Cell respiration




Why Should Environmental Engineering Students Care About ...
Cell Respiration?

F}\m\ / 1. Core of Life’s Energy
j s (8 \ * Cellular respiration is how organisms convert food into energy
R e, T (ATP).

* Essential for understanding biological energy flow.

2. Impact on Ecosystems

e Cellular respiration influences the carbon cycle.

* Helps in understanding how living organisms contribute to carbon
emissions and how ecosystems balance energy and matter.

3. Relevance to Pollution & Climate Change

* By-products like CO2 affect global greenhouse gas levels.
* Knowing respiration helps analyze impacts on the
environment and design solutions for reducing emissions.




Recap: life is work, work needs energy

Living cells require energy from outside sources to do work

The work of the cell includes assembling polymers, membrane
transport, moving, reproducing...

Animals can obtain energy to do this work by feeding on other animals,
organic compounds, or photosynthetic organisms (heterotrophic).

Photosynthetic organisms use the energy of sunlight to synthetize
organic compounds (autotrophic).
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Energy flow and chemical recycling in ecosystems
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Catabolic Pathways and Production of ATP

= The breakdown of organic molecules is exergonic
= Aerobic respiration requires organic molecules and O, and yields ATP

= Fermentation Is a partial degradation of sugars that occurs without O,

= Anaerobic respiration is similar to aerobic respiration but is based on compounds
other than O, (occurs without oxygen)
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Cellular respiration

= Cellular respiration is the process through which cells generate energy in the form
of adenosine triphosphate (ATP) by breaking down organic molecules such as
glucose. It mostly occurs within the mitochondria of eukaryotic cells and involves a
series of biochemical reactions.

= Cellular respiration includes both aerobic and anaerobic respiration but is often
used to refer to aerobic respiration

= Although carbohydrates, fats, and proteins are all consumed as fuel, it is helpful to
trace cellular respiration with the sugar glucose

CGHlZOG + 6 02 — 6 C02 + 6 Hzo + Energy (ATP + heat)



Cellular respiration: overview
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Relationship between glucose and ATP

= \We can use money as an analogy for cellular respiration:

= Glucose is like a larger-denomination bill—it is worth a lot, but it is hard to
spend

= ATP is like a number of smaller-denomination bills of equivalent value—
they can be spent more easily

= Cellular respiration cashes in a large denomination of energy (glucose) for
the small change of many molecules of ATP




Cellular respiration is based on a series of redox reactions



Redox Reactions: Oxidation and Reduction

= Cellular respiration is based on redox reactions

= The transfer of electrons during chemical reactions releases energy stored in
organic molecules

= This released energy is ultimately used to synthesize ATP.
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The Principle of Redox

= Chemical reactions that transfer electrons between reactants are called
oxidation-reduction reactions, or redox reactions

= |n oxidation, a substance loses electrons, or is oxidized

= In reduction, a substance gains electrons, or is reduced (the amount of
nositive charge Is reduced)




The electron donor is called the reducing agent
The electron receptor is called the oxidizing agent

Some redox reactions do not transfer electrons but change the electron
sharing in covalent bonds

An example Is the reaction between methane and O,
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Example methane and O, combustion

Reactants Products

[— becomes oxidized ﬁ

CHg4 + 20p —>» COp + Energy + 2H0

H ;— becomes reduced—j

H— *H O———0 O+—+—C——==0 H—20+H

H
Methane Oxygen Carbon dioxide Water
(reducing (oxidizing

agent) agent)



Oxidation of organic molecules as fuel during cellular respiration

= During cellular respiration, the fuel (such as glucose) is oxidized, and
O, Is reduced

= Organic molecules with an abundance of hydrogen are excellent
sources of high-energy electrons

= Energy is released as the electrons associated with hydrogen ions are
transferred to oxygen, a lower energy state



Cellular respiration: NAD+ and NADH
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Energy Harvest via NAD* and the Electron Transport Chain

In cellular respiration, glucose and
other organic molecules are broken
down in a series of steps

Electrons from organic compounds
are usually first transferred to NAD*
a coenzyme

As an electron acceptor, NAD*
functions as an oxidizing agent during
cellular respiration

Each NADH (the reduced form of
NAD*) represents stored energy that
IS tapped to synthesize ATP
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NAD* as an electron shuttle

NAD*
H o
I

(jfc— NH>
NS

N* Nicotinamide
(oxidized form)

2e +2H*

Dehydrogenase

Reduction of NAD* H I
+ 2[H] = = C—NH2
(from food) Oxidation of NADH | |

2e +H
\ NADH

yo

Nicotinamide

N
| (reduced form)
! |

H+

+ H*



NAD* as an electron shuttle

NADH passes the electrons to the electron transport chain

Unlike an uncontrolled reaction, the electron transport chain passes
electrons in a series of steps

O, pulls electrons down the chain in an energy-yielding tumble
The energy yielded is used to regenerate ATP
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Zooming into the
cellular respiration



Cellular respiration: overview
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The Stages of Cellular Respiration: A Preview

= Harvesting of energy from glucose has three stages
1. Glycolysis (breaks down glucose into two molecules of pyruvate)
2. The citric acid cycle (completes the breakdown of glucose)
3. Oxidative phosphorylation (accounts for most of the ATP synthesis)



Color coding in the figures hereafter

(Ml GLYCOLYSIS (color-coded blue throughout the chapter)

PYRUVATE OXIDATION and the CITRIC ACID CYCLE
(color-coded light orange and dark orange)

< OXIDATIVE PHOSPHORYLATION: Electron transport and
chemiosmosis (color-coded purple)
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ATP regeneration

= The process that generates almost 90% of the ATP is called oxidative
phosphorylation because it is powered by redox reactions

= A smaller amount of ATP is formed in glycolysis and the citric acid cycle
by substrate-level phosphorylation

Substrate
Product

For each molecule of glucose degraded to CO, and water by respiration, the
cell makes up to 32 molecules of ATP (30-32 actually)



Zooming into the
cellular respiration: glycolysis






Glycolysis harvests chemical energy by oxidizing glucose to
pyruvate

= Glycolysis (“sugar splitting”) breaks down glucose into two molecules of
pyruvate
= Glycolysis occurs in the cytoplasm and has two major phases
* Energy investment phase
* Energy payoff phase
= Glycolysis occurs whether or not O, is present



A closer look at glycolysis (part 1: investment phase)

Glyceraldehyde
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Hexokinase, phosphogluco-isomerase, phosphofructokinase, aldolase and isomerase are the
enzymes involved in the glycolysis (part I).



A closer look at glycolysis (part 2: payoff phase)
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GLYCOLYSIS: Energy Investment Phase
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GLYCOLYSIS: Energy Investment Phase
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GLYCOLYSIS: Energy Investment Phase
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GLYCOLYSIS: Energy Investment Phase
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GLYCOLYSIS: Energy Investment Phase
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GLYCOLYSIS: Energy Investment Phase
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A closer look at glycolysis (part 2: payoff phase)

GLYCOLYSIS: Energy Payoff Phase
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GLYCOLYSIS: Energy Payoff Phase
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GLYCOLYSIS: Energy Payoff Phase
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GLYCOLYSIS: Energy Payoff Phase

Glyceraldehyde 2 -

3-phosphate (G3P) 2 NAD* +2H* 2A
s | (N o o |
e §HOH > CHOH ——
CH,0—P Triose f ‘ J:
— phosphate 2(P); CH,0—®  glycerokinase CH0—®
| ' : —
| 4 | l SOMeraseé  gehydrogenase | _ a
—— \4 e @ 1,3-Bisphospho- 3-Phospho-
Algse Dihydroxyacetone glycerate dyeee
| phosphate (DHAP)
| CH,0—®
L eo
CH,OH




GLYCOLYSIS: Energy Payoff Phase
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GLYCOLYSIS: Energy Payoff Phase
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GLYCOLYSIS: Energy Payoff Phase
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The energy input and output of  Energy Investment Phase
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After pyruvate is oxidized, the citric acid cycle or Krebs
cycle completes the energy-yielding oxidation of organic
molecules

= In the presence of O,, pyruvate enters a mitochondrion (in eukaryotic
cells), where the oxidation of glucose is completed
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Oxidation of Pyruvate to Acetyl CoA

= Before the citric acid cycle can begin, pyruvate must be converted to
acetyl coenzyme A (acetyl CoA), which links glycolysis to the citric acid

cycle
= This step is carried out by a multienzyme complex that catalyzes three
reactions

1. Oxidation of pyruvate and release of CO,

2. Reduction of NAD* to NADH

3. Combination of the remaining two-carbon fragment and coenzyme A to
form acetyl CoA



Oxidation of Pyruvate to Acetyl CoA
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Zooming into the
cellular respiration: citric acid cycle






The Citric Acid Cycle

= The citric acid cycle, also called the Krebs cycle, completes the
breakdown of pyruvate to CO,

= The cycle oxidizes organic fuel derived from pyruvate, generating 1
ATP, 3 NADH, and 1 FADH, per turn



FADH,/FAD+ is another coenzyme

Pyruvate

(from glycolysis, which carries electrons during
2 molecules per glucose)
the Krebs cycle.

ROSS:

CITRIC
ACID
CYCLE

OH OH

Flavine adenine
dinucleotide (FAD)




The citric acid cycle has eight steps, each catalyzed by a specific
enzyme

The acetyl group of acetyl CoA joins the cycle by combining with
oxaloacetate, forming (1st step of the cycle)

The next seven steps decompose the citrate back to oxaloacetate,
making the process a cycle

The NADH and FADH, produced by the cycle relay electrons extracted
from food to the electron transport chain



PYRUVATE OXIDATION
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The enzymes

Acetyl CoA
( Oxaloacetate ) 1. citrate Citrate
NADH synthase

NAD* )/8 malate 2. aconitase
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Zooming into the
cellular respiration: oxidative
phosphorilation






During oxidative phosphorylation, chemiosmosis couples
electron transport to ATP synthesis

= Following glycolysis and the citric acid cycle, and
account for most of the energy extracted from food

= These two electron carriers donate electrons to the electron transport
chain, which powers ATP synthesis via oxidative phosphorylation



The Pathway of Electron Transport

= The electron transport chain is in the inner membrane (cristae) of the
mitochondrion

= Most of the chain’s components are proteins, which exist in multiprotein
complexes

= Electrons drop Iin free energy as they go down the chain and are finally
passed to O,, forming H,O

= Electron carriers alternate between reduced and oxidized states as
they accept and donate electrons



Electrons are transferred from NADH or FADH, to the electron
transport chain

Electrons are passed through a number of proteins including
cytochromes (each with an iron atom) to O,

The electron transport chain generates no ATP directly

It breaks the large free-energy drop from food to O, into smaller steps
that release energy in manageable amounts
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Free-energy change during electron transport

Free energy (G) relative to O, (kcal/mol)
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Chemiosmosis: The Energy-Coupling Mechanism

= The energy released as electrons are passed down the electron

transport chain is used to pump H* from the mitochondrial matrix to the
Intermembrane space

= H* then moves down its concentration gradient back across the
membrane, passing through the protein complex ATP synthase



= H* moves Into binding sites on the rotor of ATP synthase, causing it to
spin in a way that catalyzes phosphorylation of ADP to ATP

= This Is an example of chemiosmosis, the use of energy in a H*
gradient to drive cellular work
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ATP Synthase 3-D Structure, Top View

Atop view of alpha3-beta3-gamma
By Hongvun Wang & George Oster, U.C.Berkeley




= Certain electron carriers in the electron transport chain accept and
release H* along with the electrons

= In this way, the energy stored in a H* gradient across a membrane
couples the redox reactions of the electron transport chain to ATP
synthesis

= The H* gradient is referred to as a proton-motive force, emphasizing
Its capacity to do work



Chemiosmosis couples the electron transport chain to ATP synthesis
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An Accounting of ATP Production by Cellular Respiration

= During cellular respiration, most energy flows in this sequence:

glucose — NADH — electron transport chain — proton-motive force —
ATP

= About 34% of the energy in a glucose molecule is transferred to ATP
during cellular respiration, making about 32 ATP

= The rest of the energy Is lost as heat



ATP yield per molecule of glucose at each stage of cellular respiration
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= There are three reasons why the number of ATP Is not known exactly

1. Photophosphorylation and the redox reactions are not directly coupled,
the ratio of NADH to ATP molecules is not a whole number

2. ATP yield varies depending on whether electrons are passed to NAD* or
FAD in the mitochondrial matrix

3. The proton-motive force is also used to drive other kinds of work



Zooming Into
cellular respiration: fermentation



Fermentation and anaerobic
respiration enable cells to produce ATP without oxygen

= Most cellular respiration depends on electronegative oxygen to pull
electrons down the transport chain

= Without oxygen, the electron transport chain will cease to operate

= In that case, glycolysis couples with anaerobic respiration or
fermentation to produce ATP



Anaerobic respiration vs. fermentation

= Anaerobic respiration uses an electron transport chain with a final
electron acceptor other than oxygen, for example, sulfate

= Fermentation uses
electron transport chain to generate ATP
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Types of Fermentation

* Fermentation consists of glycolysis plus other reactions that regenerate
NAD*, which can be reused by glycolysis

= Two common types are alcohol fermentation and lactic acid
fermentation
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= In alcohol fermentation, pyruvate is converted to ethanol in two steps
= The first step releases CO, from pyruvate

= The second step produces NAD* and ethanol

= Alcohol fermentation by yeast is used In brewing, winemaking, and
baking
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= In lactic acid fermentation, pyruvate is reduced by NADH, forming
NAD* and lactate as end products, with no release of CO,

= Lactic acid fermentation by some fungi and bacteria is used to make
cheese and yogurt

= Human muscle cells use lactic acid fermentation to generate ATP
during strenuous exercise when O, Is scarce
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Fermentation Overview
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Comparing Fermentation with Anaerobic and Aerobic Respiration

= All use glycolysis (net ATP = 2) to oxidize glucose and harvest the
chemical energy of food

= In all three, NAD* Is the oxidizing agent that accepts electrons during
glycolysis



= The processes have different mechanisms for oxidizing NADH to NAD*:

= |n fermentation, an organic molecule (such as pyruvate or acetaldehyde)
acts as a final electron acceptor

= |n cellular respiration, electrons are transferred to the electron transport
chain

= Cellular respiration produces 32 ATP per glucose molecule;
fermentation produces 2 ATP per glucose molecule



= Obligate anaerobes carry out fermentation or anaerobic respiration
and cannot survive in the presence of O,

= Yeast and many bacteria are facultative anaerobes, meaning that
they can survive using either fermentation or cellular respiration

= |n a facultative anaerobe, pyruvate is a fork in the metabolic road that
leads to two alternative catabolic routes
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The Evolutionary Significance of Glycolysis

= Glycolysis is an ancient process

= Early prokaryotes likely used glycolysis to produce ATP before O,
accumulated in the atmosphere

= Used in both cellular respiration and fermentation, it is the most
widespread metabolic pathway on Earth

= This pathway occurs in the cytosol so does not require the membrane-
bound organelles of eukaryotic cells



Glycolysis and the citric acid cycle connect to many other
metabolic pathways

= Gycolysis and the citric acid cycle are major intersections to
various catabolic and anabolic pathways



The Versatility of Catabolism

= Catabolic pathways funnel electrons from many kinds of organic
molecules into cellular respiration

= Glycolysis accepts a wide range of carbohydrates including starch,
glycogen, and several disaccharides

= Proteins that are used for fuel must be digested to amino acids and
their amino groups must be removed



= Fats are digested to glycerol (used to produce compounds needed for
glycolysis) and fatty acids

= Fatty acids are broken down by beta oxidation and yield acetyl CoA,
NADH, and FADH,

= An oxidized gram of fat produces more than twice as much ATP as an
oxidized gram of carbohydrate
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Biosynthesis (Anabolic Pathways)

= The body uses small molecules from food to build other their own
molecules such as proteins

= These small molecules may come directly from food, from glycolysis, or
from the citric acid cycle



Control of Cellular Respiration via Feedback Mechanisms

= Feedback inhibition 1s the most common mechanism for metabolic
control

= If ATP concentration begins to drop, respiration speeds up; when there
IS plenty of ATP, respiration slows down

= Control of catabolism is based mainly on regulating the activity of
enzymes at strategic points in the catabolic pathway
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Summary: glycolysis
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Summary: citric acid cycle / Krebs cycle
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Summary: electron transport chain
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Summary: ATP synthase
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