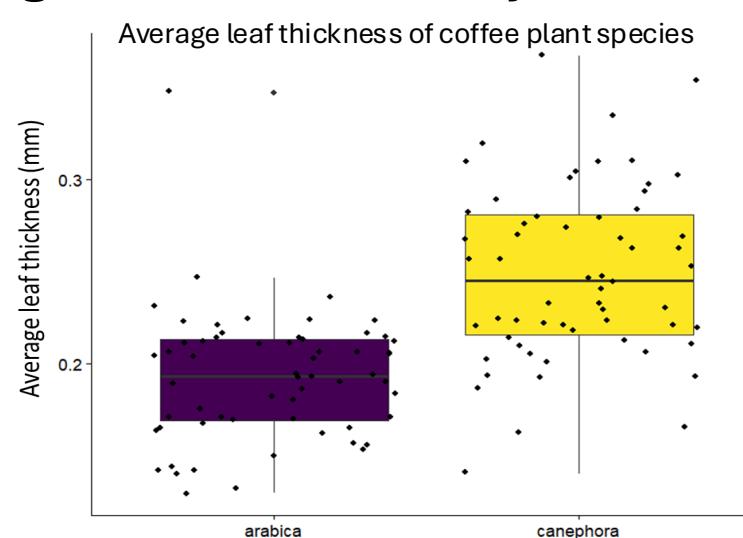


# Data visualisation in R

Why is data visualisation important?

What is a good plot?

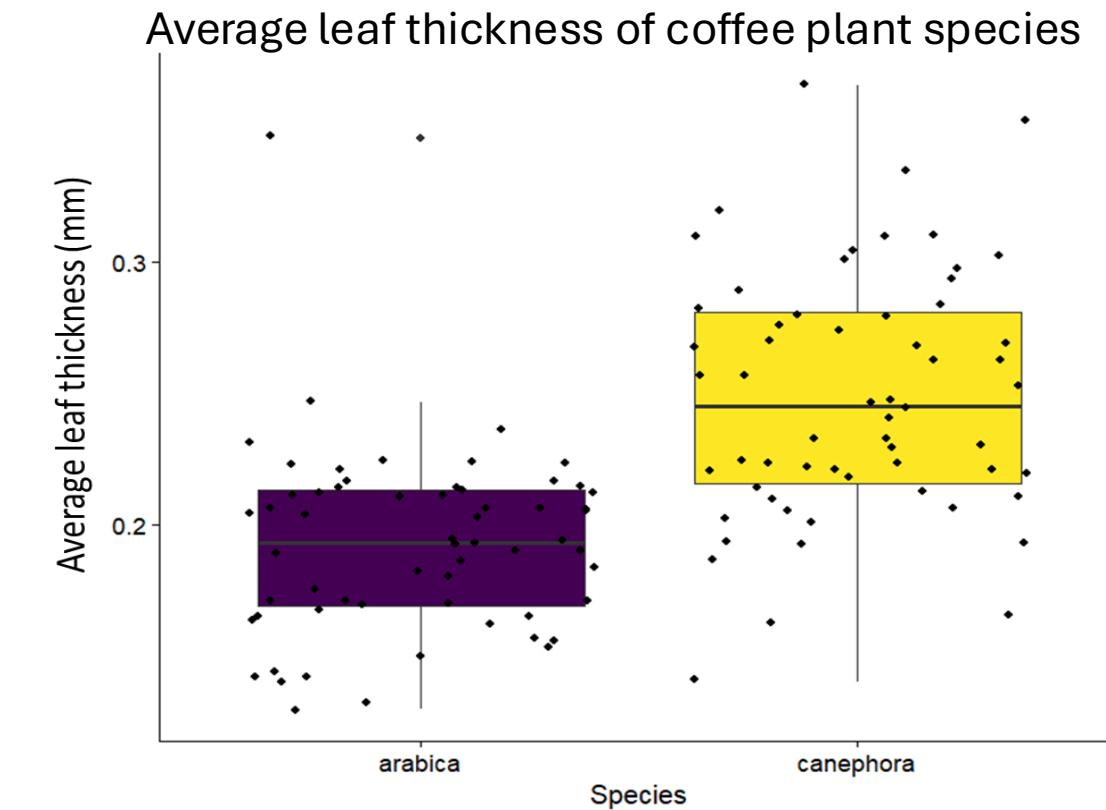

Which tools can I use?

# Why is data visualisation important?

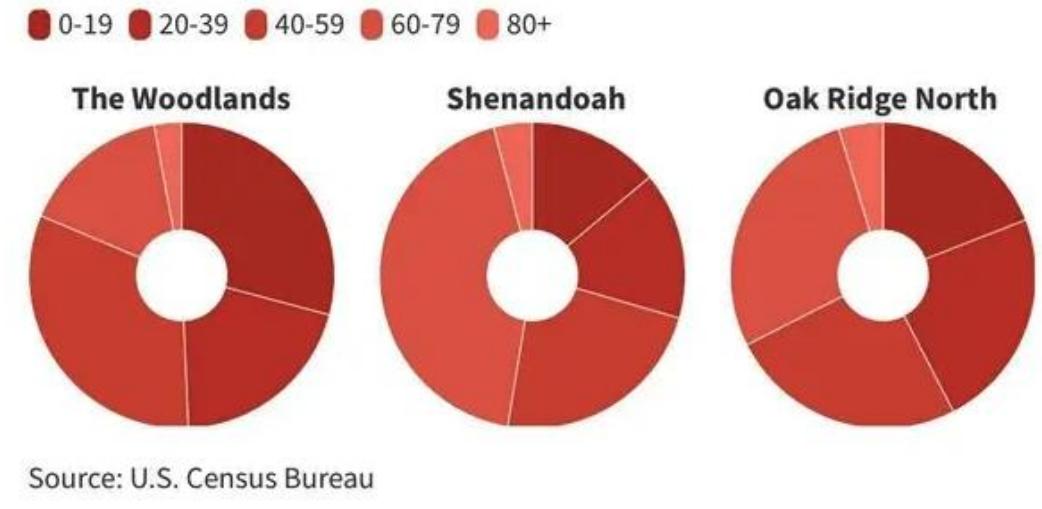
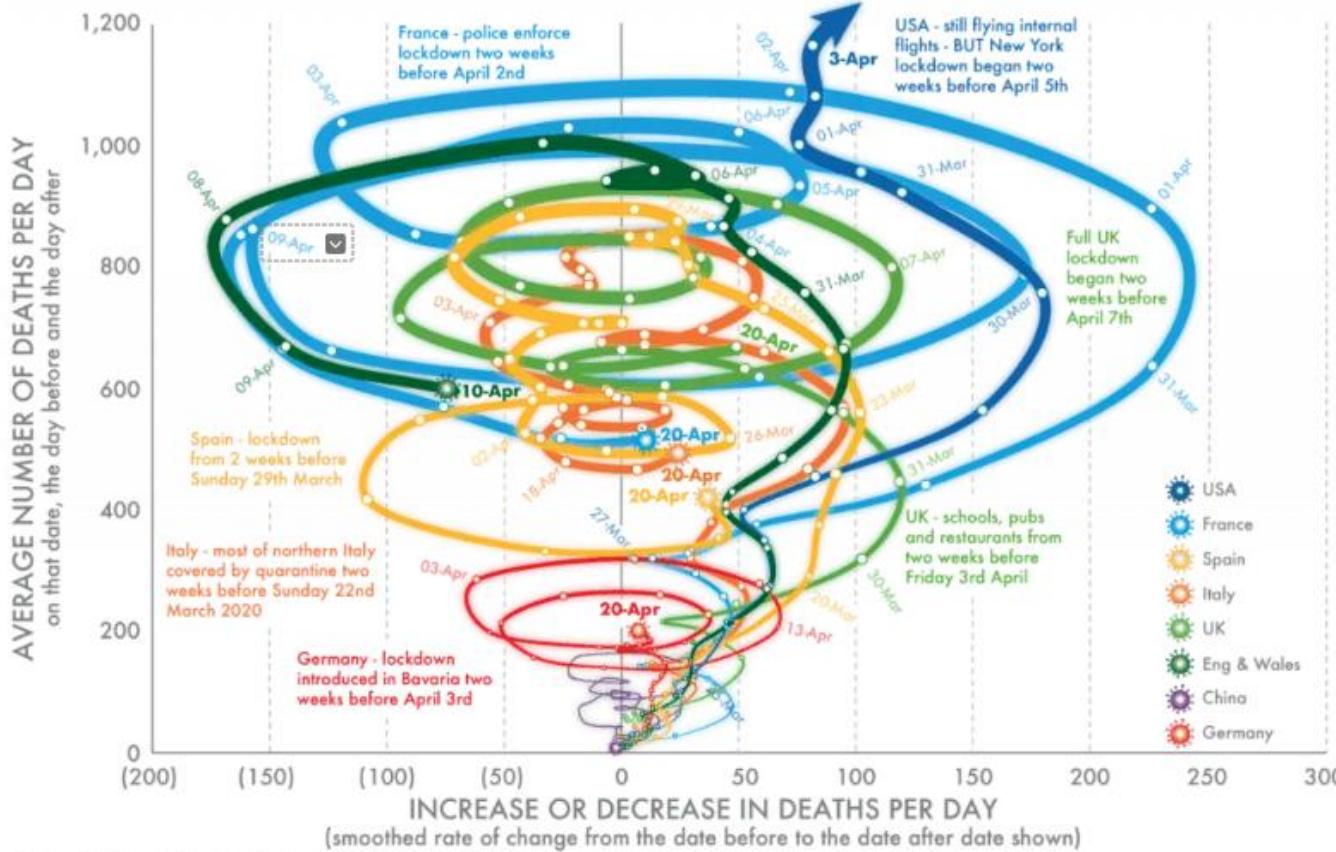
- Goal of an experiment is to **test one or several predictions** → with plots we can answer the initial hypotheses
- Transform measurements from generic numbers to shapes
- Plots enable us to visualise **patterns** and **trends** in our data
- Plots help us **communicate** scientific findings more effectively

|    | A        | B      | C          | D           | E         | F        | G        | H        | I        | J        | K        | L        | M        | N        | O        | P        | Q  |
|----|----------|--------|------------|-------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----|
|    | Image    | Median | MedianBlue | MedianGreen | MedianRed | SD Red   | SD Green | SD Blue  | H median | 5 median | Median   | Mean     | S mean   | V mean   | Time     |          |    |
| 1  | 20231127 | 43     | 86         | 9           | 49.26941  | 93.0762  | 28.23931 | 21.83391 | 25.95954 | 39.76556 | 55.05649 | 89.53491 | 0.337725 | 100.5383 | 0.69662  | 0.365005 | 1  |
| 2  | 20240730 | 131    | 175        | 2           | 143.746   | 181.385  | 39.11347 | 43.55777 | 55.38551 | 69.73103 | 85.46212 | 98.8571  | 0.686275 | 75.0505  | 0.784334 | 0.711331 | 2  |
| 3  | 20240730 | 132    | 176        | 2           | 144.46    | 181.354  | 39.15565 | 43.41407 | 31.37476 | 69.67956 | 75.17241 | 98.8636  | 0.690196 | 75.1096  | 0.784641 | 0.713001 | 3  |
| 4  | 20240730 | 132    | 176        | 2           | 144.477   | 182.122  | 39.20693 | 43.41938 | 31.25965 | 69.7268  | 75.17241 | 98.8636  | 0.690196 | 75.54275 | 0.784722 | 0.714204 | 4  |
| 5  | 20240730 | 133    | 176        | 2           | 145.829   | 182.178  | 39.56299 | 43.41938 | 31.25965 | 69.7268  | 75.17241 | 98.8636  | 0.690196 | 75.54433 | 0.782833 | 0.714223 | 5  |
| 6  | 20240730 | 133    | 176        | 2           | 145.8215  | 182.287  | 39.35305 | 43.24407 | 31.17446 | 69.92319 | 74.82759 | 98.8636  | 0.690196 | 75.54433 | 0.782833 | 0.714223 | 6  |
| 7  | 20240730 | 133    | 176        | 2           | 145.8215  | 182.287  | 39.35305 | 43.24407 | 31.17446 | 69.92319 | 74.82759 | 98.8636  | 0.690196 | 75.54433 | 0.782833 | 0.714223 | 7  |
| 8  | 20240730 | 133    | 177        | 2           | 145.8215  | 182.287  | 39.35305 | 43.24407 | 31.17446 | 69.92319 | 74.82759 | 98.8636  | 0.690196 | 75.54433 | 0.782833 | 0.714223 | 8  |
| 9  | 20240730 | 133    | 177        | 2           | 145.189   | 182.1043 | 39.59371 | 43.30094 | 31.05708 | 70.17867 | 70.17867 | 98.8701  | 0.691118 | 75.63238 | 0.783053 | 0.715703 | 9  |
| 10 | 20240730 | 133    | 177        | 2           | 145.4439  | 182.1687 | 39.57343 | 43.30812 | 31.07079 | 70.18511 | 70.18511 | 98.8701  | 0.691118 | 75.85997 | 0.78336  | 0.716348 | 9  |
| 11 | 20240730 | 132    | 177        | 2           | 144.525   | 182.0317 | 39.42302 | 43.3416  | 31.03018 | 70.07063 | 75.42857 | 98.8701  | 0.691118 | 76.05206 | 0.784472 | 0.717300 | 10 |
| 12 | 20240730 | 134    | 177        | 2           | 145.289   | 182.8899 | 39.43154 | 43.26797 | 31.03465 | 70.08337 | 74.74286 | 98.8701  | 0.691118 | 75.84045 | 0.784399 | 0.717215 | 11 |
| 13 | 20240730 | 133    | 177        | 2           | 145.356   | 182.8926 | 39.28973 | 43.33997 | 31.06151 | 70.10831 | 75.08571 | 98.8701  | 0.691118 | 75.86262 | 0.785282 | 0.717579 | 12 |
| 14 | 20240730 | 132    | 177        | 2           | 145.2722  | 183.0303 | 39.03345 | 43.24407 | 31.17446 | 69.92319 | 74.82759 | 98.8636  | 0.690196 | 75.77911 | 0.786001 | 0.71801  | 13 |
| 15 | 20240730 | 133    | 177        | 2           | 145.2722  | 183.0303 | 39.03345 | 43.24407 | 31.17446 | 69.92319 | 74.82759 | 98.8636  | 0.690196 | 75.77911 | 0.786001 | 0.71801  | 14 |
| 16 | 20240730 | 132    | 177        | 2           | 144.164   | 182.7637 | 38.85655 | 43.61793 | 31.23992 | 70.02438 | 75.42857 | 98.8701  | 0.691118 | 76.03006 | 0.787395 | 0.716721 | 15 |
| 17 | 20240730 | 132    | 177        | 2           | 144.2841  | 182.793  | 38.85655 | 43.61793 | 31.23992 | 70.02438 | 75.42857 | 98.8701  | 0.691118 | 76.01946 | 0.788091 | 0.716585 | 16 |
| 18 | 20240730 | 133    | 177        | 2           | 144.3114  | 182.6233 | 38.85938 | 43.65261 | 31.26642 | 70.05304 | 75.08571 | 98.8701  | 0.691118 | 75.72852 | 0.787352 | 0.716167 | 17 |
| 19 | 20240730 | 132    | 177        | 2           | 144.444   | 182.7743 | 38.71276 | 43.68988 | 31.23783 | 69.92882 | 75.42857 | 98.8701  | 0.691118 | 75.84616 | 0.788198 | 0.716762 | 18 |
| 20 | 20240730 | 133    | 177        | 2           | 144.5994  | 182.7966 | 38.85198 | 43.61844 | 31.19862 | 70.0233  | 75.08571 | 98.8701  | 0.691118 | 75.79450 | 0.787458 | 0.716849 | 19 |
| 21 | 20240730 | 133    | 177        | 2           | 144.5994  | 182.7966 | 38.85198 | 43.61844 | 31.19862 | 70.0233  | 75.08571 | 98.8701  | 0.691118 | 75.79450 | 0.787458 | 0.717137 | 20 |
| 22 | 20240730 | 133    | 177        | 2           | 144.592   | 182.4421 | 38.86454 | 43.56881 | 31.1222  | 69.9371  | 75.08571 | 98.8701  | 0.691118 | 75.85931 | 0.788001 | 0.717137 | 21 |
| 23 | 20240730 | 132    | 177        | 2           | 145.0022  | 183.094  | 38.83312 | 43.55252 | 31.11543 | 69.95932 | 75.08571 | 98.8701  | 0.691118 | 75.84286 | 0.787906 | 0.718016 | 22 |
| 24 | 20240730 | 133    | 177        | 2           | 145.2235  | 183.0937 | 38.97364 | 43.54603 | 31.05951 | 70.02111 | 75.08571 | 98.8701  | 0.691118 | 75.56607 | 0.787380 | 0.718014 | 23 |
| 25 | 20240730 | 133    | 177        | 2           | 145.1511  | 183.7119 | 38.95108 | 43.56398 | 31.09824 | 70.06402 | 75.08571 | 98.8701  | 0.691118 | 75.83273 | 0.787321 | 0.718321 | 24 |
| 26 | 20240730 | 132    | 177        | 2           | 145.2098  | 183.7126 | 39.06955 | 43.53137 | 31.09231 | 70.18366 | 75.08571 | 98.8701  | 0.691118 | 75.80652 | 0.786760 | 0.718324 | 25 |
| 27 | 20240730 | 133    | 177        | 2           | 145.0844  | 183.207  | 39.09465 | 43.54586 | 31.09194 | 70.21795 | 75.08571 | 98.8701  | 0.691118 | 75.87201 | 0.786609 | 0.718459 | 26 |
| 28 | 20240730 | 133    | 177        | 2           | 145.0872  | 183.207  | 39.09465 | 43.54586 | 31.09194 | 70.21795 | 75.08571 | 98.8701  | 0.691118 | 75.87201 | 0.786609 | 0.718459 | 27 |
| 29 | 20240730 | 132    | 177        | 2           | 144.872   | 183.207  | 39.04710 | 43.56005 | 31.08939 | 70.20418 | 75.42857 | 98.8701  | 0.691118 | 75.89319 | 0.787002 | 0.718909 | 28 |
| 30 | 20240730 | 132    | 177        | 2           | 144.977   | 183.5542 | 38.91243 | 43.57366 | 31.08278 | 70.09445 | 75.42857 | 98.8701  | 0.691118 | 75.94516 | 0.787775 | 0.719036 | 29 |
| 31 | 20240730 | 134    | 177        | 2           | 145.7774  | 183.4439 | 39.00947 | 43.50585 | 31.09409 | 70.18018 | 74.74286 | 98.8701  | 0.691118 | 75.54407 | 0.787117 | 0.718609 | 30 |
| 32 | 20240730 | 134    | 177        | 2           | 146.166   | 183.285  | 39.05952 | 43.50339 | 31.08138 | 70.25745 | 74.74286 | 98.8701  | 0.691118 | 75.28485 | 0.786863 | 0.718543 | 31 |
| 33 | 20240730 | 133    | 177        | 2           | 146.949   | 183.7374 | 38.95448 | 43.54549 | 31.07331 | 70.1799  | 75.08571 | 98.8701  | 0.691118 | 75.38691 | 0.787569 | 0.719111 | 32 |
| 34 | 20240730 | 133    | 177        | 2           | 145.7276  | 183.357  | 38.98164 | 43.55946 | 31.05951 | 70.1799  | 75.08571 | 98.8701  | 0.691118 | 75.38691 | 0.787569 | 0.719047 | 33 |
| 35 | 20240730 | 132    | 178        | 2           | 145.7276  | 183.357  | 38.98164 | 43.55946 | 31.05951 | 70.1799  | 75.08571 | 98.8701  | 0.691118 | 75.38691 | 0.787569 | 0.719047 | 34 |
| 36 | 20240730 | 132    | 178        | 2           | 145.7311  | 183.1113 | 39.36338 | 43.55261 | 31.05667 | 75.65181 | 75.65181 | 98.8701  | 0.691118 | 75.38691 | 0.787569 | 0.719047 | 35 |
| 37 | 20240730 | 133    | 178        | 2           | 145.1505  | 183.4272 | 39.24451 | 43.50697 | 31.05667 | 70.42755 | 75.34091 | 98.8701  | 0.691118 | 75.42220 | 0.786102 | 0.719501 | 36 |
| 38 | 20240730 | 133    | 178        | 2           | 145.858   | 183.5366 | 39.04354 | 43.54558 | 31.02912 | 70.35957 | 75.34091 | 98.8701  | 0.691118 | 75.68877 | 0.787707 | 0.719955 | 37 |
| 39 | 20240730 | 134    | 178        | 2           | 145.859   | 183.5366 | 39.04354 | 43.51513 | 31.02912 | 70.35957 | 75.34091 | 98.8701  | 0.691118 | 75.65756 | 0.786662 | 0.719752 | 38 |
| 40 | 20240730 | 132    | 178        | 2           | 144.9968  | 183.5595 | 39.25107 | 43.55946 | 31.0247  | 70.30374 | 75.68182 | 98.8701  | 0.691118 | 76.08628 | 0.787222 | 0.720234 | 39 |
| 41 | 20240730 | 134    | 178        | 2           | 145.5252  | 183.744  | 39.25107 | 43.50975 | 31.03097 | 70.4332  | 75.34091 | 98.8701  | 0.691118 | 75.85330 | 0.786933 | 0.719827 | 40 |
| 42 | 20240730 | 132    | 178        | 2           | 146.144   | 183.5595 | 39.25107 | 43.49853 | 31.02843 | 70.4332  | 75.34091 | 98.8701  | 0.691118 | 75.63940 | 0.786512 | 0.719827 | 41 |
| 43 | 20240730 | 134    | 178        | 2           | 145.4972  | 183.5882 | 39.44479 | 43.50964 | 31.02494 | 70.83854 | 75.34091 | 98.8701  | 0.691118 | 75.63940 | 0.786512 | 0.719827 | 42 |
| 44 | 20240730 | 133    | 178        | 2           | 145.0444  | 183.7116 | 39.02853 | 43.56471 | 31.00815 | 70.30458 | 75.34091 | 98.8701  | 0.691118 | 75.65332 | 0.787662 | 0.720073 | 43 |

Practicals: Data visualisation in R



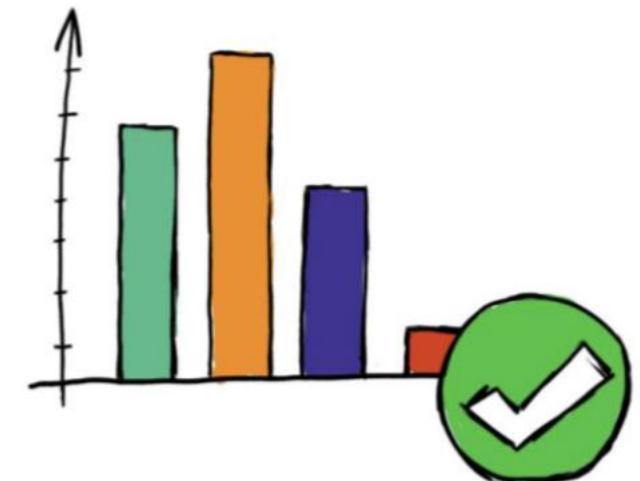
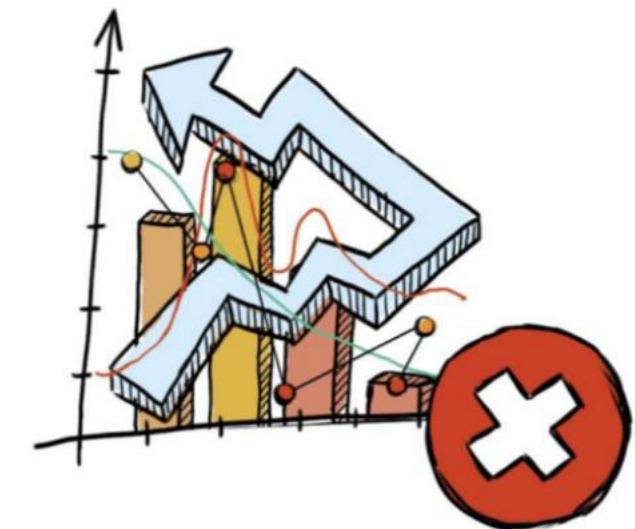

# What is a good plot?



- Conveys relevant information
- Easy to understand
- Clear and visible
- Includes titles, legends, and units
- Use contrasting colours

Check these out

- <https://colors.co/palettes/popular>
- <https://hclwizard.org>
- <https://www.datanovia.com/en/blog/the-a-z-of-rcolorbrewer-palette/>
- <https://bpb-us-e1.wpmucdn.com/sites.ucsc.edu/dist/d/276/files/2015/10/colorbynams.png?bid=276>

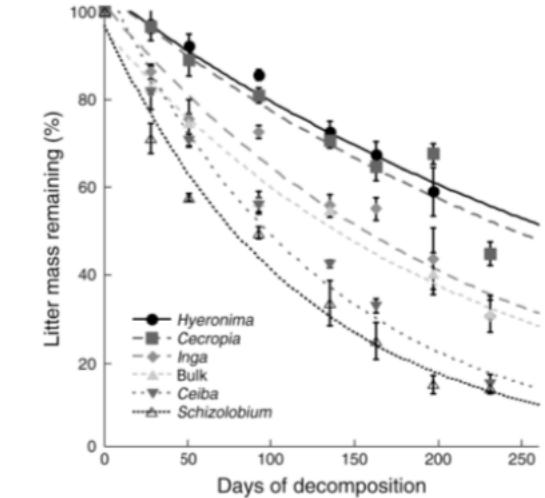
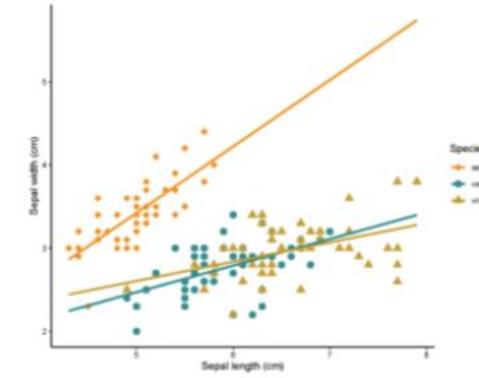




# Examples of bad plots



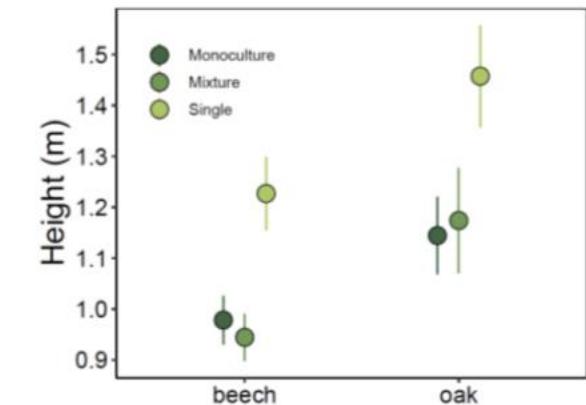
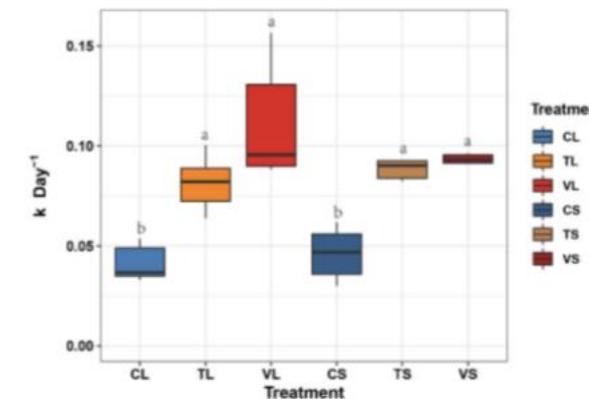
# What is a good plot?

To create a good plot:



- Think about your hypotheses: what do you want to show?  
→ **Relevance** is important!
- Think about your experimental design: what type of variables do you have?  
→ Choose the right type of plot

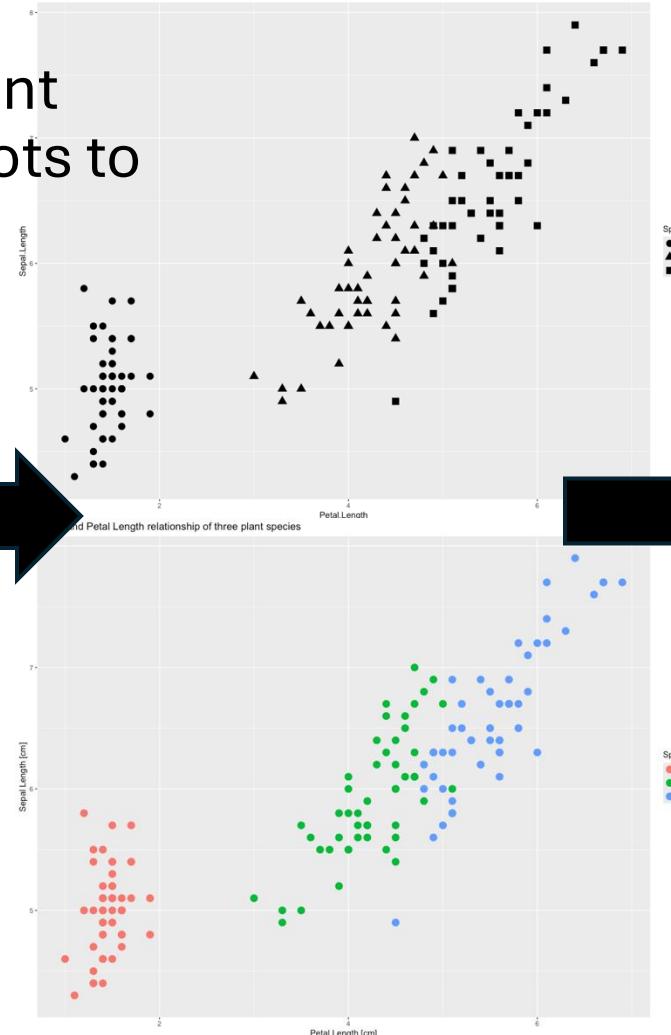
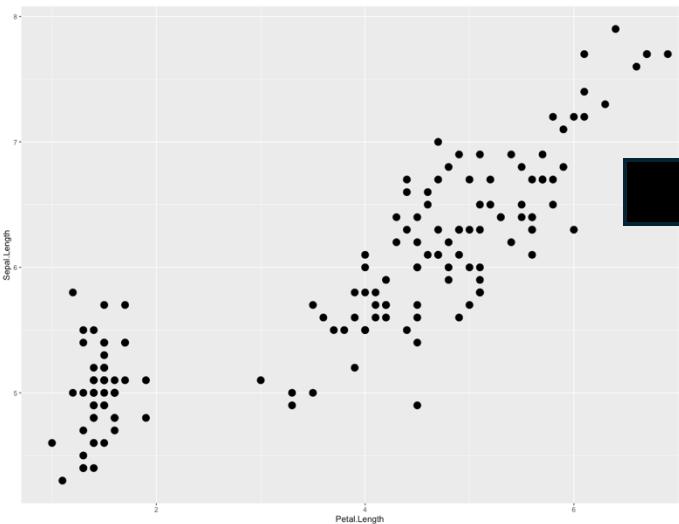


# How to choose the appropriate plot?

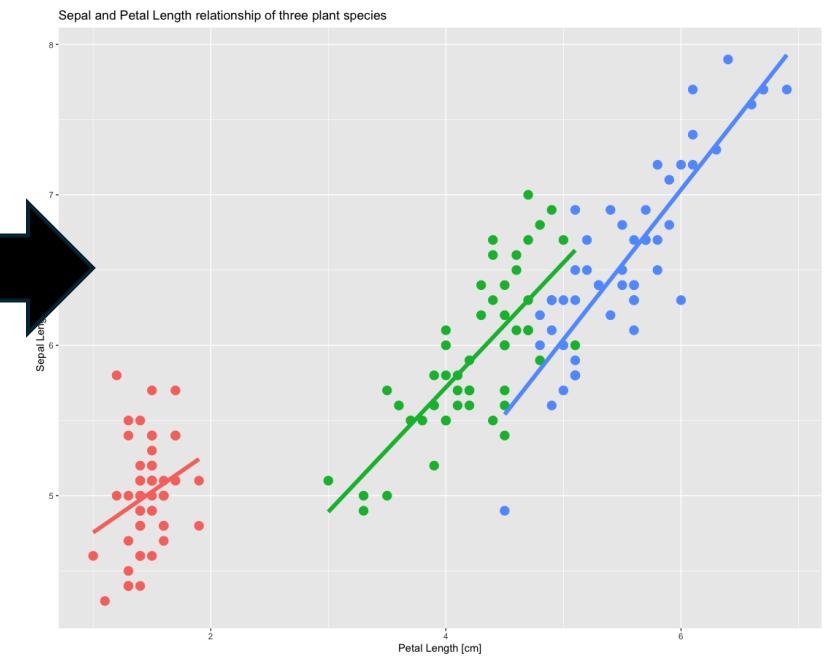


- Relationships: scatter plots, line plots

- Continuous variables
- Evolution over time





- Comparisons: box plots, bar plots, point plots

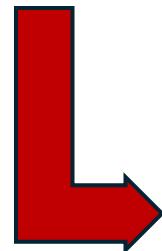
- Categorical variables
- Differences between groups




# Choice of final plot

Explore your data, try different colours, shapes, types of plots to discover potential trends




Final plot is obtained through trial and error!



# Which tools can I use?



- In R, there are mainly two options to plot your data:
  - base R: built-in function that allow you to create different plots, easy to use for basic graphs
  - ggplot: R-package including a large variety of plots and esthetics (colours, shapes, facets,...)



Today we will mainly  
be using ggplot!

# Which tools can I use?



- Check the material on moodle:
  - Visualisation in R: examples of codes to create plots
  - Cheat Sheets: summaries of command for base R and ggplot
  - Visualisation tasks: small tasks for training
  - Your own data: you can already importing it on r and start exploring