakes. a, Published
relationships ( r* = 0.75-0.84) between fish biomass’, yield’ and catch per
unit effort (CPUE)". The vertical dashed line shows the average (12 y,gl_')
of reported median total phosphorus concentration in Norway (2 pgl™",

n = 1,006), Finland (13 ugl ™", n = 873), Sweden (8 ugl™", n = 3,025) and
Wisconsin (United States) (12 pgl_', n = 168). b, Fish CPUEin oligotrophic
and mesotrophic lakes (0-30 ygl_'} from Finland (crosses), Sweden
(triangles) and New Zealand (squares) as a function of total phosphorus. See
Supplementary Tables 3 and 4.

Fish yield (g m2 yr1)
Fish CPUE (kg net)
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nature Vol 460|23 July 2009 |doi:10.1038/nature08179

LETTERS

Light limitation of nutrient-poor lake ecosystems

Jan Karlsson?, Par Bystrom?, Jenny Ask?, Per Ask? Lennart Persson® & Mats Jansson?

» Lake ecosystem production along a nutrient (P)
gradient

« The whole-lake primary production, basal
production by algae and bacteria and production of
top consumers was negatively related to total
phosphorus in the lake water.

» Therefore, factors other than nutrient supply
controlled the biomass production in these lakes.
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Figure 2 | Production as a function of nutrients. a, Whole-lake

(benthic+ pelagic) primary production (open circles) and basal production
(filled circles, primary production plus bacterial production based on
allochthonous organic carbon) as a function of total phosphorus. b, Whole-
lake fish production as a function of total phosphorus. Solid line, error bars.
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ol 460|23 July 2009 |doi:10.1038/nature 08179

LETTERS

Light limitation of nutrient-poor lake ecosystems

Jan Karlsson, Par Bystrém?, Jenny Ask?, Per Ask? Lennart Persson? & Mats Jansson?®

By comparing small unproductive lakes along a water
colour gradient, it was shown that coloured terrestrial
organic matter controls the key process for new
biomass synthesis (the benthic primary production)
through its effects on light attenuation.

Light (I, PAR across the lake volume) is an
unexpected driver of fish production in boreal lakes

Colored DOM (humics) attenuates light, thereby
reducing primary production and hence fish
production

Catchment export of coloured organic matter is
sensitive to short-term natural variability and long-
term, large-scale changes, driven by climate and
different anthropogenic influences
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Figure 4 | Fish production and biomass as a function of light. a, Fish
production as a function of the annual light climate (I, representing the
mean PAR in the whole-lake volume during the ice-free period) in the 12
lakes (r* = 0.63, P = 0.002). b, Fish CPUE as a function of I in the 12 study
lakes (circles, ¥ = 0,50, P = 0,010, dashed line) and in 33 additional lakes
(¥ =0.50, P = 0.001, solid line) from Finland (crosses) and Sweden
(triangles). There was no difference (P = 0.76) in the slope between the two
regression lines. For references see Supplementary Table 4.
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LETTERS

Dissolved organic carbon trends resulting from
changes in atmospheric deposition chemistry

Donald T. Monteith'*, John L. Stoddard**, Christopher D. Evans®, Heleen A. de Wit* Martin Forsius®,
Tore Hagasen*, Anders Wilander®, Brit Lisa Skjelkvale®, Dean S. Jeffries”, Jussi Vuorenmaa®, Bill Keller®,
Jiri Kopacek® & Josef Vesely!'*;

0@ <0.00 Arctic: circle

Browning of streams and rivers

« Concentrations of dissolved organic carbon
In inland waters are increasing

« Conferring brown color to the water

« Shifts in light regime |

- Potential deterioration of drinking water =
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SCIENTIFIC REPg}RTS

OPEN” From greening to browning:
Catchment vegetation
- development and reduced
e . S-deposition promote organic
Published: 24 August 2016 .
_carbon load on decadal time scales

_in Nordic lakes

: AndersG. Finstad!, Tom Andersen’, Soren Larsen?, Koji Tominaga?, Stefan Blumentrath?,
: Heleen A. de Wit%, Hans Temmervik? & Dag Olav Hessen?

sulphur deposition runoff

What causes browning?

Acid deposition (e.g., sulfur) reduced
over the last decades

Less acid retention capacity of the soils
Along with heavy precipitations,

phenolic DOC constituents are washed
out from soils
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Figure 1. Lake specific trends in total atmospheric S deposition, runoff, surface air temperature, NDVI and
lake DOC concentration. Estimated Theil-Sen’s slope values (y~') based on site-specific Regional Kendall Tests
for (a) catchment total atmospheric S deposition, (b) runoff, (c) surface air temperature, (d) NDVI and (e) lake
DOC concentration during the study period (1986-2011). Positive temporal trends are depicted using shades
of red, whereas negative temporal trends are depicted using shades of blue. A stronger shade in either trend
direction denotes a faster trend when compared regionally. The categorization levels were determined using R’s
pretty function on absolute slope values™. All S deposition trends where negative, and all temperature trends
where positive, 85% of the DOC trends and 76% of the NDVT trends were positive, and 65% of the catchments
displayed negative runoff trends. Overall, the mean regional trends for the whole study area for all five variables
were significant (positive for NDVI, temperature and DOC, negative for S deposition and runoff, Regional
Kendall Tests with lakelD as block, n=70, all with p < 0.017). Figure created in R v. 3.2.1 (URL http://www.R-
project.org/)®' using the libraries raster®® and sp™.
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Impacts of DOC (2)
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DOC and POC are central to the aquatic
food web and ecosystem metabolism

Hence, DOC is a major intermediary to
the carbon cycle and greenhouse fluxes
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DOC (or DOM): Energy basis for microbial heterotrophs

Respiration
Photosynthesis (CHO) DOC metabolism
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The aquatic food web and microbial loop

DOM as the basis of the aquatic food web

Studies allow an estimation of how catchment nutrients affect the lake’s biology, in particular what
supports the base of the Tuggerah Lakes foodweb.

Bio-available nutrients (N + P) are rapidly taken up by

CatChment n Utrients phytoplankton and benthic microalgae resulting in

very low concentrations in the lake water

Pelagic.fish

% A __Seaggraéé
% E ibenthic fish* :

Marine Microbes See a Sea of Gradients

Saltmarsh
v ]
Wrack o kit " —/
C 5} Invertebrates

The flow of nutrients up various
foodchains is small compared to the
recycling of nutrients between the
sediment organic matter and

microalgal communities

Invertebrates

Roman Stocker
Science 338, 628 (2012);
DOI: 10.1126/science.1208929
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The microbial loop

Re-cycling of DOM withing the
microbial compartment of the aquatic
food web

Less or delayed transfer to higher
trophic levels (i.e., traditional food
web)

Spontaneous aggregation of DOC
molecules into larger particular
entities allows bypassing the
microbial loop
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The microbial loop

Microorganisms, also including
unicellular grazers and algae, are
the major engines of DOC dynamics
In aquatic ecosystems

Hence of carbon cycling in aquatic
ecosystems
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Figure 24.20 | A representation of the microbial loop and its re-
lationship to the plankton food web. Autotrophs are on the right
side of the diagram, and heterotrophs are on the left.
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Review Article
e I I l I ‘ r O I a O O Patterns of Microbially Driven Carbon
Cycling in the Ocean: Links between Extracellular

Enzymes and Microbial Communities POIype ptlde (Protel n )
Carol Arnost Ciliate works at this step
. /\/\
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« Chemical composition
* Temperature
* Redox

° pH

» Invertebrates (shredders, see RCC)
» UV radiation (photodegradation)

* Physical decomposition
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Temperature-controlled organic carbon
mineralization in lake sediments

Cristian Gudasz', David Bastviken?, Kristin Steger', Katrin Premke’, Sebastian Sobek' & Lars J. Tranvik'

The respiratory breakdown of organic
carbon (OC) stored in lake sediments
Increases with temperature

More OC will be respired as temperature
Increases, therefore less OC will be buried
and stored in the lake sediments

[See various lakes that have stored
substantial amounts of OC related to lake
geometry, mixing, terrestrial OC inputs)]

OC minardization (mg Cm= d-7)

¥ = {0MD02E - 1.68)

@ Vallentunasjon

y= {0041 - 1. B4H)

OC minaralization (mg C m==d-)

¥ = 10i0-02260 - 1.359)

Temperatura (*C)

the present study (= 0.61, P < 0.0001, n = 219), published lile‘ramre

(r* =026, P< 0.0001, n = 355) (Supplementary Notes) and the two

combined data sets, (#* = 0.43, P < 0.0001, n = 574), equation at lower right.
. H P

P
temperature in two extreme lakes in terms of the loading of the organic
carbon—the humic Svarttjirn, equation at lower right, and the highly

hic Vall job ion at upper left (n = 42 for each lake). The
slopes were not statistically different (¢-test, P = 0.87). The y-axis of the OC
mineralization is represented on a log scale.
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Figure 3 | Organic carbon burial decrease. The predicted percentage
decrease in OC burial in lake sediments over the boreal zone under different
climate warming scenarios by the end of the twenty-first century™ B1, AT,
B2, A1B, A2 and A1F1. Filled circles, decrease in OC burial based on the most
likely scenarios for temperature change; vertical bars, response to a likely

range of temperatures.
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C:N = indicator for organic matter quality

Algal material: C:N ~ 6-20
Lignin-rich material: C:N > 20

Stoichiometry of organic matter decomposition

Higher availability of N-containing organic
molecules (e.g., for amino acids, proteins)

Sediment mineralization (mg C m-2 d-1)

Increasing C:N
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Experimental nutrient additions
accelerate terrestrial carbon loss
from stream ecosystems

Amy D. Rosemond,'* Jonathan P. Benstead,” Phillip M. Bumpers,' Vladislav Gulis,?
John S. Kominoski,'t David W. P. Manning,' Keller Suberkropp,? J. Bruce Wallace'

Fig. 2. Terrestrial C loss rates
from stream reaches increased
with N and P concentrations. The
surface represents the predicted 0.018
loss rate (k, per day) as a function
of streamwater dissolved inorganic <~ 0.015]
nitrogen (DIN) and soluble reactive
phosphorus (SRP) at mean dis-
. . . . charge rate and temperature for
Degradation of leaf litter is a function of the study period derived from the
. . multilevel model [variance
soluble reactive phosphorus and nitrogen  «gained by fixed and random 0.006 g% ¢ _
parameter estimates are in table b / 25 \;’\‘\
S3]. Each data point is the esti- 25 T 20 3O

2.0 T
: . : ted litter loss rate f rticu- 15 o~ TP
Nutrient limitation and the ecological bor stream-year derived from the. "0 0540 N

. . . . ] . ) fogm SRp o °
StOIChlometry of degradatn)n’ thatis N first level of our hierarchical model (,uquj

] (12). Mean (range) annual concen-
and P are requn’ed (e_ g . enzymeS) to trations of nutrients in micrograms per liter tested in our experiments were moderate and reflect concen-
. trations commonly observed due to watershed land-use change; SRP reference: 6 (2 to 12), SRP-enriched:
deg rade leaf litter 49 (6 to 117): DIN reference: 53 (13 to 189), DIN-enriched: 347 (66 to 798).

0.012

0.009

Litter loss rate (k d
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accelerate terrestrial carbon loss
from stream ecosystems
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» Residence time of leaf litter (organic matter)
In streams decreases with increasing
nutrient (N, P) inputs

« Decomposition and respiration of organic
matter stimulated by N and P inputs

* More CO, (from respiratory breakdown)
evading from streams

* Finer POM/POC exported downstream

« Downstream and vertical (atmosphere)
consequences
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Fig. 1. Terrestrial C residence time was approximately halved with experimental nutrient enrich-
ment. Increased nutrient inputs (+) reduced terrestrial particulate C residence time (-) and increased
export of fine detrital particles (+) and respiration rates [which increased on C substrates (11) but
decreased at reach scales; +/-]. Inset graph: Reach-scale leaf litter loss rates were faster in enriched
(dashed lines) than in reference (solid lines) streams; the inverse of these rates is residence time. Colors
correspond to the same years in (A) (reference versus enriched streams; N+P experiment; n = 12 annual
rates) and to the same streams in (B) (pretreatment versus enriched years; NxP experiment; n = 15 annual
rates). Data shown for litter loss are untransformed but were natural log-transformed for analyses and the
calculation of loss rates (k, per day). The larger image depicts terrestrial organic C inputs, which enter as
leaf litter, wood, and dissolved organic carbon (DOC), and outputs as hydrologic export (fine and coarse
particles, DOC) and respired CO2z in deciduous forest streams, using an image of one of the NxP
experimental stream sites.
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Dissolved organic matter/carbon

« High chemical diversity
« Continuum between particulate and dissolved form EJ:L

« Concentration and composition changing with

discharge/hydrological connectivity %\5

* Fuels metabolism of microbial heterotrophs — intermediary to s
carbon cycle ' e

« DOM bioreactivity depends on age and chemical composition Ho b

« Browning of surface water

« Drinking water, light regime/primary production

 Increasing temperature stimulates the respiration of organic B
carbon in lakes

 Biological residence of OC in streams depends on nutrients

OCH.
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