Most streams are CO, emittors, but not all!
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Glacier-fed streams and lakes
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» Glacier-fed streams are CO, sinks
depending on parent geology
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Styllas et al. in review



Streams and rivers are major components of the global

Review

River ecosystem metabolismand carbon
biogeochemistryinachanging world

https://dol.org/10.1038/s41586-022-05500-8  Tom J. Battin'™, Ronny Lauerwald?, Emily S. Bernhardt®, Enrico Bertuzzo®, Lluis Gémez Gener®,
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Accepted: 31 October 2022

* CO, emissions from streams and rivers
CO, evasion similar to the drawdown fluxes of
=0 atmospheric CO, by the world’s oceans
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River networks matter
for the global carbon
cycle

« Contributions from river NEP to CO,
evasion from rivers vary widely

 Depend on gas exchange rate, carbonate
dissolution, photochemistry etc

) (%)

Contribution of NEP to CO, evasion
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Streams and Rivers < 10000 km?

Stream respiration exceeds CO; evasion in a low-energy, oligotrophic
tropical stream

Vanessa Solano
Lindsay B. Hutley

,'* Clément Duvert ©,2* Christian Birkel ©*,>* Damien T. Maher
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Large Rivers > 10000 km?
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What about methane?

Biological sources (methanogenesis by archaea and bacteria)
(Geogenic sources
Anthropogenic sources

m
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CH4; mole fraction (ppb)
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 Methane is a potent greenhouse gas
* |ts emissions are globally increasing at a rapid
pace

@ Drilling and @ Production ® Pr @onm and @ Enduse
fracturing distribution
; |
@ Total NG leakage - EPA: 1.5 %
Evidence from other Studies
® @ Nationwide, NGML/EPA, 2006 € @ @ Los Angeles, Caltech, 2012 4 e
ndicates organiz:
@ Nationwide, GTl, 2009 <= @ Nationwide, Harvard, 2013 4 (O oMt Wiy My o{ sy
@ @ Los Angeles, CARB/UC Irvine/NOAA, 2010 4 @ Los Angeles, CU Boulder, 2013 4 4 Emissions higherthan EPA
. 4 ¥ Emissions lower than EPA
@ Texas & New Mexico, URS/U. Texas, 2011 <=p- ©® ©® @ Uteh NOAA, 2013 S e
©® ® @ Colorado, NOAA, 2012 4 @ © Nationwide, U, Texas, 2013 <=9

Leaky gas infrastructures as one
major source of methane to the
atmosphere

...what else?
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Streams and rivers are major sources of methane to the atmosphere souces sinks

A A
[ | |

nature . ARTICLES 1,000 4 | Rivers
geOSClCl’lCC https://doi.org/10,1038/541561-021-00715-2 . Lﬂkﬂﬁ

Resarvoirs
B Freshwater agquaculture
750 4 B Coastal and open ocean
1 Rice cultivation
B Freshwater wetlands
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| Gheck for updates

Half of global methane emissions come from
highly variable aquatic ecosystem sources

Judith A. Rosentreter ©'25, Alberto V. Borges?, Bridget R. Deemer©*, Meredith A. Holgerson®%”,
Shaoda Liu?8, Chunlin Song®™, John Melack™, Peter A. Raymond?, Carlos M. Duarte 213,
George H. Allen®", David Olefeldt©', Benjamin Poulter ©, Tom |. Battin"” and Bradley D. Eyre @'

Methane emission (Tg CH, yr')
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aquaculture - W shope . ocean 1Tg = 1012g

Fig. 3 | Global aquatic methane emissions from headwater streams to the open ocean. Numbers are Tg CH, yr-'. Mean emissions are shown in blue

circles, and median emissions are shown in green circles. The relative importance of the factors controlling methane distribution and emissions varies
along the land-ocean aquatic continuum.
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Article
Global methane emissionsfromriversand
streams

https://doi.org/10.1038/s41586-023-06344-6  Gerard Rocher-Ros"**™, Emily H. Stanley*, Luke C. Loken®, Nora J. Casson®, Peter A. Raymond’,
Shaoda Liu"™®, Giuseppe Amatulli’ & Ryan A. Sponseller’

Received: 25 October 2022
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Fig.1|Gl nsof CH, inri a,b,Modelled yearly hexagons; hexagons inareas with runoffof 500 mm per year have beenreduced
average CH, concentrations (a) and emissions (b) inriversand streams. Data by 10%; and hexagons witha runoffless than 50 mm per year have beenreduced
have beenaggregated in hexagonal bins, and the size of each hexagonisrescaled by 50%. The model could notbe applied in Greenland and Antarctica, which are
with runoff, to better visualize patternsinareas with high coverage of running shownindarkgrey.

waters. Areas with runoffgreater than1,500 mm per year have full-sized

Streams and rivers emit 27.9 (16.7-39.7) Tg CH,
per year, roughly equal emissions from lakes and

ponds

Physical ecosystem attributes and land use as
some of the best predictors for CH,

concentrations

Gas transfer velocity (m per day)
Groundwater table depth (m)
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River slope (mm-')
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Yearly average air temperature (°C)
Population density (people per km?)

Soil cation-exchange capacity (cmol kg=)
Yearly soil respiration (g C m™)

Monthly air temperature (°C)

Base saturation (%)

Soil total organic carbon (% of weight)
Monthly net primary production (g C m—2)
Yearly net primary production (g C m2)
Soil silt (% of weight)

Human footprint index

Soil gravel (% of weight)

Monthly soil respiration (g C m—2)

Soil sand (% of weight)

Tree cover (%)

Other data {

Thermogenically |
influenced

Permafrost |
influenced

Downstream of |
a point source

0 25
Importance

Fig.2|Maindrivers of CH, concentrations in streams. a, The 20 most
importantvariablesin the random forest model. The x axis shows the median
importance across all monthly models (n=12), with error lines representing
standard deviation (s.d.); note the square-root transformation of the x axis.
Thelineinside eachbaris the partial dependence, which represents the marginal
effectofagiven feature (xaxis) on predicted CH, concentrations (yaxis). These
linesare asimplification of amore detailed version (Supplementary Information).

Downstream |
ofadam | .

Category
B Biological Ditches 1
. Climate
. Human
. Land cover
|| Physical Canals -
[ soil
50 75 0.01 0.10 1.00 10.00 100.00

CH, (mmol m=3)

b, CH, concentrations of somesite categories from GRiMeDB" were excluded
from the model as they were not captured in the hydrological model or were
targeted observations not representative of catchment properties (Methods).
Theunderlyingjittered pointsrepresentall other observationsin GRiMeDB,
with the dashed linerepresenting the average. Each category is colour-coded,
withtheblack dotandaline representing the mean +s.d.
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Article

Global methane emissions fromriversand

streams
el legROOSMIOO 05 O34~ G Ay e’ L e e Come Tt
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] e e e e O O O N e 070" CH, emissions
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o — B scaling up to the global scale
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Fig.3|Seasonal patterns of CH, emissions. Left: total monthly CH, emissions for each latitudinal band (10°bins), with the colour representing total river area.
Right: total yearly emissions for each latitudinal band. In the left panel, the y axis is square-root transformed, and the colour scale is log transformed.
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Transportation of methane from aquatic

@g@s}xsmmr transportation path from sediments to the water and

atmosphere 4. Plant mediated
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Hydropower reservoirs emit greenhouse
gases

Bubble emission Gas exchange

T

Dissolved gas

Downstream
emission

Ebullition 1
Anoxic water :

Diffusion

Figure 1| Schematic methane emission pathways from a hydroelectric reserveir. In sediments
with slower methane formation and at greater depths, dissolved methane diffuses upwards (1).
The methane enters the atmosphere through gas exchange at the surface. Emissions may be
reduced by microbial oxidation at the interface between the oxic and anoxic water layers. Second,
downstream emissions after the water has passed the turbine (2) depend on the stratification

of the reserveoir and the vertical position of the main water intake. Finally, in sediments with high
methane production rate, bubbles form when the methane solubility is exceeded (3). Some of this
methane dissolves from the rising bubbles but a large fraction is rapidly emitted to the atmosphere.
Barros and colleagues® estimate emissions of carbon dioxide and methane from 85 hydroelectric
reservoirs worldwide, but because the third pathway is poorly constrained by measurements,
uncertainties remain large.

Wehrli 2011 Nature Geoscience
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The contribution of dams to CH, production and outgassing

a)
400 - ) 118 ~
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T—a— ..-l:“'""---.?.;:. Js ﬁ
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o FIGURE 1. a) Temperature and discharge, @, in Lake Wohlen during samplings. @ ranges from ~400 m® s~ in summer (residence

time, Rt, ~1 day) to 50 m* s™' in winter (Rt ~7 days). b) Contour plot of dissolved methane distribution in Lake Wohlen on June 21,
Del Sontro etal. 2010 ES&T 2007. Black squares - actual samplings. Water flows in from right to the dam (left). Profiles were taken every kilometer at a vertical
resolution of 3—4 m. The figure suggests that methane is vertically homogeneous, while concentrations can increase five times
horizontally.

CH, can accumulate in reservois towards the dam



The contribution of dams to CH,
production and outgassing

a) & Observed net dissolved CH,

Estimated CH1 from sed, diff + bub, diss

Model iﬂC|Udiﬂg __________E___ll_ij_[_"?_: . Estimated CH, from sed. diff. only
» 1000 -
ebullition & temperature = .
O 500
¢ D I | | I
3 y o~
‘ < 480 b) - 1200
AL w, total "“‘-H.E--JWD—- Total estimated CH, emissions 11000 —~
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FIGURE 3. Lake Wohlen system analysis results. a) Squares
indicate measured dissolved methane in Lake Wohlen (out-
flow - inflow). Black squares indicate measurements at water
temperatures, T > 10 °C when ebullition is occurring, gray
squares when T < 10 °C (see Figure 2). Gray line - best fit of
Evasion flux: 150 mg CH4 m-=2 d-1 predicted concentration due to sediment diffusion (sed. diff.)
only. Black line - model results for predicted CH; concentration
using exponential fit for methane bubble dissolution (bub. diss.)

Del Sontro et al. 2010 ES&T

 EDbullition dominates the CH4 evasion from as a function of temperature plus the constant sediment

| ake Wohl : diffusion of 15 mg m 2 day ' (Figure 2). b) CHs emission rates:

ake vvonien reservaoire. Gray line - constant sediment diffusion input. Thick black line -

e |ndicative of high CH4 production rates in the predicted methane emission due to methane bubbles reaching

| lated di t the atmosphere (bub. escape). Thin black line - total predicted
accuimuiatea seaiments. methane flux including dam discharge emissions.
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Even low-land rivers with hydraulic
constructions are sources of CH,

Sediment accumulation and elevated
CH, production upriver from
watergates for navigation

— -0.05
1000 m

250 500

-0.1
Bubble detections

J * Sedimentation rate [m yr "T

-0.15

Figure 2. Mean sediment accumulation rate between 1993 and 2010
(color scaling) and bubble detections in the forebay of Serrig dam.
Crosses mark bubble detection along the sampling transect, which is
denoted by the black line.

Maeck et al. 2013 ES&T
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Figure 4. Relationship between sediment accumulation rate (1993—
2010) and measured ebullition rates. The red line shows the
exponential fit (R* = 0.91; p < 0.001; n = 7). The white bar at 0.3
was excluded from the analysis due to its small sample size. Error bars
denote the standard error of mean.

Maeck et al. 2013 ES&T

Reaches with elevated sediment accumulation are hotspots of CH,

production and ebullition in rivers
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nature

LETTERS

geOSCience PUBLISHED ONLINE: 31 JULY 2011 | DOI:10.1038/NGEO1211 a 4'000
T 30001 o
Carbon emission from hydroelectric reservoirs i
linked to reservoir age and latitude E" : : _ 2,500
Nathan Barros', Jonathan J. Cole?, Lars J. Tranvik?, Yves T. Prairie®, David Bastviken®, % - "I-U 2,000 -
Vera L. M. Huszar®, Paul del Giorgio® and Fabio Roland'* 8 0 ",“E
O 1,500 1
0 £
 GHG emissions from reservoirs . % 1000
o=
changing with latitude and age g ma
* Highest in the Amazonas & & @
% 1,000 ,\,o‘\ 19(\ Qé
» Topography, temperature and flooded ;o . & &S
i | N
eo
blomass 0 20 40 60 b
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. . c © 400
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;*ff 00 Figure 2 | Fluxes of CO; and CHy4 in different zones. Mean (bars) and
f« 50 | standard deviation (lines) of the a, CO, and b, CH4 fluxes in the 85
¥ o hydroelectric reservoirs worldwide distributed clustered by region. The

tropical region was split into Amazonian and non-Amazonian regions.
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Overview Articles

Greenhouse Gas Emissions from
Reservoir Water Surfaces: A New
Global Synthesis

BRIDGET R. DEEMER, JOHN A. HARRISON, SIYUE LI, JAKE J. BEAULIEU, TONYA DELSONTRO, NATHAN BARROS,
JOSE F. BEZERRA-NETO, STEPHEN M. POWERS, MARCO A. DOS SANTOS, AND J. ARIE VONK

» Reservoirs are significant emittors of
greenhouse gases (CH,, CO, and N,O) to the
atmosphere

» Degradation of flooded biomass

« Degradation of accumulating organic matter in
the sediments

HORCIEASSS JemRetalyrs 2 pgmary productior

CH,

Tropic of Cancer

Equator

Tropic of Capricern

co, |

Tropic of Cancer

Equator

Tropic of Capricorn

N,O

Trople of Cancer

Equator

Tropic of Capricorn

mg Carbon Dioxide Equivalents m? d"'
°  -1305.33 - 100.00

©  100.01 - 1000.00
(O 1000.01 - 5000.00 A
O 5000.01 - 10000.00

3,750 7.500 15,000 Kilometers

() 1o00001-7800000 L 4 4 1o o )

Figure 2. Diffusive + ebullitive methane (top), carbon dioxide (middle), and nitrous oxide (bottom) emissions from
reservoirs on a COsz-equivalent basis (100-year horizon). Few reservoirs had measurements for all three gases.
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Ecosystem size matters for GHG emissions

nature |
tJE.I-SI:'IIE?NES1 FEBRUARY 2016 | DOI: 10.1038/NGEO2654 geOSCIGIlce

Large contribution to inland water CO, and CH,
emissions from very small ponds

Meredith A. Holgerson* and Peter A. Raymond

« Small ponds emit more CH, than large
ponds - also relative to CO, emissions

« Large receivers of organic matter and
nutrients from the surroundsing
landscape (geometry effect)

« Organic matter burial and
decomposition leading to hypoxic
sedimentary habitats that promote
methanogenesis
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Nitrous oxide (N,O)



nature LETTERS

climate char N2eC https://dol.org/10.1038/541558-019-0665-8

Increased global nitrous oxide emissions from
streams and rivers in the Anthropocene

Yuanzhi Yao', Hanqin Tian®™, Hao Shi', Shufen Pan’, Rongting Xu', Naiging Pan' and
Josep G. Canadell©?

* N,O emssions from streams and rivers are increasing

* Major contributions from fertilizers (N rich), manure and
atmospheric depositions

« Headwaters contribute most to N,O emissions

« Tightly connected via shallow groundwater to land (with agricultural
practices)

N,O emission from headwater
Biogeochemical streams: 241.4 + 58.9 Gg
reaction

N,O emission from
rivers: 42.5 + 14.4 Gg

Air-water interface

" Production in water
... -column:4.1+2.1 Gg
=R

Reduction to N
|_286.8+39.4 Gg

Water column biology’

Dissolved N0 |“]

" [oeno ]
.

s
BN N>

Groundwater processes Exportto ocean
(lateral transport and hyporheic processes) : 68.4 +21.5Gg

391.1 +76.6 Gg
Production in water column:
424 +19.8Gg

Hyporheic zone biology

Downstream direction

Headwater streams (first to third stream order) Rivers (higher than fourth stream order)

Fig. 2| Global annual mean riverine N,O fluxes during the 2000s estimated by DLEM. All the arrows denote N,O fluxes. The left side of the figure depicts
biogeochemical processes in the headwater zone simulated in subgrid routine processes at a resolution of 0.5°x 0.5°. The dissolved N,O of headwater
zone exports to downstream river channels (right side) were simulated through the DLEM cell-to-cell routine processes. The benthic zone indicates the
sediment surface and its subsurface layers located at the lower end of the waterbodies.
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Fig. 1| Temporal pattern of global riverine N,O emission and factorial
analysis from 1900 to 2016. a, Global riverine N,O emissions from 1900

to 2016 with uncertainty ranges shaded in blue (+1s.d.). b, The factorial
contributions to global riverine N;O emissions from the 1900s to the period
2007-2016.
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Role of surface and subsurface processes in scaling
N,O emissions along riverine networks

Alessandra Marzadri*'2, Martha M. Dee®', Daniele Tonina™', Alberto Bellin®', and Jennifer L. Tank®’

Damko6hler number for the benthic—hyporheic zone
is defined as the ratio between the median
hyporheic residence time (tsg), which is an index of
the time that streamwater spends within the
hyporheic sediment, and the characteristic time of
denitrification (tp)

The dimension-less flux of N,O, Fy\»s0, as the ratio
between Fy,o and the total flux per unit streambed
area of dissolved inorganic nitrogen species [NO;
and NH,4] in the stream (Fpno)-

The time of turbulent vertical mixing, t,, which is
the average time for any neutrally buoyant particle
to sweep through the water column because of
turbulence. Damkéhler number for rivers, Dapg
=1/Tp, With 1, replacing tsy and stating a shift from
hyporheic to water column dominated N,O
production.

Dominant scale
Dapyz=ts50/1p

Relative Role of Hyporheic zone,

benthic and water column
on biogechemical reactions
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Role of surface and subsurface processes in scaling
N,O emissions along riverine networks

Alessandra Marzadri*'2, Martha M. Dee®', Daniele Tonina™', Alberto Bellin®', and Jennifer L. Tank®’

Damko6hler number for the benthic—hyporheic zone
is defined as the ratio between the median
hyporheic residence time (ts5g), which is an index of
the time that streamwater spends within the
hyporheic sediment, and the characteristic time of
denitrification (tp)

The dimension-less flux of N,O, Fy»oo, as the ratio
between Fyoo and the total flux per unit streambed
area of dissolved inorganic nitrogen species [NOs
and NH,4] in the stream (Fpno)-

The time of turbulent vertical mixing, t,, which is
the average time for any neutrally buoyant particle
to sweep through the water column because of
turbulence. Damkéhler number for rivers, Dapg
=1/Tp, With 1, replacing tsy and stating a shift from
hyporheic to water column dominated N,O
production.
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Fig. 3. Dimensionless flux of N2O (F*N;0O) as a function of the denitrifica-
tion Damkohler number (Dapyz) in the LINXII Study (n = number of streams,
n=16) and the Kalamazoo River (Michigan; n = 12) streams. F*N,0O result-
ing from the production of N;O within only the benthic zone of the LINXII
Study streams is shown with red symbols; the power law regression of these
data is shown with the red solid line [F*N;0 = 1.91 x 10~ ¥(Dapy)>*, r’ =
0.75]. Emissions from the benthic-hyporheic zone (combined contribution of
both zones, Benthos + HZ) are in orange symbols, and their power regress-
ion is shown as the orange dashed line [F*N,0=2.15 x 10_?(.060”2)0'46,
r? = 0.54]. Emissions from the benthic-hyporheic zone of the Kalamazoo
streams scale with Dapuz [F*N>O=9.83 x 10~8(Dapuz)>4', r =0.54] as
shown by the green line. Because these two relationships (dashed orange
and green lines) are not significantly different, we fitted both datasets with
a power law [F*Nz0 = 1.55 x 10~ (Dapuz)®*®, r? = 0.48; black line], which
quantifies Ny O emissions from headwaters.
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Global riverine nitrous oxide emissions: The role of small streams and
large rivers

s
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George H. Allen ', Peter A. Raymond "

The application of this hybrid modelling approach reveals
that small streams (width < 10 m) are the primary sources
of riverine N,O emissions to the atmosphere.

They contribute nearly 36 Gg N,O—N/yr; almost 50% of
the entire N,O emissions from riverine systems (72.8 Gg
N>,O—N/yr), although they account for only 13% of the
total riverine surface area worldwide.

Large rivers (widths >175 m), such as the main stems of
the Amazon River (~ 6 Gg N,O—N/yr), the Mississippi
River (~ 2 Gg N,O-N/yr), the Congo River (~ 1 Gg
N>,O—N/yr) and the Yang Tze River (~ 0.7 Gg N,O—N/yr),
only contribute 26% of global N,O emissions, which
primarily originate from their water column,

Underscores the role of hyporheic processes in small
streams for N,O production and emissions
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Fig. 1. Map of average annual Dissolved Inorganic Nitrogen (DIN) concentration distribution obtained by the data-driven (Random Forest) model (Shen et al., 2020). DIN map obtained as
the combination of the in-stream load of ammonium and nitrate DIN = [NH{ | + [NO3], (mol/L).
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Fig. 4. Map of dimensionless N,0O flux (F *N,0) along the world river network analyzed. Gray areas represent desert regions not accounted in the calculation.

cPrL



Stream and river networks
The multiple dimensions

Vertical
« Connected to the atmosphere through the turbulent surface
« Conencted to the groundwater

Lateral
« Connected to groundwater, riparian zone and corridor

Longitudinal
« Ample opportunities for downstream processing (see RCC)

Network
« Small streams are mots abundant and tightly connected to the terrestrial
environment

Makes streams and rivers so important for carbon fluxes despite their minor
contribution by alreal extent

m
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GHG emissions from inland waters

Global Warming Potential at 100 year horizon

(GWP100)
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Lauerwald et al. (in preparation)

GWP100 of inland water GHG
emissions amounts to ~7.6 (4.7-
13.0) Pg CO,-eq yr-'.

Roughly three quarters are
contributed by net emissions of CO,
the remainder mainly CH,, while
contributions of N,O emissions are
nearly negligible.

Overall streams and rivers emit ca.
80% of inland water GHG

The relative global warming potentials
of the main greenhouse gases

12 400

Different GHGs have different global warming potentials



Inland waters and the carbon cycle

carbon cycle

Tight connection with the terrestrial environment; they receive large
terrestrial deliveries of organic matter and CO, (from weathering and
soil respiration)

Important sources of CO,, CH,and N,O to the atmosphere
(uncertainties are large)

Inland waters are biogeochemical connectors between terrestrial
ecosystems, atmosphere and the ocean

Streams, rivers, lakes and ponds are critical components of the global
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