Sample questions

1.

2.

What are three major differences between the benthic and
hyporheic zones in streams and rivers?

What is the compensation point in a lake and what is its ecosystem
relevance?

What is the fate of the anthropogenic CO,? Quantify the respective
fluxes.

Explain the water density anomaly, uinc and discuss two ecosystem
consequences of it.

What is an hypertrophic lake and what looks the vertical distribution
of phytoplankton like in an hypertrophic lake compared to an
oligotrophc lake?



Basic stream and river geomorphological units

Riffle-pool sequence
Step-pool sequence

wwaw.aquatic voguelph calriversichphys htm step
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Basic stream and river geomorphological units

Riffle Pool

divergent flow
(deposition)

convergent flow
(scouring)

K.A. Lemke

shallow (& wide)  deep (& narrow)

high velocity * low velocity

steep water surface gradient « gentle water surface gradient
coarse-grained bed material « fine-grained bed material
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Geomorphology, habitats and functions

Debris dams
Can facilitate hyporheic exchange
Important for local biodiversity
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Geomorphology, habitats and functions

« Macrophyte stands
* Residence time

« Biodiversity

« Primary production

=PrL



Geomorphology, habitats and functions

« Channel regulation
 Removal of riparian vegetation

Stream bottom sealing

Loss of the lateral and vertical dimensions
Consequences for hydraulic geometry
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Hydraulic geometry
The downstream change of channel geometry to
accomodate discharge and sediments

 The geometry of the channel is configured
such that is can receive and transport
upstream deliveries of water and sediments.

« Channel width (w), water depth (d) and flow
velocity (v).




Hydraulic geometry

Depending on catchment geology, position
within the network, terrain slope, but also
riparian vegetation (land use), stream channels
can differ in average width and depth, and

velocity.




Hydraulic geometry

The Hydraulic Geometry
of Stream Channels and
Some Physiographic

Implications

By LUNA B. LEOPOLD and THOMAS MADDOCK, Jx.

GEOLOGICAL SURVEY PROFESSIONAL PAPER 2512

Quantitative measurement of some of the hydraulic
factors that help to determine the shape of narural
stream channels: depeh, width, velocity, and sus-
pended lvad, and how they vary with d;'sa‘/iarge as

simple power functions. Their interrelations are

described by the term “hydraulic geometry)’
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Hydraulic geometry

; .+, Relationships between the mean stream channel
s =L  form and discharge downstream along a stream
EFE [ 0 "~y )
/ _ network (or at a station).

- E 5 Hydraulic geometry: relationship for a channel in the form
Dl g of power functions of discharge as:

f g ted adal "
i T L e W - b - f v — m
o fe S w=aQ"’ d=cQ" v=kQ

where w = width, d = depth, v = velocity

Exponents (b, f, m) indicate rate of increase in a hydraulic
variable (w, d, v) with increasing Q
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Width (feet)

velocity (feet
er sex

Hydraulic geometry

o 0% o 19
e 17 18
8
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Q Is the product of w, d and v,
therefore

Q = (aQ®) (cQ) (kQ) or
Q = ack Q b+f+m

and b+f+m =1

Exponents (b, f, m) change with position in the
network, climate, and discharge conditions

m



Hydraulic geometry

Hydraulic geometry relates to
* hydrogeomorphology to position in the stream network

*"1;}:’&/  sediment characteristis
L gy » hydraulics

* benthic life
* ecosystem processes
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mentary dynamics

« Stream energy (e.g., channel slope, velocity)
« Sediment composition
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Sedimentary dynamics

Downstream gradients

Headwaters Transfer Deoposition

o
v
"
ol
-~
£

Deainage Area (—downstream distance?)

)

« Mean flow velocity and channel properties
change downstream (see hydraulic
geometry)

 How are sedimentary dynamics affected?



Sedimentary dynamics and the Hjulstrom
curve

SUSPENDED LOAD

Normal
bed load

Dissolved
Rolling ions

Suspended
load (clay)

BEDLOAD

Moves
during Substrate

flood |
NN

Clast collides and bounces
another into water

i Saltation
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Sedimentary dynamics and the Hjulstrom

curve
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Sedimentary dynamics and the Hjulstrom curve
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Progress in Physical Geography 22,1 {1998) pp. 1-32

Consequences

Downstream flnlng/SO rtl ng Patt(.erns. and pl'OC(:‘.SS(:‘.S. Of sedlment
sorting in gravel-bed rivers
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Figure &6 Numerical simulations of downstream fining. (a) The role of size-
selective entrainment, the Alt Dubhaig, after Hoey and Ferguson (1994); (b) the
relative roles of selective entrainment and abrasion, two hypothetical rivers
with contrasting lithologies, after Parker (1991b), reproduced with the kind
permission of the ASCE. D_ and 1'_.‘1s are the xth percentile and geometric mean
of the grain size distribution respectively EPFL




Consequences for channel geomorphology

Meandering Channels

A A
B 1 Low Velocity
@—-— Med. Velocity
— High Velocity
B
B gaccumulation
Low Velocity
~ Med. Velocity
Faoint Eiars______+ c erosion ~ High Velocity
C
Line EGHHEEtH‘IQ
deepest paints in ¢ c
stream channel
» Low gradients
 Easily eroded banks

Straight channels eventually eroding into meandering channels
Erosion: outer parts of the meander bends with highest velocity
« Sediment deposition along the inner meander bends with lowest velocity =PFL
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Consequences for channel geomorph

@) (b)

Deposits of Abandoned Oxbow
silt and clay channel lake

[ ]
® 2001 Brooks/Cole - Thomsen Learning

Low gradients |
Easily eroded banks (c) (c)
Straight channels eventually eroding into meandering channels

Erosion: outer parts of the meander bends with highest velocity

Sediment deposition along the inner meander bends with lowest velocity
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Meanders

Interplay between erosion and accumulation

Horizontal sorting of sediments

Shaping the landscape, its environmental heterogeneity and biodiversity

Shaping hydrodynamic exchange

=PrL



Consequences

Hydrodynamic exchange Vertical sorting of sediments
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Figure 24. Spatial patterns of pore water flow and clay deposition in a streambed simulated by Karwan and Saiers [2012].
Compare simulated particle accumulation with typical experimental observations in Figure 25,

External clogging

Reduced permeability and hydrodynamic
exchange
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Consequences
Hydrodynamic exchange

* Reduction of permeability

« From macro-porous to micro-porous flow
« Impacts on hydrodynamic exchange
 Shifting chemical gradients

« Habitat deterioration (siltation and anoxia)
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Cconseqguences

« High productivity of floodplains, estuaries
e (hydraulic geometry, Hjulstroem)
 Downstream accumulation of fine sediments
« Lateral accumulation of fine sediments within the
floodplain during the receding limb of the storm Channel and floodphain
deposits of gravel, sand,
hydrograph and clay

Aswan Dam

Downstream and lateral gradients, a ‘legacy’ of the Hjulstrom curve cprEL



Example: Egyptian high culture and the Nile

(g <\ S
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Example: Aswan Dam and the Nile valley

Channel and floodplain

and clay

deposits of gravel, sand,

Prior to the construction of the
Aswan dam, the Nile innundated the
fringing floodplains annually (rainy
season in tropical Africa)

Fertilizing the floodplains, promoting
agriculture

Stimulating the ‘Nile bloom’,
sustaining fisheries

At the basis of the Egyptian high
culture (see pyramides etc)

After the construction of the Aswan
dam, synthetic fertilizers replace the
natural fertilization

=PrL



The flood pulse and nutrient dynamics

Why are floodplains so fertile and hence relevant for agriculture?

* Regular inundations provide natural ‘fertilizers’
« Sustain high biodiversity

=P
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Annually recurrent pattern of floods (snowmelt,

monsoon...)
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(pluvial, nival, nivo-pluvial, tansition)

Snow and glacier melt (Danube, Rhine,
Rhone, Po)

Monsoon driven

High interannual predictability
Relevant for ecosystem functioning
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The flood pulse and nutrient dynamic SQaLseser Foodpuise ffectsor
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* Flood pulses are predictable in time as they are often climate driven (e.g., monsoon,
snowmelt)
 Life at the edge between the river and land has adapted to these recurring events



The flood pulse and nutrient dynamics

fiood-tolerant trees

tocrostrial
subs

annual

lerredtrial Modt river-

spawning fish
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Lake and river
spawmn?;
young-of-the-

o Floodplains

moving itoral;
docompostion of fish and

v o Aquatic-terrestrial transition zone, wetlands with high

winion i biodiversity

of aquatic vegetation

o Elevated spatial and temporal dynamics of the
{8 g environment
oo &0 : : :
e o Flood pulse introduces nutrients (bound to sediments)
into floodplains

o Promotes aquatic primary production at the interface to

, consolidation of
runoff of sdiments
nutrients moid soil plant
resulting from germination
decompostion

Many fish
decompostion respond 10
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ot e — o Remineralisation of nutrients — reside within floodplains
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oo . Bt versus export via runoff
i S o o High productivity sustains biodiversity
floodptain) i .
o Built on annual recurrence of hydrological events




The vertical and lateral dimensions of streams and

RV&! Rorridors and floodplains
From taming to restoration

Jetzt aktiv werden: ‘W
www.rheinraus.info #°\ 24 .mh

-
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From taming to restoration
UN& N =

: Who we are v Where we work + What we do v Publications & Data
environment a

programme

W\ [/
an

Home / News, Stories & Speeches / press release

23MAR2023 | PRESS RELEASE | WATER

Largest river and wetland

restoration initiative in h|story 3

¢ Freshwater Challenge led by Colombia, DR Congo, Ecuador, Gabon, Mexico, Zambia

¢ Aims to restore 300,000km of rivers and 350 million hectares of wetlands by 2030

https://www.youtube.com/watch?v=zZEG_In3lYo



Stream and river ecosystems

« Hydrodynamic exchange

« Three dimensions (longitudinal, vertical, lateral) of streams and rivers
« Basic bedforms

« Hydraulic geometry

« Sediment dynamics and consequences

* Flood pulse and fertility of floodplains



Ecosystem energetics
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Where does the organic energy come from in lakes and river

Different surface-to-perimeter ratios
Different sources and forms of energy

Terrestrial Primary production Terrestrial Primary production
input Littoral Planktonic input Littoral Planktonic
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Various forms of organic carbon in aguatic ecosystems

Woddm
@9’0"5

Allochthonous (produced outside the ecosystem
boundaries) versus autochthonous (produced

inside the ecosystem boundaries) sources of
organic carbon

Particulate organic matter (POC)
Dissolved organic carbon (DOC)




Coarse Particulate Fine Particulate Organic Matter (CPOM)
Organic Matter

(CPOM)
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Dissolved Organic Matter (DOM)



How much DOM, FPOM and CPOM is transported by streams”

Decadal carbon discharge by a mountain stream is dominated by
coarse organic matter

Jens M. Turowski'™, Robert G. Hilton2, Robert Sparkes?#

8°44'0"E
L

] Erlenbach catchment|]
A = Road
~ |Surface cover
: Forest
Grassland

47°3'0"N
47°3'0'N

47°2'30"N
=
47°2'30'N

Figure 1. A: Location of the Erlenbach catchment in Switzerland. B: Map of
the catchment.




How much DOM, FPOM and CPOM is transported by streams”

Decadal carbon discharge by a mountain stream is dominated by
coarse organic matter

Jens M. Turowski'™, Robert G. Hilton2, Robert Sparkes?#

o DOC flux overall dominates

10000 T T o Change point when larger
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DOC (or DOM): Energy basis for microbial heterotrophs

Respiration
Photosynthesis (CHO) DOC metabolism
DOC
CO, "? ‘L y ¥ J
(*‘Juw‘; NI

CQO, assimilation CO, and CH, production



DOM pool
Humic substances (majority of the

beta-glucose C1-to-C4 bonds
. 7'€ Cellulose B-
» / .( \

WA

DOC)

The formation of humic substances occurs during hydrogen borcs --( .,(
the degradation of aquatic and terrestrial plant
material (celluloses, hemicelluloses, and lignin) by
fungi and bacteria.

Humic substances in soils and sediments can be
divided into three main fractions:
humic acids, fulvic acids, humin

Generally highly abundant in freshwaters, colored
(brown, yellow) and conferring color to the water

=PrL



DOM Pool
Non-humic substances
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Pigments... « Biomolecules that also contain N and P
* Low concentrations in freshwaters
« High bioavailability to the microbial metabolism
« High turnover
« Important to biogeochemical cycling
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Molecular rank

Figure 1 | Molecular distributions of FT-ICR-MS detected compounds across Swedish lakes. (a) Number of unique molecules with each added
lake. Confidence intervals are calculated over 1,000 permutations. The red dotted line indicates 95% of compounds. (b) Rank abundance of the
compounds across all lakes shows that the compounds with the highest total relative intensity are most ubiquitous. Molecular compounds are colour

coded by the percentage of samples in which they occurred.

« Thousands of DOM molecules contained within the water of streams,

rivers and lakes

 Distribution skewed towards relatively few abundant molecules and

numerous non-abundant molecules




Van Krevelen diagram

Summary van Krevelen Schematic of formula assignments
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Chemodiversity of dissolved organic matter
in lakes driven by climate and hydrology

Anne M. Kellerman', Thorsten Dittmar?, Dolly N. Kothawala' & Lars J. Tranvik!

Precipitation, hydrological residence time,
annual temperature and chemodiversity as
drivers of molecular-level patters DOM
composition across Swedish lakes

Shown are chemical groups assigned to
combustion derived polycyclic aromates,
vascular plant-derived polyphenols,
unsaturated phenolic compounds and
aliphats

H/C

Precipitation
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p Residence time

|
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Figure 3 | Moleculardevel DOM patterns across 120 Swedish boreal lakes. Significant Spearman rank correlation coefficients (P-value <0.02674) of
individual molecules with (a) mean annual precipitation, (b) water residence time, (€} mean annual temperature and (d) the chemodiversity index.
The colour scale indicates Spearman correlations between the intensity of individual molecules and mean annual precipitation, water residence time, mean

annual temperature and chemodiversity index (red, positive; blue, negative). Circles indicate compounds without N and diamonds indicate MN-containing
compounds. Compound groups include combustion-derived polycyclic aromatics (aromaticity index> (Al)>0.66), vascular plant-derived polyphenols
(066=Al=050), highly unsaturated and phenoclic compounds (Al<0.50 and H/C <1.5), and aliphatic compounds (2.0=H/C=15). Compound
category labels for delineation in panels (b) and (d) also apply to delineated regions in (a) and (€). Lines separating compound categories on van Krevelen
diagrams are for visualization only and exact categorization may slightly differ. The number of positive and negative significant correlations can be
found in Supplementary Table 2.
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Wildfires and black carbon in streams and rivers

Global Charcoal Mobilization from . The incomplete combustion of organic molecules produces a

Soils via Dissolution and Riverine chemically diverse suite of pyrogenic residues termed black carbon.
Transport to the Oceans - The significance of black carbon cycling on land has long been

Radolt o, f Yan D, Juta Niggemann, Anse V- Vihtalo.™ Aron Stubbins. recognized, and the recpgnition of dissqlved BC as a major
www.sciencemag.org SCIENCE VOL 340 19 APRIL 2013 component of the aquatic carbon cycle is developing rapidly.
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Fig. 1. Map of global freshwater DBC sampling sites. Black stars indicate major world rivers, and white stars indicate all other sites, including minor to
intermediate rivers and wetland-assodated streams, including Long-Term Ecological Research (LTER) sites. BNZ, Bonanza Creek; KNZ, Konza Prairie; HBR,
Hubbard Brook; CWT, Coweeta; GCE, Georgia Coastal Ecasystems; FCE, Florida Coast Everglades. EPFL
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Global Charcoal Mobilization from
Soils via Dissolution and Riverine
Transport to the Oceans
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www.sciencemag.org SCIENCE VOL 340 19 APRIL 2013

30 « Black carbon: ca. 26.5+1.8 x 106 tons per
DOC concentration categories: . ye ar
25 Average values and confidence intervals (p<0.05) ——= 0 .
Linear regression with confidence intervals (p<0.05) 7 __/ i Ca 10 A) Of DOC COncentrathn
' * Interesting because black carbon was
long thought to be insoluble
« Highly oxidized, hence potentially of little
relevance to the carbon metabolism

DBC = 0.106 x DOC - 0.09
201 R?=0.95

Standard errors of regression:
slope: 0,106 £ 0.007
intercept: -0.089 £0.07 =

151

1.0 1

Dissolved black carbon (DBC, mg I'")

051 * Major world rivers
* Minor and intermediate rivers
headwaters, wetlands
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Fig. 2. DBC versus DOC concentrations of global rivers. The regression parameters are for the
average values of 15 DOC concentration groups (crosses). Raw data regression yields the same slope and
intercept, but the confidence intervals are smaller because of the larger number of samples. E PFL
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Dissolved black carbon in aquatic ecosystems

Sasha Wagner 5% Rudolf Jaffé, Aron Stubbins

e LT Fate of dissolved black carbon

» Photodegradation by solar radiation
» Biodegradation (low) by microorganisms
* Flocculation and deposition (estuaries)

‘ — « Storage in oceans
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of DBC are BPCA-DBC
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