

Text exam ENV-320, Part Schmale

Question 1 (3 pnts)

Verify the following by showing all steps of your own calculation: The insolation in cloud-free conditions is about 1000 W m^{-2} , if the troposphere absorbs 50 % of it, then the tropospheric temperature will increase by 0.36 K h^{-1} .

Use the following values, while remembering that a Watt is defined as Joule per second:

- thickness of troposphere: 10 km
- average density of troposphere: 0.5 kg m^{-3}
- heat capacity of air: $cp = 1005 \text{ J kg}^{-1} \text{ K}^{-1}$

Question 2 (2 pnts)

Figure Q2 shows Earth's averaged outgoing longwave radiation. High clouds can be found along the equator, where the outgoing longwave radiation is relatively lower.

a) Explain in no more than 3 lines why high clouds are responsible for the relatively lower radiation (think of the Stefan-Boltzmann Law).

b) Do high clouds cool or warm Earth?

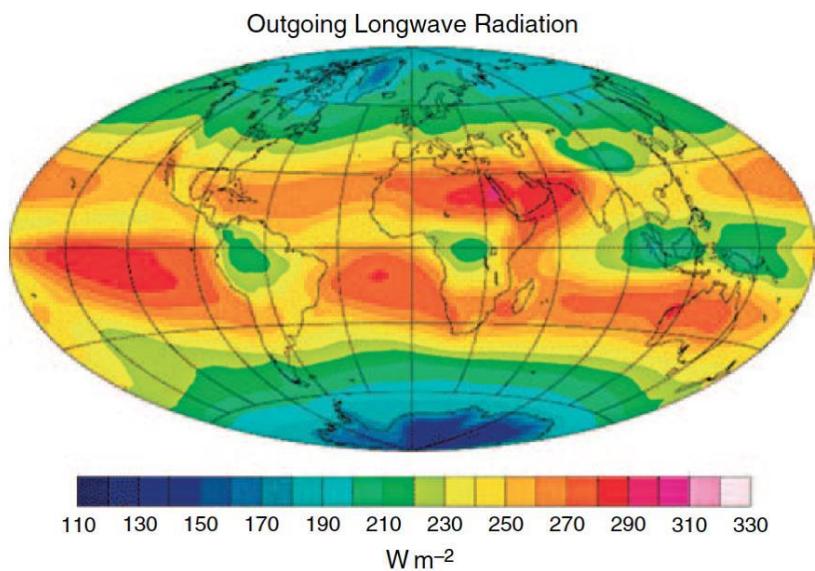


Figure Q2: Average outgoing longwave radiation from Earth in W m^{-2} .

Question 3 (2 pnts)

Why can sulfate aerosol, formed from SO_2 emitted from volcanoes into the stratosphere, remain there for years while the lifetime of sulfate aerosol in the troposphere is only several days? Answer in no more than 5 lines.

Question 4 (3 pnts)

a) Why is it so difficult to reduce ozone pollution in cities? Hint, make sure to include NO_x and VOCs in your argument. 5 lines

b) The rate of production of OH in the atmosphere depends on how O(¹D) reacts further, i.e. it is quenched back to ground state or yields 2 OH from reaction with H₂O. The yield (ε_{OH}) can be calculated as in EQ1. Calculate ε_{OH} based on three different humidities, whereby $\xi_{H_2O} = 0.0167 * RH$:

k_4	$2.2 * 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
k_3	$2.9 * 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$
RH1	20 %
RH2	50%
RH3	80%

$$\varepsilon_{OH} = \frac{2k_4 \xi_{H_2O}}{k_3} \quad \text{EQ1}$$

c) If our atmosphere were to become more humid, how would the lifetime of CH₄ with respect to OH change?

Question 5 (1.5 pnts)

Figure Q5 shows two aerosol number concentration size distributions. Answer the following questions by focusing on the red boxes:

a) How many modes are there on 3 April?

b) How many modes are there on 15 April?

c) Are there more or less particles on 15 April compared to 3 April?

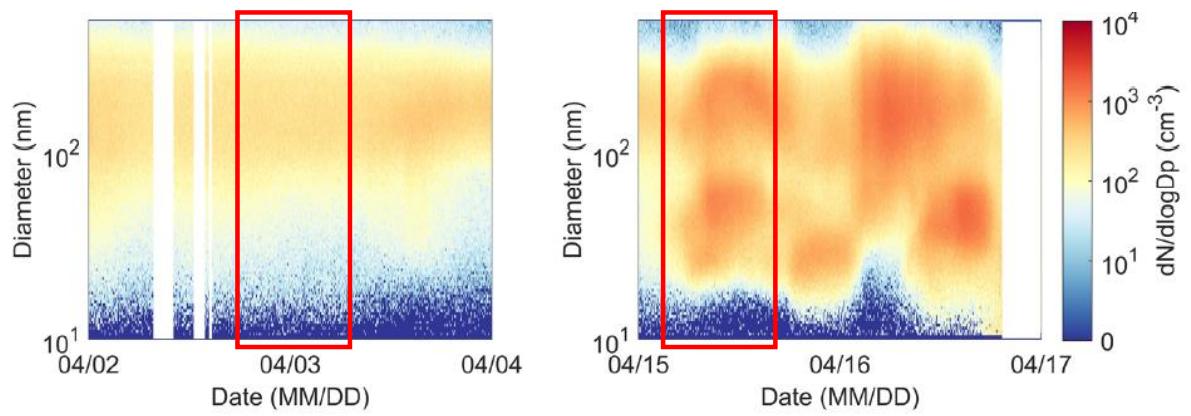


Figure Q5: Aerosol number concentration size distribution in the central Arctic in April 2020.