

ENV 320 – Chemical composition

Exercise session

04.04.2025

What are aerosols ?

Aerosols are solid or liquid particles, not gases.

0

Gaseous pollutants emitted by factories and vehicles.

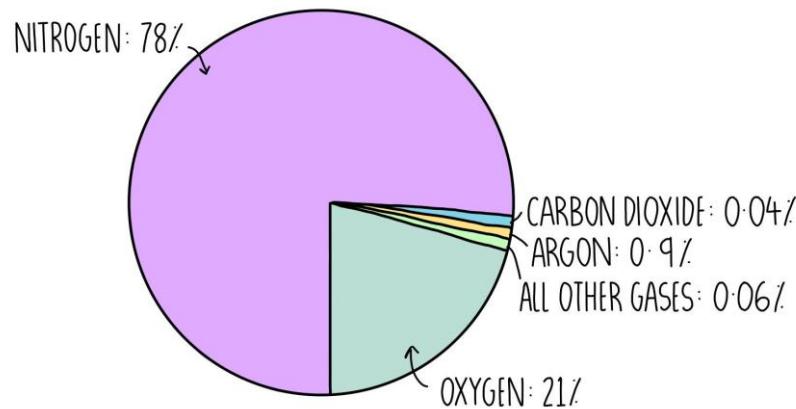
0

Solid or liquid particles suspended in the air.

Water vapor is a gas, while aerosols are solid or liquid particles.

0

Water vapor forming clouds in the atmosphere.


Which of the following compounds are air pollutants ? (multiple answers)

Makes up ~78% of the atmosphere and is not harmful.

From ocean spray.

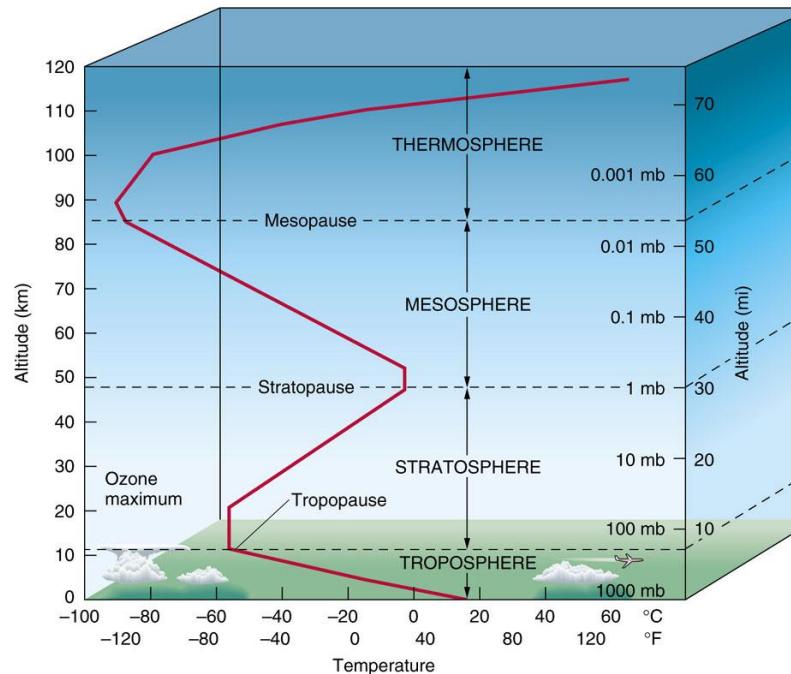
What is a trace gas and which examples are correct ? (multiple answers)

0 ✓

Gases that are present in small amounts in the atmosphere.

0 ✗

Gases that are abundant in the atmosphere.


0 ✗

Oxygen (O₂), Nitrogen (N₂), Argon (Ar)

0 ✓

Carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), ozone (O₃)

In which atmospheric layer(s) is the temperature decreasing with altitude ?

0 ✓

Troposphere

0 ✗

Stratosphere

0 ✓

Mesosphere

0 ✗

Thermosphere

(1) Are ppmm and ppmv the same ? (2) What does 420 ppm of CO₂ actually stand for ?

ppmv = part per million by volume ($\mu\text{L/L}$, cm^3/m^3 , etc.)

ppmm = part per million by mass (mg/kg , $\mu\text{g/g}$, etc.)

Exercise : Please convert 420 ppmv of CO₂ into ppmm.

$$\text{ppmv} = \text{ppmm} \cdot \frac{M_{\text{air}}}{M_{\text{CO}_2}}$$

$M_{\text{air}} = 28.97 \text{ g/mol}$ (average molar mass of dry air)

$M_{\text{CO}_2} = 44.01 \text{ g/mol}$ (molar mass of CO₂)

Solutions :

$$\text{ppmm} = \text{ppmv} \cdot \frac{M_{\text{CO}_2}}{M_{\text{air}}} = 420 \cdot \frac{44.01}{28.97} = 638 \text{ ppmm}$$

0

(1) Yes

0

(1) No

0

(2) 420 ppmv

0

(2) 420 ppmm

Why do we use Standard Temperature and Pressure (STP) when expressing number concentrations?

Gases expand and contract with temperature and pressure changes

0

Gases have a fixed volume regardless of T and P.

0

Consistency and comparability of measurements by using a ref T and P.

0

Chemical composition of gases changes at different temperatures.

0

Prevent gases from reacting with each other in the atmosphere.

Which of the following options is the correct labelling ?

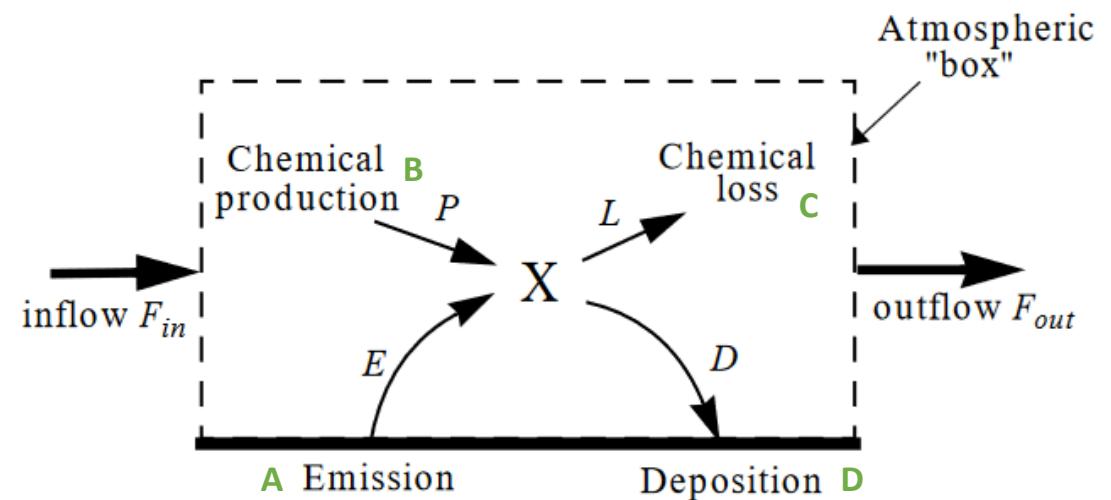


Figure 3-1 One-box model for an atmospheric species X

0 ✗

(A) Chem. Production, (B) Emission, (C) Deposition, (D) Chem. Loss

0 ✗

(A) Emission, (B) Photochemistry, (C) Chemical Loss, (D) Oxidation

0 ✓

(A) Emission, (B) Chem. Production, (C) Chem. Loss, (D) Deposition

0 ✗

(A) Deposition, (B) Long-range transport, (C) Reduction, (D) Gravity

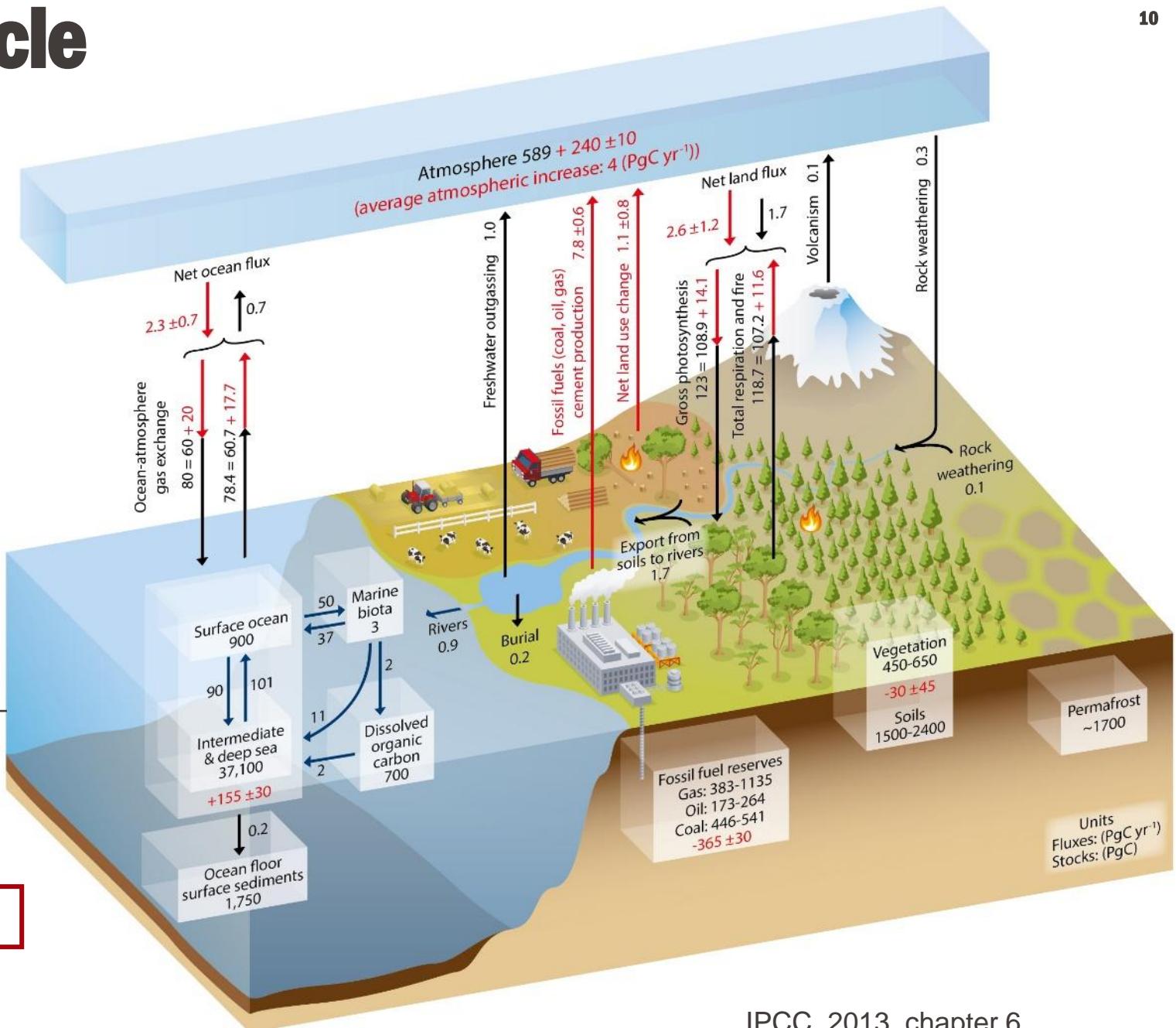
Which one contains more carbon : the atmosphere or the biosphere ?

Global Carbon Cycle

Units: PgC (1 PgC = 10^{15} gC), PgC yr⁻¹

Black: reservoir or fluxes prior to 1750 (pre-industrial), reservoir also called «carbon stock»

Red: «anthropogenic» fluxes 2000-2009


Two domains:

«Fast»: carbon in the atmosphere, the ocean, surface ocean sediments and on land in vegetation, soils and freshwaters

Slow: carbon stores in rocks and sediments

They exchange via volcanic eruptions and chemical weathering of rock.

Location	% C	Type of carbon
Lithosphere	99.985	fossil, sediments, organic carbon, marine sediments
Hydrosphere	0.0076	carbonate ions, dissolved CO ₂ , bicarbonate ions
Pedosphere	0.0031	soil organisms, plant remains
Cryosphere	0.0018	frozen mosses
Atmosphere	0.0015	gaseous carbon
Biosphere	0.0012	living plants and animals

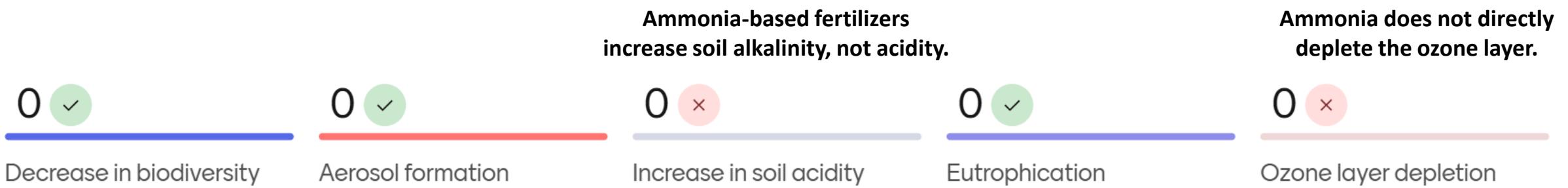
Why is the Haber-Bosch process so important ?

Produces ammonia, not oxygen.

0

It produces oxygen for industrial use.

Ammonia is not primarily used as fuel.


0

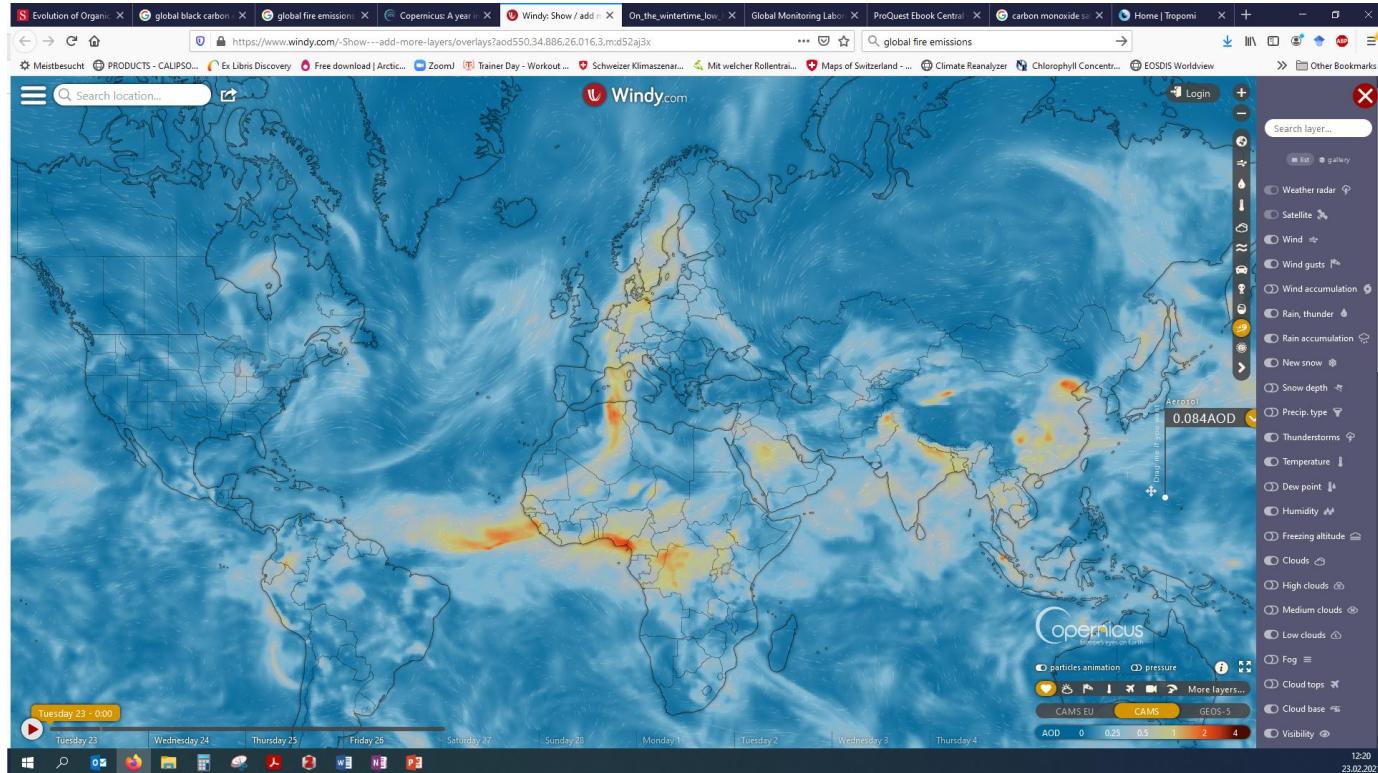
It contributes to the synthesis of ammonia, which is mainly used as a fuel for transportation.

0

It allows for the large-scale production of ammonia, which is essential for fertilizers and boosts agricultural yields.

Ammonia is a great fertilizer, but it can also lead to ... (multiple answers)

Which molecule has a longer atmospheric lifetime ?


Table 1
Atmospheric lifetimes GWP₁₀₀ of greenhouse gases [8]

Greenhouse gases	Atmospheric lifetime (year)	GWP ₁₀₀
CO ₂	50-200	1
CF ₄	50000	6500
C ₂ F ₆	10000	9200
SF ₆	3200	23900
C ₃ F ₈	2600-7000	7000
CHF ₃	250-390	11700
C ₄ F ₈	3200	8700
CH ₄	12	21
N ₂ O	120	310
NF ₃	50-740	8000

SH Han et al. 2009

Why is the lifetime of atmospheric pollutants important when considering their global transport?

Saharan dust transport : good visual representation of how long-lived air pollutants are spreading through global transport.

0 ✓

Longer-lived pollutants travel farther and impact distant regions.

0 ✗

All pollutants mix evenly, so lifetime doesn't affect transport.

0 ✗

Short-lived pollutants reach the stratosphere.

0 ✗

Longer-lived pollutants always have stronger local effects.

Is the atmospheric lifetime of SO₂ longer in the stratosphere or in the troposphere ? Why is it longer in one of them? (select 2 answers)

0

Stratosphere

0

Troposphere

0

Reason : stratosphere is higher

0

Reason : OH is "washing" the troposphere

OH is the «washing agent» of the troposphere.

- Particulate matter (PM)
 - $\leq 10 \mu\text{m}$: PM₁₀
 - $\leq 2.5 \mu\text{m}$: PM_{2.5}
- Swiss standard
 - PM_{2.5} : $10 \mu\text{g m}^{-3}$ (annual mean),
 $25 \mu\text{g m}^{-3}$ (daily mean)
 - PM₁₀ : $20 \mu\text{g m}^{-3}$ (annual mean),
 $50 \mu\text{g m}^{-3}$ (daily mean)
- Ozone
 - CH:
 - $< 100 \mu\text{g m}^{-3}$ (98 % of $\frac{1}{2}$ -h averages in one month)
 - $120 \mu\text{g m}^{-3}$ hourly average, only to be surpassed once per year
- USA
 - 0.070 ppm (8-hour average)

Who is stricter?

Calculation not done during lecture

CH

120 $\mu\text{g m}^{-3}$ hourly average

USA

0.070 ppm (8-hour average)

What you need to know

Loschmidt's number:

Number of molecules per m^3 at STP

2.687×10^{25}

$$\frac{\text{volume occupied by } \text{O}_3}{\text{volume occupied by air}} = \frac{\text{number of } \text{O}_3 \text{ molecules per } \text{m}^3}{\text{total number of molecules per } \text{m}^3}$$

Molecules per mol: 6.022×10^{23}

Molecular weight of O_3 : 48 g / mol

Loschmidt's number:

Number of molecules per m^3 at STP
 2.687×10^{25}

$$\frac{\text{volume occupied by } O_3}{\text{volume occupied by air}} =$$

$$\frac{\text{number of } O_3 \text{ molecules per } m^3}{\text{total number of molecules per } m^3}$$

USA (8-hour average)

$$0.070 \text{ ppm} = 0.07 \times 10^{-6}$$

$$\text{number of } O_3 \text{ molecules } m^{-3} = \\ 0.07 \times 10^{-6} \times 2.687 \times 10^{25} = 1.88 \times 10^{18} \text{ molecules/m}^3$$

Molecules per mol: 6.022×10^{23}

Molecular weight of O_3 : 48 g / mol

$$\text{number of moles of } O_3 \text{ } m^{-3} =$$

$$\frac{1.88 \times 10^{18}}{6.022 \times 10^{23}} = 3.12 \times 10^{-6} \text{ mol/m}^3$$

$$\mu\text{g of } O_3 \text{ } m^{-3} = 3.12 \times 10^{-6} \times 48 \times 10^6 = \underline{\underline{149.92}} \text{ } \mu\text{g/m}^3$$

Switzerland: $120 \mu\text{g m}^{-3}$ (hourly)

→ Switzerland is stricter