

Physics and Chemistry of the Atmosphere

Examination

Section: Physics

I) [3 points]. A projectile is fired towards the North Pole at an angle of 45° degrees with respect to the surface with velocity magnitude of 200 m s^{-1} from a point with latitude-longitude of $0^\circ N, 0^\circ W$. Calculate the distance that the projectile travels before it crashes onto earth again.

[Bonus Question !] : Can you compute the latitude-longitude of the point where it crashes onto earth ?

Note: Assume that there is no friction, Angular velocity of the earth $\Omega = 7.29 \times 10^{-5} \text{ s}^{-1}$, $g = 9.8 \text{ m s}^{-2}$ and the radius of the earth is 6370 km

Solution I: The Coriolis force \vec{C} is defined as

$$\vec{C} = -f \vec{k} \times \vec{v} \quad \text{with} \quad f = 2\Omega \sin \phi \quad (1)$$

The Coriolis parameter f is a function of time due to the variation of ϕ (latitude) during the motion of the projectile. The velocity of the projectile (\vec{v}) can be decomposed along two orthogonal directions, one component normal to the surface of the earth (v_y) and the other is tangential to the surface (v_x). The initial velocities in these direction $v_{0,x}$ and $v_{0,y}$ is equal to $200 \cos(45^\circ) \text{ m/s}$ The equation of motion in the normal direction is

$$\frac{d v_y}{d t} = -g \quad (2)$$

Integrating the above equation in time, we get displacement in the normal direction as

$$y = v_{0,y} t - \frac{1}{2} g t^2 \quad (3)$$

where $v_{0,y}$ is the initial velocity in the y direction. Setting $y = 0$ yields two solution, one being the trivial $t = 0$. The other solution is the total time of motion of the projectile $t_a = 2v_y/g = 28.83 \text{ seconds}$. As the projectile is fired from the equator towards the north pole, the upward motion causes a Coriolis force towards the west and it can be stated as,

$$\frac{d v_x}{d t} = -2\Omega v_y \cos(\phi t) \quad (4)$$

Recalling that $v_y = v_{0,y} - gt$, and integrating the above equation with respect to time, we get,

$$v_x = -2\Omega v_{0,y} t + \Omega g t^2 \quad (5)$$

Integrating the above equation once again with respect to time,

$$b = -\Omega v_{0,y} t_a^2 + \frac{1}{3} \Omega g t_a^3 \quad (6)$$

For $t_a = 28.83$ seconds, $b = 2.86m$ west. Note that b is the westward displacement of the projectile only due to vertical motion of the projectile. There is additionally a meridional motion of the projectile and this also causes a displacement of the projectile due to Coriolis forces. The meridional motion also causes a westward Coriolis force,

$$a_w = 2\Omega v_{0,x} \sin(\phi t) \quad (7)$$

$\phi(t)$ varies with time such as $\phi_t = v_{0,x}t/R$, with R being the radius of the earth. Substituting the expression of $\phi(t)$ and integrating the expression for a_w twice, the displacement westward due to the meridional motion can be written as

$$c = \frac{-2\Omega R^2}{v_{0,x}} \sin\left(\frac{v_{0,x}t_a}{R}\right) \quad (8)$$

The resultant displacement for $t_a = 28.83$ seconds is $c = 467.36$ m. Thus the net displacement in the westward direction is $t = b + c = 470.22$ m. The meridional displacement can be found as $d = v_{0,x}t_a = 4077.47$ m North. The net displacement is therefore $\sqrt{d^2 + t^2} = 4104.49$ m.

The latitude and longitude can be easily computed as $d/R = 6.4 \times 10^{-4}$ N and $t/R = 7.38 \times 10^{-5}$ W.

II) [2 points]. It is getting too full on Planet Earth and half of the population has to move out. So humanity decides to install a big black ball in solar orbit, just at the right distance for a comfortable living temperature of 25 degrees Celsius. The surface albedo of this ball α_p is 0.3 and it will not have an atmosphere. Knowing that on earth (at a distance of 1.5×10^{11} m from the sun) the flux density of solar radiation is 1368 W/m^2 , what will be the distance from this new human planet to the sun.

Solution II: See Attachment 1

III) [1 point]. The aliens are sending us signals of electromagnetic radiation at different wavelengths to get our attention from space. They start with green and violet light. They choose a particularly clear day to send these signals

- a) What kind of scattering would you expect to occur as the light travels through the atmosphere? Which light would be scattered more and by how much ?
- b) **[Bonus Question !]** What if it was a rainy day when they sent the signals ? What kind of scattering would occur ?

Solution III: Rayleigh scattering, because the scattering particles (air molecules) are small compared

to the wavelength, $x \ll 1$.

Violet is scattered more strongly. Scattering efficiency K scales inversely with the wavelength: $K_\lambda \propto \lambda^{-4}$

$$\frac{K(\text{green})}{K(\text{violet})} = (400\text{nm}/510\text{nm})^4 = 0.38$$

(b) Bonus question: Geometric optics regime of scattering for raindrops

Attachment 1

It is getting too full on Planet Earth and half of the population has to move out. So humanity decides to install a big black ball in solar orbit, just at the right distance for a comfortable living temperature of 25 degrees Celsius.

The surface albedo of this ball α_p is 0.3 and it will not have an atmosphere.

Knowing that on earth (at a distance of 1.5×10^{11} m from the sun) the flux density of solar radiation is 1368W/m^2 , what will be the distance from this new human planet to the sun.

Solution:

We need to compute the flux density F_p on the surface of the new planet:
From radiative equilibrium with $T_p = 298.15\text{K}$:

$$(1-\alpha_p) F_p * A_{\text{received}} = \sigma T_p^4 * A_{\text{radiated}}$$

$$(1-\alpha_p) F_p = 4\sigma T_p^4$$

$$F_p = 4\sigma T_p^4 / (1-\alpha_p) = 2.56 \times 10^3$$

Using the inverse square law we can now estimate the distance R_p that the new planet will have to have from the sun (i.e. the radius of the planets solar orbit):

$$R_p = \sqrt{F_{\text{earth}}/F_p} * R_{\text{earth}} = 1.0965 \times 10^{11}\text{m}$$