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Neural Engineering

= Neural engineering (also known as neuroengineering) is a
discipline within biomedical engineering that uses engineering
techniques to understand, repair, replace, or enhance neural
systems.

= Neural engineers are uniquely qualified to solve design
problems at the interface of living neural tissue and non-living
constructs (Hetling, 2008).
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=FL  Motor Neuroprosthetics 4
Brain decoding
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=L Motor Neuroprosthetics
Brain decoding

BrainGate Pilot Clinical Trial
3D + Grasp Control of a Robotic Arm
Participant S3
Trial Day 1959 / 12 April 2011

Hochberg et al., 2012

Caution: Investigational Device. Limited by Federal Law to Investigational Use.
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Motor Neuroprosthetics

Peripheral decoding
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Electrical stimulation (actuation) ’

The Freehand System by NeuroControl Corporation

B Fundamentals of neuroengineering

EXTRINSIC MUSCLES
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B Fundamentals of neuroengineering

Computational models
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Deep Brain Stimulation

_ DEEP BRAIN

STIMULATOR LEAD

ELECTRODES

SUBTHALAMIC NUCLEUS
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CONNECTIVE WIRES
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Maskdike fackes

\ 1
AN | Substantia nigra

GPi: internal
globus pallidus
GPe:external
globus pallidus
STN: subthalamic
nucleus

SMA:
supplmentary
motor area

SNr: substantia
nigra
VL: ventrolateral

nucleus of the
thalamus



=PFL  Bjoelectronic Medicine

Deep-brain
stimulation
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=PFL  Wearable sensors

A

High-sensitivity & low-hysteresis sensor array

Soft substrate
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=FL  BMI-based neurorehabilitation

B Fundamentals of neuroenaineerina
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=PFL - Sensory feedback

Sensory loop

( Fineforce control |
ic

&Robotic hand sensors reading)

Control loop



=L Human augmentation

REACHING TASK




=L How to design a sensory-motor

neuroprosthesis?

= Start from natural neural control of
movement

= Try to replicate it

B Fundamentals of net

Nature Reviews | Neuroscie

nce
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=L How to design a sensory-motor
neuroprosthesis?
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How to design a sensory-motor

neuroprosthesis?

=PrL
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EPFL

B Fundamentals of neuroengineering

Motor decoding

Understand the intention of the subject: grasping task? Locomotion speed? Etc.

Interface with the neuromuscular system to record electrophysiological or kinematic
signals

Hardware to process the signals recorded

Software to process the signals recorded

20



=PrL

Movement restoration

Restore specific movements impaired by neurological disorders or traumatic injuries

B Fundo—r-min!s ~f moriennmsinaadin~

Use the motor intention detected to control the different actuation systems

Restore movements using robotic systems

Restore movements using electrical stimulation (muscle activation)

21



=PFL - Sensory feedback ;

B Fundamentals of neuroengineering

Restore the possibility to gather information about the world and the subject:
touch? proproception? Temperature? Etc.

Artificial sensors to record information about the world and the subject

Software to translate the artificial sensory information into electrical stimulation
parameters

Hardware to stimulate the nervous system or the skin

Interface with the neuromuscular system or the skin to deliver the artificial sensation
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B Fundamentals of neuroengineering

Examples of Neuroprostheses

Priprioception via
sensory remaping
Tactile feedback

somatotopic

Utah slant electrodes
arrays implanted in

the median and ulnar
nerve

ey r

Neural interface
processor

8 IEMGs, with 4
electrical contacts

Kalman filter on
mean emg features

A

Contact sensors

DEKA LUKE arm

[George, 2019]
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B Fundamentals of neuroengineering

Examples of Neuroprostheses

Touch event decoded ’ Binary control
from the UEA in M1

2x32- channel
UEA in M1

SVM decoding of
mean wavelet
power

v
Vibrators

.......

-«

N <

Multichannel FES
[Ganzer, 2019]
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ZPFL Reusing (DEL-FEL)

Utah Array

T e e
.‘" 2

Motor (cortical) decoding

Sensory (cortical) feedback

SLANTED Utah Array

Motor (peripheral) decoding
Sensory (peripheral) feedback

B Fundamentals of neuroe
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Time Update
(prediction)

1 Project the state ahead

X, = Ax, _ | +Bu,

2 Project the error covariance ahead

p L
Fo= AP, JAT%0

T #__—

The outputs at k will be the input

Initial estimates
atk=0

B Fundamentals

Kalman filter
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Reusing (DAL)

Measurement Update
(correction)

EEG
el
BN

1 Compute the Kalman Gain

Intracortical
recordings
< >

K, = P,H'(HP,H" +R) AANE2IN)
Ly s J Nerve
2 Update the estimate via z, \v;: = recording EMG
1 ECo

3 Update the error covariance

Py = (I-KH)P,

for k+1

Decoding motor commands
from cortical and peripheral

signals
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The Motivation

The loss of the upper limb is a traumatic event that changes the quality of life radically
Reduction of

e Ability in reaching, grasping and manipulation
* Ability in sensing through the sense of touch

* Gesture (communication)

Statistics

38% Transhumeral 1.7 million total number of amputees living in the U.S

31% Transradial 65,000 upper limb amputations in the U.S. each year

14% Partial hand 27,000 hand amputation below the wrist in the U.S. each year

5% Fingers 400 hand amputation below the wrist in Italy each year

Consequences

Few innovations in the past 50 years

Actual prostheses do not satisfy amputees’ requirements and are very different from
the natural model
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The big challenges

UP Interface

How to control this dexterity?

Hand Prosthesis |

How to design and develop a
more functional and
naturally controlled

BE%;etll?,&tics hand?
Functionality

Reliability

Sources

Cognitive Effort
Reliability




EPFL What can an amputee get today?

Hand Prosthesis

‘ Prosthetic Hands ’

‘ Passive ’ ‘ Active ’

| Cosmetic Myoelectric |
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Key issues

Mechatronic
Research
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Mechanisms
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Deal with
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EPFL Mechatronic
Design issues: adaptability

Problem: It’s an hard task to design, actuate, and control a self-contained artificial hand
with a number of degrees of freedom (DoF) equal or close to those in the biological
human hand!

+18 Possible solutions (to simplify the problem):

e Cut DoFs; Rigidly couple DoFs;

22 muscles

e Implement adaptable mechanisms.

T=0C S B . T={25

increases the contact areas while grasping
N Ly 3
,,/:/

Nail Bone Hand adaptation mechanisms
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Finger adaptation mechanisms
Phalanx adaptation

mechanisms .
Underactuated mechanisms




EPFL Mechatronic
Design issues: non back drivability

Mechanisms wherein motions generated by the input (motor) drive are
transmitted to the output (i.e. fingers) and wherein motions originated
from the output are blocked

7 N
\ N L/

In a prosthesis it allows to maintain the grasp once the power supply is switched off
Non back drivable transmission = Power saving!= key in prosthetics!

Gear heads with high Brakes/
Lead Scre
- W Worm Gear reduction rate clutches




=pPrl Case Study

The SmartHand prototype

The SmartHand at glance
Mechanical Spec

Weight 600 gr
Size Human inspired
Degrees of freedom 16
Degrees of actuation 4
Full flexion speed <1.5s
Tendon max active force 45N
Grasp force (Cyl, Lat, Lift) <30,<5,100 N
Sensory System
Position (digital encoder) 4
Position (Joint Hall sensors) 15
Position (Potentiometer) 2
Tension Sensors (strain gauges) 5
Limit switch (digital) 8
Electrical Spec
Power req. 12V [3A
Control loops Position and tension (1 kHz)
Reading delays <1ms
Total preset grasps 10 (programmable)
Communication RS232/USB




B Neural Signals and Signal Processing

Cortical signals

Non-invasive
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B Neural Signals and Signal Processing

Cortical signals

Electric current contributions from all active cellular processes within a volume of
brain tissue generate a potential, V, (a scalar measured in Volts), with respect to a
reference potential

The difference in V, between two locations gives rise to an electric field (a vector
whose amplitude is measured in Volts per distance)

Electric fields can be monitored by extracellularly placed electrodes with
submillisecond time resolution

The biophysics related to extracellular field recording measurements is well
understood. EEG

intracortical
microelectrode

Buzsaki et al, 2012
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B Neural Signals and Signal Processing

Cortical signals - ECoG

Electrocorticography (ECoG) is a
type of electrophysiological
monitoring that uses electrodes
placed directly on the exposed
surface of the brain to record
electrical activity from the cerebral
cortex

In contrast, conventional
electroencephalography (EEG)
electrodes monitor this activity
from outside the skull

ECoG may be performed either in
the operating room during surgery
(intraoperative ECoG) or outside of
surgery (extraoperative ECoG).

a)

o connector cover
[Ep——— iﬁj/_ epoxy resin

|\
connector

electrode

+——silicone sheet

5mm
c)

P

reference
ground

. dental cement

ground

reference
dura mater

Current ECoGs
*Large area

*Low resolution &

Current yEC0Gs
*Small area g.,‘
*High resolution@

BMSEED lahryECoGs
*Large area
*High resolution é



B Neural Signals and Signal Processing

Cortical signals — Intracortical signals

Cortical activity recorded using intracortical electrodes positioned in specific areas
(very high spatial selectivity)

The main unit of information to extract is the cortical spike (spike detection)

Different shapes of spikes represent specific activities of different neurons around
the electrodes (spike sorting)

2
i ([ ] 20
f LT U I 1 T
. - PP L O L L I T e B N
it 1 J T | 1 L N A
0 C n ) « o PP L o B T N (N O
U Lol
; B A L T e 1 y
15 1 IR AN N T
1 8 ol e e L A
i e Tl O O A I N
: =2 I 11 I I A O
K= I L Y T L B B
A8 N T e (A O I (O A AR
4 TR . - L O B | [ I I T
gL 1T L O e .
, R 1 | 1 A A [ B
" 2 Ghise =00 P A 111 N A N T U
" e S— L [ A RO T T O N
8 N S . T I N N AN A
== \ L A Ay W (11
68 | i \ 0 100 200 300 400 500 600 700 800 900 1000
w0} ’\»'\\2:“*/\\“\\\\ Time (ms)
N N 1

0 005 01 015 02 E 20 40 60
Temperature

w
o

Part 4



B Neu

Cortical signals — Local field potentials
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Part 4

Local field potentials (LFP) are transient electrical signals generated in nervous and
other tissues by the summed and synchronous electrical activity of the individual
cells (e.g. neurons) in that tissue

LFP are 'local' because they are recorded by an electrode placed nearby the
generating cells

They can be recorded, for example, via a microelectrode placed in the brain of a
human or animal subject, or in an in vitro brain thin slice

Gain

Gain

Hz

Hz

CEEEIEE T

et I

Multi-Unit Spike Train

Local Field Potential

— Raw LFP
— Gamma LFP

classes

-4 -3 -2 -1 0 1 2 3
N i N 1 1 1 1 1

4 5 6 InMz
N i X

4-10 Hz, thela e

40 s, slow 4

1 e
e
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s

-

T T T T T T T T T
0.37 272 20.09 148.41

frequency (Hz)

Frequency
4-10 Hz

15-45 Hz
50-90 Hz

Ahmadi et al., 2021



B Neural Signals and Signal Processing

Extraction of intracortical information

By bandpass filtering the signal, we obtain the activity
of a few neurons close enough to the electrode plus
background activity elicited by neurons further away
from the tip

In the recorded bandpass filtered signal, the activity of
different neurons is superimposed and it is important
to extract the identities of the spikes corresponding to
different neurons.

In principle, the spikes fired by a neuron recorded in a
given electrode have a particular shape

The detected spikes are grouped into different clusters
based on their shapes in a process known as Spike
Sorting

Each cluster is then associated to a single unit (neuron),
but some shapes cannot be separated due to a low
signal to noise ratio, leading toa cluster associated with
multiunit activity

Amplitude (uV)

Local Field Potential

Part 4

0 MW\"\/\/‘V‘MW VH’N Rt \/"WW
00, . \ . 5 . \ . \ . 1
2 3 4 5

Time (sec)

A
A LF:?’ﬂIIer

L J\ A 600, IL ‘RaW‘Data‘
A :

2 . |
v 2 100 .
S 7 o St ‘
< 50} ! | " s
l o N n 0w
Spike train for each unit

400 (— TR v, vyl TAvw oy v v Ry vvvy T

Amplitude (uV)

zoo£ [
of T — JW Lo Ly
100. | | | | U

N

0 1 2 3
Time (sec)

Gonzalo Rey et al., 2015

4




B Neural Signals and Signal Processing

Spike detection and sorting

It should be noticed that the raw data is typicaIIY1
recorded using a hard-ware acquisition system that
includes a first analog causal lIR (infinite impulse
response) bandpass filter, e.g., between 0.3 Hz
and/7500 Hz

For the purpose of spike detection and sorting, a
second digital filter, e.g., between 300 Hz and 3000
Hz, is typically used

After filtering, spikes are easily visualized on top of
background noisy activity and can be detected, for
example, by using an amplitude threshold

If the value of the threshold is too small, noise
fluctuations will lead to false positive events, if it is
too large, low-amplitude spikes will be missed.

A threshold can be set manually, but since the
detection tradeoff is related to the signal to noise
ratio of the recording, it seems reasonable to look
for an automatic threshold

Raw data

N NP AP rtpPir
\4

Filtered data

Feature extraction

ii) =
Clustering
iV) { 3




EPFL Deep learning for spike sorting

A B

end-to-end spike sorting step
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B Neural Signals and Signal Processing

Buccino et al., 2022



B Neural Signals and Signal Processing

Brain decoding — General scheme

Interface readout
Sensor — (recording and
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Extraction of 2D movements from M1
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EPFL Extraction of movements from M1

Utah Array,
Cyberkinetics LTD

= Schwartz and colleagues



Brain decoding — 3D robot control (with
Kalman filters)

BrainGate Pilot Clinical Trial
3D + Grasp Control of a Robotic Arm
Participant S3
Trial Day 1959 / 12 April 2011

Hochberg et al., 2012

Caution: Investigational Device. Limited by Federal Law to Investigational Use.
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B Neural Signals and Signal Processing

Brain decoding of finger movements

Fine, independent, and
simultaneous online control of
two systematically
individuated groups of fingers
within one hand to acquire
two targets, one each for the
index finger and the middle-
ring-small (MRS) fingers, in a
non-prehensile task

Processing of intracortical
brain-machine interface in
nonhuman primates using a
Kalman filter

Nason et al., 2021
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B Neural Signals and Signal Processing

Brain decoding of finger movements
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B Neural Signals and Signal Processing

Brain decoding — High level areas

Even if most of the brain decoding
approaches are based on recording from M1,
other options are also possible

For example, recordings can be made at
points along a major pathway for visually
guided movement which begins in the extra
striate visual cortex and passes through the
parietal reach region (PRR) and area 5 to the
dorsal premotor cortex (PMd) and then to
the primary motor cortex

Although PRR is specialized for reaching
movements, it represents the goals of the
reach in visual coordinates

Musallam et al., 2007



B Neural Signals and Signal Processing

Brain decoding — High level areas
Estimating the Planned Reach Direction

—/ \ - < o Neuron 1
7N \‘« UL LU L L
N
",Q','.f—’ - Neuron 2
T L Py
-/\— -_\Z. ! ‘
f / Neuron 3
AT A I Y
AN, VL \ Time —=
- a
5 de /\ /\ / .
9 A N\ »
PRR receptive fields span workspace. For any given reach...
Complete set of reaches: P(n|x) ... measure spike trains: n

/

5 deg

Calculate probability of all reaches:

P(xIn) P(n) = P(nx) P(x)

Select most probable: max (P(x|n))
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B Neural Signals and Signal Processing

Brain decoding — High level areas

Potential Advantages of
PRR Neurons for
Prosthetic Systems

PRR neurons encode:

* The plan to reach to a target
* The plan for the upcoming reach
* The plan with respect to the eyes

PRR neurons may:
* not encode muscle forces
* reorganize little following injury

+ adapt quickly to calibrate the system 1 s?cond Cue/PI:an “Reach

Batista, Buneo, Snyder, Andersan (1898) Science 285.

Part 4



B Neural Signals and Signal Processing

Brain decoding — High level areas

@ Reach Task

“Fixate”

Trial time

“Target cue”

@ Brain Control Task

“Delay period”

“Reach”

Receptive fields
of neurons

“Fixate"

Trial time

“Target cue”

“Delay period”

Record

“Reward cue”

Decode
reach goal

C 100 )
Overall % correct = 64.4% Overall % correct = 63.6%
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Brain decoding — High level areas

Part 4

i i b S(t)
pRR  Sci)) M Made s i
; P Jan-Ma; /7 7} EveFrame arge
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‘Algorithms: oft) | .
i ST Tool Frame
D . | |
g0 QWM |« . Eye-tracker /. Head Frame b I
Pre-motor cortex signa]s (v} e ™\ & ‘ ''''''
or motor -:onelx Trajcctory Generator . ’
signals =4 End-effector
T =
g7 (1)~ "..7 NN " Basc Frame
a0/ SN
9 ¥l 2 =,
. : 0 Joint
Joint 1 Joint 2 e e Joint n . : :
Controllers Artificial Sensors

Key variables
* intended reach location
» intentional and cognitive mind state
*external sensor variables

Decoding high-level control information can be “easier” BUT it
requires the developed of shared-control mechanisms with the
robotic system

B Neural Signals and Signal Processing



=PFL ECoG signals

B Neural Signals and Signal Processing

Electrocorticogram (ECoG) refers to the
signal obtained from macroelectrodes
(typically 2-3 mm in diameter)

It has been mainly used to be placed directly
on the pial surface of cortex of epileptic
patients for localization of the seizure focus

It is important to understand the spatial
spread of ECoG arrays

To address these issues, hybrid electrode
array that allowed to simultaneously record
MUA, LFP, and ECoG was designed

A computational model was used to
estimate the spatial spread of LFP and ECoG

Midline

Posterior

Anterior

Part 4



=PFL ECoG-based grasping decoding

Part 4

a @ OING!
The goal was to verify whether ECoG signals o2a'le™ o
can be used to decoding two different grasp © N
types (precision vs. whole-hand grip) in ©
natural reach-to-grasp movements in single- © (@
trials -
Self-paced movement execution in a > @ D

paradigm accounting for variability in
graspedcobject position and weight was
chosen to create a situation similar to
everyday settings.

precision grip  whole-hand grip
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=PFL ECoG-based grasping decoding

Part 4

)

temporal evolution of grasp discriminability

single components comb. of components weight
100 — 100

90|
80
70
60
3 50
40

o

YYVYVYY

90

Three informative signal components
(low-pass-filtered component, low-
frequency and high-frequency amplitude
modulations) were identified which
allowed for accurate decoding of precision
and whole-hand grips.

decoding accuracy (%)

decoding accuracy (%)

time (s) time (s)

3y 1:2-6Hz m:14-46Hz h:54-114Hz LFC: low-pass-filtered £

Importantly, grasp type decoding
generalized over different object positions
and weights

intermediate band high band

Within the frontal lobe, informative signals
predominated in the precentral motor
cortex and could also be found in the right
hemisphere’s homologue of Broca's area

We conclude that ECoG signals are

promising candidates for BMls that include
the restoration of grasping movements.

00000000
00000 i/ i ktop, image of Fig. 6
00 b

=== central sulcus

B Neural Signals and Signal Processing

1 BA 44+45 40 50 60 70 80 90
' motor cortex i
. decoding accuracy (%)



=PFL ECoG-based exoskeleton control

B WIMAGINE wireless recorder

The researchers recruited a 28-
year-old man, who had tetraplegia
following a C4—C5 spinal cord injury

Two bilateral wireless epidural
recorders, each with 64 electrodes,
were implanted over the upper
limb sensorimotor areas of the
brain

Epidural electrocorticographic
(ECoG) signals were processed
online by an adaptive decoding

algorithm to send commands to g :

ef%e ctors (virtual avatar or o 0 |
»  exoskeleton) S @ e NS
¢ Throughout the 24 months of the A S e e %% o
¢ study, the patient did various W,
¢ mental tasEs to progressively e
¢ increase the number of degrees of W
s freedom. e b %I:I

Mental task of < - |
isual

Part 4
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EPFL EMG interface for robotic systems

How to use EMG signals for this goal
e Residual skills of the user?
e Intended movement to control?
e Are the muscles actuating this movement still controllable?
e Rehabilitation or Assistance?
e Noninvasive or implantable?
e Proportional control?
e Pattern Recognition?
Blind Source Separation? (HD-EMG)

sing

B Neural Signals and Signal Proces:
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B Neural Signals and Signal Processing

Hand prosthesis — Proportional control

N antagonist muscles are used to control 1 degree of freedom of the
prosthesis (hand opening/closing). Often biceps/triceps or wrist
extension/flexion

An increased number of required movements makes very difficult to use this

ap EMG EMG Rectified Filtered EMG
Recording (2 channels) EMG (2-Hz lowpass) Control

Hand assembly

Prosthetic socket

Control strategy !

Batte Microcontroller F
EMG sensors ry Aiatorunit Tendon

Part 4
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B Neural Signals and Signal Processing

Hand prosthesis — Pattern recognition

~

Prosthetic
Control

Training/Testing

-

»

[ Classifier

F.

=

Feature Extraction
Motion
Classification
Control Command

EMG Preprocessing

M .\....“ ........... >

éé
Electrode
placement

In this case, the muscles naturally involved in the specific movement (e.g. ECR
for the extension of the wrist) are no more available

For this reason, “not- homologous” voluntary movements of the subject have
to be coded as prosthesis movements (e.g. extension of the elbow for the
extension of the wrist)

This approach requires a quite long training phase and makes very difficult for
the subject to easily control more than two degrees of freedom

Part 4



EPFL Intramuscular EMG (iEMG) control

B Neural Signals and Signal Processing

Clinically available myoelectric control strategies do not allow simultaneous

movement of multiple degrees of freedom (DOFs)

The use of implantable devices that record intramuscular EMG signals could

overcome this constraint

Intramuscular EMG signals can be recorded using percutaneous fine wire

electrodes inserted using needles

The use of iIEMG can allow to use proportional control (but of course also

pattern recognition)

Smith et al., 2014

Wrist Rotation

PT SuUP
EMG amplitude EMG amplitude

Wrist Flexion/Extension

FCR ECRL
EMG amplitude EMG amplitude

Hand Open/Close

FDP EDC
EMG amplitude EMG amplitude

Amplify and Amplify and

Amplify and Amplify and

Amplify and Amplify and

Threshold Threshold Threshold Threshold Threshold Threshold
= JN - S =y
Wrist Rotation Wrist Flexion/ Hand Open/Close
Velocity Extension Velocity Velocity

Part 4



EPFL Targeted muscle reinnervation (TMR)

B Neural Signals and Signal Processing

Median Nerve ————
Radial Nerve

Pectoralis Major
Clavicular Head

Microprocessor
/ Controller

Robotic Arm

-

A surgical technique called targeted muscle reinnervation (TMR) transfers
residual arm nerves to alternativemuscle sites

After reinnervation, these targetmusclesproduce electromyogram (EMG)
signals on the surface of the skin that can bemeasured and used to control
prosthetic arms

Kuiken et al., 2007

Part 4



EPFL Targeted muscle reinnervation (TMR)

[E1|Patient S1

Patient S2

Hargrove et al., 2017

B Neural Signals i

Part 4

Subjects showed statistically better performance in the
Southampton Hand Assessment Procedure (p=0.04) and
the Clothespin relocation task (p=0.02)

Notably, these tests required movements along 3
degrees of freedom.

Seven of 8 subjects preferred pattern recognition
control over direct control

Results demonstrate that pattern recognition is a viable
optlonland has functional advantages over direct
control.

Pre-Home Trial [] Post-Home Trial
*

5 :

t — — = 30 % 30
s1 41 15 7 PR c c
s2 280.1 3016 39 PR e 20 | o 20
S3 196.8 183.6 73 PR G l ks
s4 254.6 366.9 56 PR 310 310
= o o
5 91.4 85.1 10 PR c c
s6 54.9 27.9 20 DC 0 0 |
S7 157.7 128.5 18 PR Direct Pattern
S8 332 73.0 38 PR Control Recognition

Table 2. Wear time, recalibration and control preference. S HAP SCO re



sensory feedhack

o

Real-time, and natural feedback from the hand prosthesis to the useris
essential in order to enhance the control and functional impact of
prosthetic hands in daily activities, prompting their full acceptance by the

Users

Use the remaining nerves Move the nerves Stimulate the brain

Electrical leads from the Re-routed nerves grow new Sensory signals are routed
prosthetic’s sensors endings into muscle and around a severed spinal cord
stimulate nerves in the skin, where external devices and into the brain, where they
person's stump that translate signals going to produce sensations by direct
once served the real limb. and from the prosthesis. stimulation of the cortex.

Kwok, Nature, 2013

)
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Human touch system

l Perception of the stimuli I

Information in the form of neural
codes.

| Neural si

Inforn
poten.

Distortion of a population of
Mechanoreceptors

Information in the form of spatio -
temporal stress strain in skin.
Skin deformation at contact point
Information in the form of spatio-
temporal force distribution.
Stimulus (Skin - Object contact) l

al transmission l

n in the form of action

Pacinian Corpuscle  Ruffini Corpuscle Merkel Cells Meissner’s Corpuscle
FATI SATI SAI FAI

Fast Slow Slow Fast

10+ 7+ 0.5 34

0.01 40 8 2

0.08 300 30 6

40-500+ 100-500+ 0.4-3 3-40

35-70 35-70

During object manipulation and tactile
exploration, the glabrous skin of the hand
undergoes complex spatiotemporal
mechanical deformations, which in turn, drive
very precise spiking responses in individual
afferents

Coarse object features, such as edges and
corners, are reflected in spatial patterns of
activation in slowly adapting type | (SAI) and
rapidly adapting (FA) fibers, which are
densely packed in the fingertip

At the same time, interactions with objects and
surfaces elicit high-frequency, low-amplitude
surface waves that propagate across the skin of
the finger and palm and excite vibration-

sensitive Pacinian (PC) afferents all over the
hand



Human touch system

Epidermis

Dermis

SAl

FAIl

FAI

SAl

FAIll

SAll

Response to skin
indentation

—AH——

SAll

Innervation density (units cm™)

Response to
microstimulation

Tapping/flutter

Pressure

Tapping/flutter

No sensation

160 -

120 -

80 -

40 4

End organ
Meissner
corpuscle

Merkel cell

Pacinian
corpuscle

Ruffini

c
= FAl
50 1 = SAl
428 ™ FAll
40 - = SAll
30 1 [ 551
20 A 19.2
12
10 A
o o
Hand

Relative frequency of occurrency (%)

= SAll



Human touch system

(C) Cuneate nucleus
(G) Gracile nucleus




Targeted Muscle Reinnervation
B

A Clavicle
Musculocutaneous N. Deltoid
Pe':taojroarlls Ulnar N, @
(Clavicular Head) s
Pectoralis J 5
Median N, —-] Minor | ‘
~:.LI-§
Pectoralis 2 ] ‘
Majorl = Radial N. o
(Sternal Head) ™ \
g |
]
B Ulnar N. Clavicle _
Pectoralis Musculocutaneous N. \
Major : q E
(Clavicular Head) Deltoid
i Intercostobrachial
Supraclavicular
Cgtaneous N — | (Cutaneous) N.
Median N. 4 Distal
Pectoralis Radial N. b
Major

Serratus

(Sternal Head) Anterior

X

Bl median [l Uinar [ Radial [l Musculocutaneous

[7] Diffuse sensation localzed to palmar side
I strong sensation localized to dorsal side
[7] Diffuse sensation localized to dorsal side

P A Kuiken et al., 2007, 2008 LSS Lausanne | August 30, 2013 69
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sensory feedhack

o

Real-time, and natural feedback from the hand prosthesis to the useris
essential in order to enhance the control and functional impact of
prosthetic hands in daily activities, prompting their full acceptance by the

Users

Use the remaining nerves Move the nerves Stimulate the brain

Electrical leads from the Re-routed nerves grow new Sensory signals are routed
prosthetic’s sensors endings into muscle and around a severed spinal cord
stimulate nerves in the skin, where external devices and into the brain, where they
person's stump that translate signals going to produce sensations by direct
once served the real limb. and from the prosthesis. stimulation of the cortex.

Kwok, Nature, 2013
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First intraneural experiment
o

05

Saddleand  Electiodes

. 28@56
44@56

40@s0

15

. Il e 3 [ REED

- - 5
Amplification system 40@5s5 40@55 3 H . 35@60
Sugy /- Swich box D:I 55@60 [D 55@75 () D : [[l 50@60

§2

W e
40@58

W sen
@70

S3
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Peripheral implantable electrodes

e .
invasiveness -
/ intraneural

== | |ntrafascicular
== | interfascicular (implantable

1Y microelectrodes)
o [circumneural

5 e | epineural
subcutan
cutan

(surface electrode)

>
selectivity

> Micera et al., IEEE T-NSRE, 2008



Sensory feedback using FINE
electrodes




Sensory feedback usmg FINE
electrodes ‘

Pulse width (%) =

Resulting waveform
E=]




SEnsory
feedback

[ ] Cherries, sighted, feedback off. D Cherries, sighted, feedback on,
3000 3000
?2000- [ B 2000 .
£ (’ I E
WL B R PP A b
° g.JU 1 J J L J U 3 I
20 40 €0 8 100 120 140 20 40 &0 80 100 120 140
Time (s) Time (s)

E F ——
. . 4000 - Feedback off
I F<ecback on

2000 I'_'—I

Peak force (g)

Success rate (%)

Blinded Sighted
Sensory feedback



short-term implant of Tl
L S

e

an amputee
R

e

P.M. Rossini S.Raspopovic M. Capogrosso M. Bonizzato

«35 year old man, from Denmark
etrans-radial amputation in 2004 (fireworks
accident during family celebration)

*Subjects resistant to pharmacological therapy
and with no neuropathies (evaluated by
Electroneurography) or other systemic
diseases affecting brain/spinal cord/nerves

*Subjects with no neuropsychiatric disorders,
evaluated by neuropsychological and
psychiatric tests (WAIS-R, CES-D, MMPI-2)

*FOUR week implant
P A LSS Lausanne | August 30, 2013
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TIME

o

= Nerves to implant:
v Median nerve
v" Ulnar nerve

=  Number of electrodes:
v' 2 for each nerve

TIME-3 implantation procedure

w E
@ ",_ |
1]
ﬂm ® sSurgical technique:
Tw v'General anesthesia
i ® v'skin incision (medial edge of the biceps muscle-15 cm)
v'Exposition of the ulnar and median nerves
m v'epineural microdissection
@ v'TIME electrodes inserted under surgical microscope using a guiding
B needle
/ v'8-0 suture used to fix the electrodes to the epineurium
v'Subcutaneous pockets

) ; TR
(| U Eferal NV v =iy LSS Lausanne | August 30, 2013
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Closed-loop control hased on sensory feedhack
ijﬁ?};{m}m}m}mffff_-’_-‘_-‘fffffffffffffffffffffgfé’ﬁ’;g;;y’fi"a‘ggffffffffffffffffffffffffffffm
~* Testthe possibility for the subject : TIPPP=s T d=a0 B

. . Sensation encoding -
to use the sensory information e
during closed-loop control and M\'/Ln/\ ~
manipulation experiments ey
Imax
( Current saturation e \ i
Imin 5,
(S — Sis5)

I= (Imax - Imin) . m ~+ Imin

Current/Sensor relationship j

Azzurra dexterous hand
(Prensilia srl)

’
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Selecl

e e e

Object
Pressure

Stimulation Finger Sensor
current

-(I)f(- Translational Neural Engineering Bringing neurotechnology to clinical trials
ECOLE POLYTECHNIQUE

FEDERALE DE LAUSANNE

Index finger Little finger
. | staircasetask | high 1low |medium 1 | staircasetask | low |high |medium
| | o | N
| M\ | /U
| | o o] | .
1
| ol | L,
| | | | | | au
| | 0
| | | ' | |
| | | | A
30 60 0 30 ~60
time (s) time (s)

LSS Lausanne | August 30, 2013

ion of grasping force levels
e
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e

C Staircase task
v 1
2
O
ol
(v .
2, U The artificial sensory
S 0 Time (s) 30 feedback allowed the user to

Healthy hand with visual :
=== Robotic hand with visual feedback / no tactile achieve performance close to

=== Robotic hand with tactile feedback / no visual  the natural ones

9 T
Healthy — 4. bt :
Bl Robotic z ol =“
visual ™ B i
M Robotic a 4 4
tactile

PC2(21.3%) _4 PC1 (41.6%)

)
-(I f\- Translational Neural Engineering LSS Lausanne | August 30, 2013
ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



Gompliance recognition

Wmf,-",-’/;'Z-"/,-'Z-"/;",-"/,-",-"/;",-"/,-",-C’/;'Z-"/,-",I-‘.’/;",-'E-",-'Z-"/;",-"/,-",-’/J.r",-:’/ff/ff;l';ff/;’,-"/,-",-’/;",-'E-",-",-’/;'Z-"/,-",-"/;",-"/,-",-’/;"gff/ﬁ/ﬁf;ﬁf/gf/ff/ﬁ;};mmfm
ompliance recognition tas! ecoded han

Hard I Medium I Soft control:

5 [ | Palmar grasp
§ 8 o 2 OPER DN Three objects with
§ Open _(Gnrsfr;r)“f;lais;t:(;ing dlffel'ent StlffneSS
T Tactile traces prOpe I'tleS
2 (normalized):
o ——Sensor
3 ,\ . readouts
= |1 a—CUrrent
| | amplitude 1
0 Time (s) 30 —d I/dt
(positive only)
B Task accuracy
Compliance reported
. g h m s
thg good lperformalnce S | . h g
and interesting learning 5 g
il v m £ 4
ability 2 E ¢
a @
3 e 1 2 3
8 Sessions

ol |
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e e

Decoded hand C Shape recognition task
control: _ Cylindrical | Small | Spherical
B Palmar grasp - 2 | |
[
B Open hand TS | | Closed
O Rest =
. a < Open
—Grasp fastening o I |
(normalized)
Tactile traces g o
. c
(normalized): E e / \— |1
e SENSsor I | —
readouts v 5
—Current g2 | | |1
amplitude 17 1 1
—d I /dt 0 Time (s) 45
(positive only)
D Task accuracy Shape discrimination
Shape reported analysis
sm sp cy - p<0.01
o o | e |
g 87 sm 3 100 z
£ & ° 5301
; g g2
g 88 sp & c &
£ S o
ol o o c 15
- o &
2 89 ¢y g O
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Why this is possihle?

e e e e e
Shape recognition Compliance recognition

Index finger

Little finger

05

05

Normalized finger sensors readouts
Normalized finger sensors readout

Time (s)

—  Soft —  Medium __  Hard

1 ]
80 85 90 95 100
Hand range (%)

—_ Spherical object —  Cylindrical object

Different force profiles were provided to the users using the afferent stimulation
—> this is NOT on-off sensation!

) ; TR
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Restoration of proprioception and tactile
feedback

Multimodal intraneural sensory feedback

Electrode 2
Active site 6
100 ps

Stimulation through TIME nerve implant

—>  current (uA)
prop. to
force readout

Proprioceptive feedack
sensory remapping

Finger position readout Example stimulation parameters > \ - Median nerve

Electrode 1
é o Active site 4
g §- 120 s
"E % — current (uA)
% CE, prop. to
28 position readout

Ulnar nerve

Finger force readout Example sti

Position

& | and force
sensors

Longitudinal pol
of electrode

R g
§ Transversal portion (%t
= of electrode

| Insertion needl




Restoration of proprioception and tactile
feedback

a Experimental setup b Task performance with proprioception only (n=2)
vs — very small s — small § N L
e =} s 8ol I I I
A A a_) 2
o O :
2 S
X = 3}
S © =
@ e € 40}
&) [}
| —large vl —very large 2, S L_________.
' 3 3 § 20 25%
¥ ’ 5
2 ) o O o
© 1 1 1 1
vs s I vl Vs s | vl
Object presented Object presented

Overall performance: 78% correct



Restoration of proprioception and tactile
feedback

a Experimental setup b Task performance with touch and proprioception (n=2)
ss —small soft sh— small hard 2] oo
S

3
I
[

o
o
!

@ ° -

Is— large soft  |h—large hard

@ @ Object presented Object feature

50%
N

o

1

Subject’s answer
N
o
I

Correct identifications [%)]

o
!

0%

size compliance

Overall performance: 75.5% correct



Subject’s answer

5

o

4]
=

[%]
(2]

Restoration ot proprioception and
tactile feedback

SS

Proprioception only control condition (n=1) e
oo

(g

80

60 =

22

40

[42]
=

20

Correct identifications [%)]
)
[
[
|
[
e
[
3
°
Subject’s answer

o
)

7]

2]

1 1
sh Is Ih size compliance

Object presented Object feature

ss sh

Overall performance: 41.3% correct

100

100%

Is Ih

Object presented
Multi-joint proprioception task (n=1)

*

111

)
S 80f
— (2}
g 5
3 2 60f-
2 ©
g ® K]
0 °
5 N
L o
1] § 20 25%
3
2 F
o 1 1 L 1
ss sl Is Il
Object presented Object presented

Overall performance: 93.7% correct
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100
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Embodiment

Neurotactile
stimulation

»
TN
O 2

0. Blanke G. Rognini

[llumination and virtual
stimuli as shown on HMD

: H.and‘
illumination Patient 1
(artificial hand)

Patient 2
(prosthetic hand)



Embodiment

A

W

Perceived Phantom
length [cm]

@@ Synchronous
@@ Asynchronous
3 Real limb

@

Moving
cursor

Perceived Phantom
length [em)]

49
47
45
43
41
39
37
35

49
47
45
43
41
39
37
35

During Stimulation
(patient 2)

B

After Stimulation
(patient 2)

J;L



Biomimetic encoding strategy

We identified electrode active site which elidts sensations in the locations corresponding to the fingertip. Then, we simulated a mechanical skin
indentation using the biomimetic model. The model outcomes were the firing population activity generated by the combination of all the fibers

(SA,RAPC) response and the number of sensory fibers recruited during the skin indentation. We also generated the stimulation amplitudes
proportional

Sensation characterization

relationship with the mechanical stimulus as used in (16).

Biomimetic indentation model
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Integrate-and-fire

neuron model
)

Saturation
Delay
Pressure Time @
distribution ~ .| constant O
N EEEEEEEE..-. ., \(
@ @
@ Post-spike
L | - o inhibition
i T o
/\ “'l Y :
Dynamic Noise

pressure
- AN
Fig. 1. Overview of the model. (A) Receptors are distributed across the skin given the known innervation densities of SA1, RA, and PC afferents. (B) The
stimulus—in this case, a vibrating embossed letter A scanned across the skin—is defined as the time-varying depth at which each small patch of skin (here
dubbed a pin) is indented (with a spatial resolution of 0.1 mm). The traces in Lower show the time-varying depth at the three locations on the skin indicated
by the red dots in Upper. (C) The mechanics model relies on two parts: (Upper) modeling the distribution of stresses using a quasistatic elastic model and
(Lower) modeling dynamic pressure and surface wave propagation. Left shows the surface deformation of the skin, and Right shows the resulting pattern
of stresses at the location of the receptors. (D) The spiking responses are determined by leaky IF models using different sets of up to 13 parameters (marked
in red numbers) for individual SA1, RA, and PC afferents fit based on peripheral recordings to skin vibrations. Adapted from ref. 71. (E) The output of the
model is the spike train of each afferent in the population. Raster of the response of the afferent population sampled as in A to the stimulus shown in
B (only active afferents are included). Note that the SA1s (in contact) only encode the spatial aspect of the stimulus, that the PCs encode from the whole
finger phase-lock with the 200-Hz vibration, and that the RAs show mixed spatial and vibration responses.

Saal et al., PNAS, 2017



Biomimetic encoding strategy

Different encoding strategies in which only one stimulation feature is modulated (Single feature) or both frequency and amplitude of the

stimuli are simultaneuosly modulated (Hybrid). We converted the firing population rate generated by the biomimetic model in the frequency
of the intraneural stimulation (FNM, HNM-1 and HN M-2). The stimulation amplitude was converted using the mechanical stimulus (ANM

and HNM-1) or the fibers recruitment (HNM-2). The pulse-width was always fixed to 60 ps.
ANM NM-1

Fuize Fre Pulze &mp Dwelvernd Pulses Puize Freqeeacy Folze Ampltude . Dwivares Fuzes
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Valle et al., Neuron, 2018



Biomimetic encoding strategy

b Perceived naturalness among different encoding strategies N=16
10
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1  ANMN=30 N : FNM N=90
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probability (P)
0s

i
CONTROL L ' CONTROL
RANGE ! RANGE
Ch |
B
L . 1
1 T T T T T T T T T T T
7 8 L] 1 2 3 4 5 6 7 8 -]
depth (mm]
Point of Subjective Equality (PSE): 5.51 mm Point of Subjective Equality (PSE): 4.87 mm
Just-Noticeable Difference (JND): 1.01 mm Just-Noticeable Difference (JND): 2.26 mm
c d
a ™ Q
= HNM-1 N=90 b HNM-2 N=30
A1 [ ]
3 3 .
e . £
s 3 . . g s
' CONTROL CONTROL
g 3 : RANGE S '/ RANGE
1 . : .
g N N : g 4 :
]
B . B
g . ' g - . . !
|| T T T 1 1 T I I T T T T T T T T T
1 2 3 4 3 [ 7 8 9 1 2 3 4 3 [ 7 8 E]
depth fmm) depth frm)
Point of Subjective Equality (PSE): 5.31 mm Point of Subjective Equality (PSE): 5.87 mm

Just-Noticeable Difference (JND): 1.35 mm Just-Noticeable Difference (JND): 1.55 mm



a Setup - Virtual Eggs Test (VET) P VETpETiomance e e
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Answer [-3 +3]

Biomimetic encoding strategy

Embodiment Questionnaires N=5
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Telescoping task setup
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Restoring perception of real textures

a Naturalistic stimuli
a j b [ Correct responses
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Restoring perception of real textures
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Effects of cognitive load

Stimulation train Sensory modulation .
A B Induced sensations

& stimulation parameters

Current (uA)

| 0 Sensor output Intraneural sensory Feedback (IF)

Jom TIME sensation type vibration

’ sensation intensity Sou=1+ 5= 8

active sites on
both sides

used object:

(breaks at1.2 N) fascicles lTransversal insertion electrode position p;ztxﬂs: vr: ZT;C!\[\:VM
Surface
. electrode / amplitude A, =200 pA , A, =300 pA
: implant pulse-width 80 ps
‘ . p
frequency 50 Hz

Superficial sensory Feedback (SF)

sensation type electricity
sensation intensity Sen= 1+ Sa=8
electrode position on the skin of the left arm
amplitude A, =100pA, A =500 uA
pulse-width 200 ps
frequency 50 Hz




Effects of cognitive load

Cognitive Dual Task (Span Digit Forward Test during Virtual Eggs Test)
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EPFL  Bidirectional neurocontrolled leg

MW fondation

I8 bertarelli prostheses

@,% Sant’Anna

Scuola Universitaria Superiore Pisa

Above the knee Below the knee

Leg Prosthetics

Utah Bionic Leg

Powered Knee Module
Weight: 1.6 kg

Range of Mation: 120 deg
Max Torque: 150 Nm
Max Speed: 500 deg/s
Bulld Height: 255mm

Standard Connection
Allows adjustment of
prosthesis build height
and ankle
inversion/eversion to
patient using standard
prosthetic components

Powered Ankle-Toe Module
Weight: 1.6 kg

Range of Motion - Ankle: 40 deg
Range of Motion - Toe: 45 deg
Max Torque: 150 Nm
Max Speed: 350 deg/s
Build Height: 165 mm

U BIONIC ENGINEERING
HE UNIVERSITY OF UTAH

1

o
[

S.Micera

Passively Variable Tr i
Continuously changes the motor
gearing based on the applied
load to optimize motor function
and battery life

Lithium-lon Battery

Enables combined 12,800 steps
on level ground and 40 flights of
stairs on a single charge, or
hybrid mode allows for indefinite
activity with battery
regeneration during walking

Artificial Sensing and Control
Embedded computers and
sensors execute control loops up
to 2,000 times per second to
optimize the prosthesis behavior
based on the user’s movement

Carbon Fiber Foot Case

A lightweight, high strength
carbon fiber foot shell contains
the elctromechanical actuation
system

Bioinspired Artificial Tendon
An artificial tendon connects the
toe and the ankle joint to allow
for biomimetic foot mechanics
during walking
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EPFL  Bidirectional neurocontrolled leg
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smiams  Sensory feedback

S.Micera

Enhancing functional abilities and cognitive integration
of the lower limb prosthesis

Movie S2:

Neuroprosthesis working
principle and active tasks

Caution: Investigational device
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£PFL  Bidirectional neurocontrolled leg
B prostheses i

@smiams  Sensory feedback

Type of sensation B
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a Metabolic consumption indoor test 1

EPFL  Bidirectional neurocontrolled leg Paricpant

20 No feedback . *
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I8 bertarelli prostheses T . =
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a Outdoor speed b Confidence in prosthesis > 5 t
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Walking speed and self-reported confidence increased while
mental and physical fatigue decreased for both participants

Participants exhibited reduced phantom

limb pain with neural sensory feedback.
- Petrini et al., Nature Medicine, 2019
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=PrL — Agonist-antagonist myoneural interface

r. fondation
IL& bertarelli

() SantAnna

= As a methodology of improving efferent
(neural pathways that relay commands A1 Eversion 2 Inversion 3 Plantar flexion 4 Dorsiflexion
from the central nervous system to a
muscle or other end organ) prosthetic
control and providing afferent
proprioceptive sensation, we present an
agonist-antagonist myoneural interface
(AMI)

= An AMI is made up of an agonist and an
antagonist muscle tendon connected
mechanically in series: When the agonist
contracts, the antagonist is stretched and
vice versa

= The purpose of an AMI is to control and
interpret proprioceptive feedback from a
bionic joint.

Clites et al., Science Trans Med, 2018
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®di Closed-loop torque control
@

R?=0.96

(A) Schematic of the prosthesis-in-the-loop control
architecture, in which afferent feedback o

3 . prosthetic joint torque is provided via FES of the
g : antagonist muscle. The patient perceives this
: stimulation as a natural sensation of ankle torque
_ Smulation curent (mA) = (B) Magnitude estimation of perceived dorsiflexion
mp=o0esmA [, * torque as a function of stimulation current

delivered to the tibialis anterior
= (C) Discrimination performance as a function of

P (judged stronger) _,

. differences in stimulation current
O -
° " Stimulaton current (mA) ) = (D) Representative sample traces of lateral
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cases
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EPFL sensory feedhack

o

Real-time, and natural feedback from the hand prosthesis to the user is
essential in order to enhance the control and functional impact of
prosthetic hands in daily activities, prompting their full acceptance by the

Users

Move the nerves Stimulate the brain

Use the remaining nerves

Electrical leads from the Re-routed nerves grow new Sensory signals are routed
prosthetic’s sensors endings into muscle and around a severed spinal cord
stimulate nerves in the skin, where external devices and into the brain, where they
person's stump that translate signals going to produce sensations by direct
once served the real limb. and from the prosthesis. stimulation of the cortex.

Kwok, Nature, 2013

[ ({Y\ J§ Transiational Neural Engineering LSS Lausanne | August 30, 2013

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE



Brain-to-machine-to-brain interface
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Intracortical sensory feedback

o

Active
exploration task

Hand
control_.,.. >4

—_—

o Intracortical sensory
feedback is possible but
the performance are still

s L limited
s i~

Artificial

X posttion

o

O’Doherty et al., 2011
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Brain-to-machine-to-brain interface in a
guadriplegic subject
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Brain-to-machine-to-brain interface in a
guadriplegic subject

A B C
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Stimulation amplitude (pA) Stimulation amplitude (uA) Stimulation amplitude (uA)

Table 2. Accuracy of prosthetic finger discrimination. The percentage
of times that sensations were reported to originate from a specific finger
(columns) when each prosthetic finger was touched (rows).

Reported D2 Reported D3 Reported D4 Reported D5

Actual D2 969 + 7.2% 1.5 +53% 1.5+ 53% 0%
Actual D3 0% 735 +£18.1% 21.9 + 184% 0%
Actual D4 0% 185 +£228% 73.1+246% 6.5+ 168%

Actual D5 0% 3.1 £7.2% 31+107% 939+ 121%



Brain-to-machine-to-brain interface in a
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Brain-to-machine-to-b
quadriplegic subject

rain interface in a
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Brain-to-machine-to-brain interface in a
guadriplegic subject




