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Locomotion control
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Big questions in animal motor control

Q1 Principles

Q2 Evolution

Q3 Learning

What are the key principles of animal locomotion?

How have these changed during evolution?

How do animals perform learning and planning?

Robotics can help address these questions!



The beauty of animal locomotion

A
ANIMAL LOCOMOTION Science Robotics 2024

Why animals can outrun robots

Samuel A. Burden'#t, Thomas Libbyz'l', Kaushik Jayarams, Simon Sponbergq, J. Maxwell Donelan®

Animals are much better at running than robots. The difference in performance arises in the important dimensions

of agility, range, and robustness. To understand the underlying causes for this performance gap, we compare natural

and artificial technologies in the five subsystems critical for running: power, frame, actuation, sensing, and control. Specific latency ~103 [S] i ~106 [s]

With few exceptions, engineering technologies meet or exceed the performance of their biological counterparts. — -

We conclude that biology’s advantage over engineering arises from better integration of subsystems, and we iden- ﬁ)ﬁfgﬂg}bandmdth ~1013 [bits/mZ] ~1016 [bits/mz]

tify four fundamental obstacles that roboticists must overcome. Toward this goal, we highlight promising research {

directions that have outsized potential to help future running robots achieve animal-level performance. '; -
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Fig. 3. Subsystem-level performance of animal and robot runners above 1 kg.
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Spinal cord

Reflexes Central pattern
&= generators

Feedback Feedforward \ £

Musculoskeletal system, “Clever” mechanics



Q2 Evolution | The neural organization

IS surprisingly conserved

Also in
invertebrates (insects)
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Biischges and Ache,
Physiological Reviews, in print

Mammals

Humans

Much more than
the morphology



Brain centers involved In vertebrate motor control

Cerebral cortex
Definition of the motor plan

V:sml

Signa ll\
Motor .
cortex e

Brain Stem
Selection of the Motor Program

.__.AdJu stment
\__A( UVation ™=—
o

Spinal cord
CPGs and reflexes
Spatiotemporal Sequences
Activation of muscles

Cerebellum
Timing, Coordination, and
Learning
SJ((( rebellar ’,—”,’—,,
‘“‘ v¥:----" Decerebrated animal

Afferent
signals

A,
t Spinal
locomotor

system \
Limb
movement

From: Principles of Neural Science. 4th edition. Edited by E.R. Kandel, J.H.
Schwartz and T.M. Jessell. Appleton & Lange, New York.



Building bricks for motor control: pattern generators

Caudate
Cerebral Thalamus Pattern
SC
cortex
c generators
A ',Q Cerebellum
P Dorsal roots = input from sensory feedba
e ﬂ
Descending ‘Q\\, o & 4343
pathways ‘ ‘ ] ‘ ‘
Afferent | 1340y
Brain Stex
pathways Ventral roots = output to muscles  Spinal Cerd

Simple inputs =» complex outputs. E.g gait transition by electrical stimulation of
the brain stem (Shik and Orlosky 1966)




Cross-section of the spinal cord

Central pattern
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r
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Spinal nerve — 1

Ventral roots

http://www.pharmacy180.com/article/spinal-cord-3554/ !

Important: the spinal cord is not just a relay station.
It has multiple sophisticated circuits for motor control



http://www.pharmacy180.com/article/spinal-cord-3554/

Q1 Principles * -
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Q1 Principles * -

brain ) o
= Internal models
’ 1-3 steps | 3 task and body ) _ S
Jerry Loeb's pet analogy C ~schema ) S Feedback and
j:‘_/_- ,.gi (internal model) iR L ﬂ Feedforward
-d_) A 21 I I‘\ o Q. C_;
i S f{descendin 8|5
100ms @ modulation 2| g
g S 5|7 Central pattern
o 8| /spinal networks) | entral patte
= S CPG o | 5 generators
E (4b] ~ sk
N E N SaS® = (CPGs)
-
S| — | r° Feedforward
h PG " — - = "()Gareﬂexes]\ S
e concept 0 + reflexes is interesting for: =
. " Reflexes
(1) Low bandwidth communication - = dback
between higher centers and spinal cord (miscie-dynamics) Feedbac
B ()]
0.Q
(2) Fast feedback loops in the spinal cord [iboij Idyniarrficsi] 25
3 ES
| £ S
(3) providing motor primitives for a large . 4 = g
range of movements environment ]

- lispeert and Daley, JEB 2023



Q2 Evolution

100% A

Respective role

in motor control

Hypothesis: lower vertebrates are relying proportionally more on CPG circuits.

Higher vertebrates (like mammals) that are mechanically unstable rely more
on sensory feedback and on descending modulation

Descending modulation )
 Cephalized » A
conre A= l

Central pattern generators

Spinal sensing and reflexes

| Spinal
control

Ostrich

Low instability Mechanical (static) instability

Human

Lamprey Salamander Cat 1 P
[ -
= _‘\'\ ._ i \ Size of support polygon
— = i

High instability

Ryczko, Simon, ljspeert,
Trends in Neuroscience, 2020

lispeert and Daley, J. of Exp. Biol., JEB 2023

Mechanical (static) instability




Q2 Evolution

100% 4
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Bimodal locomotion (cartoon

Swimming: Walki_ng:

Traveling wave in axial muscles Standing wave

Wavelength = body length Limb retractors/protactors are
Limb retractors are tonic phasic

Short cycle durations Longer cycle durations



A mathematical model to study the
transition from swimming to walking

B BodycPG B

Walking ~ Swimming

x BodY

‘ In/3

Limb
al
F R E

-

drive d Freq[Hz]  x

Walking

5 10 15 20 25 30 35 40
Time [s]

Gait transition due to an

System of coupled oscillators increase of the descending drive

lispeert et al, Science, March 2007



Modeling the CPG with coupled oscillators

A segmental oscillator is modeled as an amplitude-controlled phase oscillator as used in (Cohen,

Holmes and Rand 1982, Kopell, Ermentrout, and Williams 1990) :

Phase:

Amplitude:

Output:

Setpoints:

6, =2z v, + > 1r,w;sin(0, -6, - ¢,)
j

-
ri_ai(4 (R,

X =, (1+c0s(6,))

@ =X — Xnsi
¢ = f(‘gu)

fortheaxialmotors
for the(rotationd) limbmotors

lispeert et al, Science, March 2007
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Example with two oscillators

-0 <n AN

Q =2rv, JrZ:(erij sin(6?j — 6, —gzﬁlj)) r 3'5//
'r;:ai(%(Ri —ri)—r'i] A A7
X =r(1+cos(8))

The phase difference ¢=0,-0,
between two oscillators converges to

[ljspeert et al, Science, March 2007].
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Descending

CPGs can modulate speed, headin, and tye of gai modulation
under the modulation of a few drive signals

lispeert et al, Science, 2007, Crespi et al, IEEE TRO, 20



Distributed control

CPGs can be implemented in a distributed way,

with robustness about changing morphology



Modeling the salamander locomotor circuits:

different levels of abstractlon

0, = 2y, +ZI, wy sin(6; — 0; — ¢;)

* Coupled oscillators

(lispeert et al 2007, Knisel et al
2020, Suzuki et al 2021)

« Leaky-integrator neurons
(lispeert 2001)

« Integrate-and-fire neurons

(Knuesel et al 2013, Pazzaglia et al
2025)

« Hodgkin-Huxley types of neurons
(Bicanski et al 2013)

Fi = a (Z (R — 1) — r,—)

x; = ri(1 + cos(0;))

T =—g(u — Epey) — 0401 — 0py + RI

+ 2 : WS}’”gS)’H( u— Erevsyn)

du
Cd_r = Z,. (Ui — U)geore + ZI fj + leak.
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The big question

Sensory feedback VS CPGs
I/ii%%ﬁlﬁﬁ%%ﬁ\
9J Kuo 2002,

Motor Control

Chain of reflexes Sherrington H Graham BrOWI’] Half centers
Peripheral control Central control

Feedback Feedforward
control control



The bridge: body dynamics

Sensory feedback < Gr————)  Contra pattern generators

Musculoskeletal system



The bridge: body dynamics

Sensory feedback < Gr————)  Contra pattern generators
~ Passive walker Dead ! trout swimming

‘ % DNOROR®
( & ™
ORORORD

Collins, S. H., Wisse, M., Ruina, A. (2001) Liao, J. C. (2004).

International Journal of Robotics Research, Journal of Experimental Biology,
Vol. 20, No. 2, Pages 607-615 Vol. 207(20), 3495-3506.

MIT tow tank, Lauder Lab Harvard
http://web.mit.edu/towtank/www/

Musculoskeletal system



http://web.mit.edu/towtank/www/

100%

Respective role

 Cephalized
control

_ Spinal
control

Ostrich

High instability

>

lispeert and Daley, J. of Exp. Biol., JEB 2023

Height of
center of mass

Size of support polygon

Mechanical (static) instability




The lamprey

Lamprey: one of the most primitive vertebrate

Anguilliform swimming

Believed to be very similar to the ancestor of all vertebrates
Has been studied in detail by neurobiologists

Very nice example of fruitful interaction between
neurobiology and computational neuroscience (i.e. modeling)

Movie by J.T. Buchanan

36



Numerical models of lamprey circuit

Williams, T. L., Sigvardt, K. A., Kopell, N., Ermentrout, G. B., & Rempler, M. P. (1990). Forcing of coupled nonlinear oscillators:

Studies of intersegmental coordination in the lamprey locomotor central pattern generator. J. of Neurophysiology, 64,
862-871.

Cohen, A. H., Bard Ermentrout, G., Kiemel, T., Kopell, N., Sigvardt, K. A., & Williams, T. L. (1992). Modelling of intersegmental
coordination in the lamprey central pattern generator for locomotion. Trends in Neurosciences, 15(11), 434-438.
https://doi.org/10.1016/0166-2236(92)90006-T

Ekeberg, O. (1993). A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69, 363—-374.

Grillner, S., Degliana, T., Ekeberg, O., El Marina, A., Lansner, A., Orlovsky, G. N., & Wallén, P. (1995). Neural networks that co-
ordinate locomotion and body orientation in lamprey. Trends in Neuroscience, 18(6), 270-279.

Wadden, T., Hellgren, J., Lansner, A., & Grillner, S. (1997). Intersegmental coordination in the lamprey: Simulations using a
network model without segmental boundaries. Biological Cybernetics, 76, 1-9.

Hamlet, C., Fauci, L., Morgan, J. R., & Tytell, E. D. (2023). Proprioceptive feedback amplification restores effective locomotion
in a neuromechanical model of lampreys with spinal injuries. Proceedings of the National Academy of Sciences of the
United States of America, 120(11), e2213302120. https://doi.org/10.1073/pnas.2213302120
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usculature at segments indicated, 5 segments rostral and caudalto
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Eels are amazingly robust

A Coordinated swimming despite one or

D
\} two full spinal cord transections
Z 1

L ™7 i | Likely explanation: important role for
57 ettt stretch and pressure feedback

//
P

g. 3. Swimming spinal eel, with a second spinal transection at
d-body level. Electromyograms are from the lateral, superficial

transection, respectively. Vertical lines indicate onsets of
rst discharges at the rostral electrode.

Peter Wallen, PhD thesis, 1982

https://www.ttbook.org/interview/weird-world-eels



Synchronization through local pressure feedback

« CPG: Distributed phase oscillators
* Local sensory pressure feedback
« Sensors: dorsal cells (mechano-receptors)

.J A

: : N\

Phase oscillator dynamics: s

S\

Uu; = COS(d)l‘) Muscle contraction signal oS
¢; = w+ Xy wyj sin(p; — d; — i) + b Fi cos(¢p;)
S Y ) v )

CPG @ CPG Local o’ o

oscillator coupling 2 feedback

Thandiackal et al, Science Robotics, 2021



Oscillator and neural network implementations

FANP AN AN
YOO NS

Phase oscillator
model

L

Neural Network
model

S

A

l © W

A

Phase
Oscillator

Phase
Coupling

Force
feedback
(left/right)

Muscle
activation
(left/right)

Neuron
Inhibition

Excitation

BRAIN STEM

STRETCH
RECEPTORS
ON RIGHT SIDE
OF SPINE

STRETCH E 0 o E
RECEPTORS
ON LEFT SIDE
OF SPINE

MUSCLES
ON RIGHT SIDE

MUSCLES -
ON LEFT SIDE

B
—— EXCITATORY
—= INHIBITORY

Grillner, Sci. Am. 1996

u; = cos(g;) Muscle contraction signal
¢; = @ + X0, wy; sin(g; — ¢; — Py;) + b F; cos(e;)
L ] J
Y I
CPG CPG Local
oscillator coupling feedback

Thandiackal et al, Science Robotics, 2021
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Test of different configurations

CPG Decoupled Oscillator-free | Combined

N\ /7 N\ & r N\l /7 Nt
\N\ /7 D\ & r \N\L/ \N\ /7
<« P . > - S - P
Central Mainly peripheral Combined
Muscle contraction signal u; = cos(g;)
¢ = w + Xy wyj sin(¢; — ¢; —¥y;) + b Ficos(¢;)
\ Y J ( Y J
CPG CPG Local

coupling feedback



Test of different configurations

Decoupled
< 5
-,
o/ S Ne
< >
Muscle contraction signal u; = cos(g;)
cﬁi =w+ + b F; cos(¢;)
\_Y_}
CPG CPG Local

coupling feedback



Decoupled Configuration
Without Feedback

000
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) force (left to right) < force (right to left)
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Decoupled Configuration
Without Feedback

Decoupled Configuration
With Feedback

47
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Why a caudo-rostal traveling wave?

Why does the traveling wave travel from head to tail?

1. Asymmetry of the body (tail and head) v
S
2. Spatial shift between actuation and perception “’C\A

vy

‘.4

-

y . e G e N ¥
Pressure-sensitive dorsal cells in the ' ‘ -

L v Left Right !
lamprey tend to have receptive fields : Meusc,e Mulsgde ; ,/!\»I
that are caudal (i.e. closer to the tail) . . 4]’
to their position in the spinal cord © Left Right ty

' Force Force |
, Sensor Sensor .

1
I
\‘ )
............................ - 49



Combined Shorter transients and most robust swimming with the
combined configuration

b Z\

" right-side activation i} left-side activation —— joint angles forces

e



Robustness to neural

disruptions

(5]
c
S
)
Q

___________

______________________

alone

The combination of i
central and peripheral |
mechanisms is much

more robust against |V

lesions than any of |y
these mechanisms

&
S
Q

-)(ﬁ k)(«.

_____________________

speed [m/s]

speed [m/s]

1
' Mixed disruptions ||
1

speed [m/s]

speed [m/s]

Number of neural dlsrupuons

Configuration

Number of neural dlsruptlons

Number of neural dlsruptlons

Number of neural disruptions



Lamprey and salamander summary

CPG circuits can generate and modulate various locomotion patterns (central
mechanism)
* Probably weaker inter-oscillator couplings than we thought

Local sensory feedback (peripheral mechanism):

* helps handle perturbations

« Can also contribute to
« synchronize oscillators (i.e. replace intersegmental coupling)
« generate rhythms (i.e. replace oscillators)

« High flexibility and self-organized locomotion (multiple mechanisms are
contributing)

« Strong robustness and redundancy: many aspects of locomotion can be
generated both by central and peripheral mechanisms

« Work in progress: adding stretch feedback improves robustness as well



New: exploring stretch and pressure feedback

Animal Simulation Robot
A B C
............... 2 a‘ e |
] \ R '
:Mus;!c Ssters;%]: :\\ -‘ ®pl In Water
: ® Force : 'I s_-a | Servo
E I () sensori l"\@f‘L: . motor —V' o © 0 0 o . ‘. Q '
| Segmental circuit :’}z_,é’_ s::;?)r . e © 0 0 o . Y , o ’
_______________ g @' ° ?N,o o m.
5}}47 oo o 00 KRR
I%«‘?' e o 0 0 o e o0
%’,g 4 On ground with pegs
143, D
"%,.‘Z
|
L
172
1A
121

Controller
Type

@ : Phase oscillator C : Phase coupling q : Pressure feedback @ : Stretch feedback

Manuscript submitted



Stretch and local pressure feedback on ground

The swimming circuit Stretch feedback is
can lead to 4 beneficial,
terrestrial obstacle- e not pressure
based locomotion ' feedback

Manuscript
submitted




Transected eel Controller : C+P+S (Spinal transected)

Spinal cord transected

at 50% body length Intrinsic oscillator frequency (f;)

1 &0 Anterior : 1.5 Hz Anterior : 1.5 Hz
o Posterior : 0.45 Hz (30%) Posterior : 2.7 Hz (180%)
r Y
- Time = 0.00 [s] Time = 0.00 [s] The feedbaCk C_an
' lead to synchronized
&, swimming like in

5 Bt transected eels

& (R |

6 1y
= But for this to work
O the oscillators need to
'S be able to

10 E.d ‘ ‘ spontaneously
g oscillate

: w A Desynchronized Synchronized

Manuscript submitted



—_— Spinal transection ——

Two conditions for

synchronized swimming: — - Transected

(1) the feedback should
be strong enough

@: Phase oscillator

Body point [%]

: Muscle

]_> : Muscle activation

C : Phase coupling

13 15 1.7 19 21 24 26 28 30 32 34 36
Time [s]

(2) The oscillators below
transection should be T |
capable of i

~&— Intact —e— Transec ted

£ 50 L (i : Pressure feedback
spontaneous Il
oscillations £ .0 il @ - sretcn feeaback
|| J
1001 + ‘. E Desynchronized swimming F Synchronized swimming
This could explain why D - T O ®
eels can swim directly R P — —
after transection and not £ = o yr
salamanders el & Fa
Salamanders —_ §* fé" Eels : \_ T'm "_3 =
T e &\k‘k\\

Intrinsic frequency at post-transection segments e o Tm [l . . o0 . ‘I'm [] &

[rad]



Swimming and walking coordinated through sensory feedback
Quite good locomotion coordinated by sensory feedback

NON O N
“eew0  owe
® Jonathan
®@ 06 ©6 6 6 0 6 ¢ AN
©0® 00 0 08 08 08 08 08 O Arreguit O’Neil
® @€ © © 0 & 0 @
(©]
_9s8  Owe

o4 No axial coupling
meoo NO iNterlimb coupling
(but intralimb coupling)

(] (]
Tegs, ety Three types of feedback:
\,\\:‘E%\@) \:\\. re_e YPES Of teedback:
‘ ® » Limb force
G: 0 0? 0? O? O: O: Ol: © * MUSCIe StretCh

® © © O @ & 6 @

® Muscle stretch velocity
08@® Oee
(08 O
iy
[CXCK [ XGN ]
)

(¢] Time: 0.0 [s]

Manuscript in preparation
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It even works for amphibious centipede locomotion!

MulJoCo



Q2 Evolution

From amphibians to reptiles

More erect
Faster, more agile
Amniotes (eggs in a shell)

* Low to the ground
Slow
Anamniotes (eggs in water)

N
& &

Salamander Komodo dran




Robotic Paleontology: reverse engineering the
locomotion of Orobates, an early tetrapod

John A. Nyakatura, Kamilo Melo, Tomislav Horvat,
Kostas Karakasiliotis, Vivian R. Allen, Amir Andikfar,
Emanuel Andrada, Patrick Arnold, Jonas Laustrder, John
R. Hutchinson, Martin S. Fischer & Auke J. ljspeert

Nature 565, 351-355 (2019)

-

John A. Nyakatura John R. Hutchinson



Robotic Paleontology: reverse engineering the
locomotion of Orobates, an early tetrapod

— What was the

Well-preserved most likely gait?

fossil

Foot track for the ,
same species =

THE PRIZE POLYCRYSTAL LIGHT et
DIVIDE [

DESIGN TOUCH v
) Ao i o




Sprawling locomotion in extant tetrapods

Salamander Skink lguana Caiman
' n""%‘-"?ﬂé‘;',/‘&v" ~ v b { I 7 3 < IR A7

/4

TN e, e
B QAN <ty
¢ -.,,,-.\'z 3
N
\

£y TR

SVL: Snout-
Vent length

<«—> FL: Front
limb length

HL: Hind

limb length
HL/SVL 0.3 0.17 0.55 0.39 0.41
FL/HL 0.85 1.0 0.67 0.75 0.93

Slide from J. Nyakatura



X-ray motion analysis & measurement of ground reaction forces

Slide from J. Nyakatura



Defining a sprawling gaits space

Body height

QD

min. max.

lguana Caiman

A«

Spine bending

s ol
Z {17
i
__ <y
‘agh *

; min. max.
no spine movement exagerated spine movement

Body height [IGD]

Long axis rotation

<] [> Jo o,
. ( min. max. )
_Humeral retractlort.o[}iy .~ humeral LARonly ;i Skink Salamander




Nyakatura et al, Nature, 2019



Gait parameters dynamlc simulation

BODY LIFT
Inverse-kinematic — awt
controllers are used e <] D
to generate gaits that: I min. max.
« Step in the
footprints

« Allow modulation
of quantities
defining the SGS
(sprawling gait
space)

min. max. = _
humeral retraction only humeral LAR only




Most likely gaits ~ ~"'6Ck out the

interactiye
Metrics for finding the most likely gaits: websitel _ ...
T E gel:l:rr]naander
o O Skink
¢ BOne CO”ISIOnS High score
 Power expenditure TS S N s Il
. Balance 5 1o sl e |
« g | e |
* Precision O Ny - o S S
« GRF Ground reaction forces 3 B 1 .

Exclusion-based approach: Yo /{“g@@ Low score
Sbine benzq\ 100 o PR

filtering out unlikely gaits (lowest g g, 40 e
. . \O
50% percentlle for eaCh metrIC) https://biorob?2.epfl.ch/pages/Orobates_interactive/

https://cyberbotics2.cyberbotics.com/orobot/simulation.php



https://biorob2.epfl.ch/pages/Orobates_interactive/
https://cyberbotics2.cyberbotics.com/orobot/simulation.php

Most likely gaits

Metrics for finding the most likely gaits:

Orabates could have
used many different
types of gaits

The most likely one is
close to the Caiman’s

Body height (IGD)

o
o))
/

o
»

0.2

Check out the

Interactjye
WebS'te’ l Caiman
d O lguana
@ Salamander
O Skink
High score

e

N
ng (deg) 40 v (\ga

0

20 \ \-.a\_\
, 100 ox9

Al

Point size

Low score

https://biorob2.epfl.ch/pages/Orobates _interactive/

https://cyberbotics2.cyberbotics.com/orobot/simulation.php



https://biorob2.epfl.ch/pages/Orobates_interactive/
https://cyberbotics2.cyberbotics.com/orobot/simulation.php




Nyakatura et al, Nature, 2019







Orobates could in principle Paleontology:

have used a large diversity ~ take-home messages
of gaits

Most likely: a quite erect and
athletic gait ‘
More similar to Caiman than

d Il Caiman

O lguana

@ Salamander
O Skink

High score

to salamander ool ] i e T H
More advanced than initially § =~ %..o.‘j@‘%@ i
thought for this stem amniote &,, ~  o°o4 =~ = &
New quantitative ) ﬂ i

0‘20\ o < Oeg\ Low score
methodology for T e
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Respective role
in motor control

Descendifgg modulation

Cephalized
control

Height of
center of mass

Spinal
control

Ostrich
Lamprey Salamander Cat
—_—
Low instability Mechanical (static) instability

Size of support polygon

High instability

Indirect evidence of CPGs in human: Minassian et al, Neuroscientist, 2017

lispeert and Daley, J. of Exp. Biol., JEB 2023

Mechanical (static) instability




Great progress in humanoid robots

Wabian, Waseda U. Asimo, Honda

i,

G1, Unitree  Optimus, Tesla  Digit, Agility R.

Qrio, SONY DB, Sarcos Atlas, Boston Dynamics  New Atlas Nao, Aldebaran Apollo Apptronic A2, Agibot
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Human motor control relies more on sensory signals
and higher-brain centers (supra-spinal control)

A Small animals B Large animals
Brain Brain More complex internal
Task and body . . Task and body

- SChema <« Simpler internal —> e P models

! (internal model) models (internal model)

1

1

: Descendjng >. Simpler descending Descendlzng A/T M ore com p | ex

. modulation § modulation modulation § . )

: 2 x : | descending modulation

: Spinal networks ‘35 © Spinal networks g
L CPG & 0 CPG b
® 4 ©
§ O-0-Q) 2 [P 1O-0-O
$ . 2
>
2 { » DA Reﬂexes] Faster reflexes Z‘ b= -[- -=» @O® Reﬂexes) Slower reflexes
& YYY 8 YVYY

(EREEEDERE) S| (X))
ENEEE! ofl VUV
—' Muscle dynamics | % —| Muscle dynamics l
¢ Lower inertia, m ¢ Higher inertia,
—‘ Body dynamics | faster corrective —I Body dynamics | slower corrective
¢ responses ¢ responses
Envi t Envi t .
_| bbbl | _| il ’ lispeert and Daley, JEB 2023




Key transition from amphibians to mammals

Sprawling posture Upright posture

studyblue.com

Salamander i ' Mammal

Low center of mass ‘ High center of mass

4 Large support polygon 4~ 4 Small support polygon



Geyer and Herr, 2010. . ,
Song and Geyer 2015 Lee etal 2019e ~ Ong et al 2019

V<L L
Nakamura Ting lab (Simpson et al 2016) Falisse et al 2019 Ramadan et al 2022

(Sreenivasa et al 2012)



Geyer and Herr's sensory-driven model

Sensory-driven model

+
7 muscles per leg
* -y
Different reflexes e VAS
(positive and negative force feedback,

. . . TA
limits of overextension, ...)

+
Posture control (torso angle)

H Geyer, HM Herr. A muscle-reflex model that encodes principles of legged mechanics
produces human walking dynamics and muscle activities. |IEEE Trans Neural Syst Rehabil
Eng 18(3): 263-273, 2010.




Good match to human data

Model Human Model Human
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H Geyer, HM Herr. A muscle-reflex model that encodes principles of legged mechanics
produces human walking dynamics and muscle activities. |IEEE Trans Neural Syst Rehabil
Eng 18(3): 263-273, 2010.




Benefits of a CPG? 1

Florin Dzeladini

* Is it worth adding a CPG to the sensory-driven network?

* Yes, we think so! Q
el

N. van der Noot

Hypotheses: adding a CPG to the feedback-driven controller
can

1) Improve the control of speed

2) Improve robustness against sensory noise

3) Improve robustness against sensory failure

4) Reduce transient times.

This can be seen as adding a feedforward controller to a
feedback controller
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CPG construction

We start with the sensory-driven model:

. P N ‘\
S/ ~ / \

” R/Swing ,.-f:
- R/Stancy e y
J_\J S;)r; uu‘?._r\_!_N bl_,l'l./_/

C) Musculoskeletal system

MTU,
Dzeladini et al 2014,

Frontiers in Human Sensory
Neuroscience signals




.and add a CPG
that replicates the
control signals
produced during
steady-state

Dzeladini et al 2014,
Frontiers in Human
Neuroscience

CPG construction

A Supraspinal influences

Simple input: descending
drive adjusts intrinsic

| i frequency and amplitude
ichon mladsocd o 1 l

ZOscillalom frequency: (1)

Phase reset

R/Swi
R/Stanéw, IV ,,f
INs n S

¢ Musculoskeletal system

MTU A\ MTU,

Sensory
signals



CPG construction

Feedback & CPG network

an = f(Xinsen: Xil]cpg) + XO

mn

[, 2) = G* (wn + (e, — o))

a =0 — pure feedforward
a=1 — pure feedback

Similarly to Kuo 2002, Motor Control

Dzeladini et al 2014,
Frontiers in Human
Neuroscience

pure
feedback

{ MTU

 0<a<10! a=00

pure
feedforward



Optimization of parameters

Optimizer: Descending
. .. . w modulation w
Particle Swarm optlmlzatlon & )
Central pattern

generators

Open parameters (25):

Reflexes

Reflex gains and thresholds

Fitness function (staged evol.):
1) Reach a minimum distance
2) Reach adesired speed

3) Limit knee over extension

y 4) Minimize energy




Neuromechanical model

Descending

generators

)

Reflexes

modulation
Best speed control when
Central pattern CPGs are added to the

N/ hip’s control circuits
® 0

A CPG simplifies the
control of speed

Dzeladini et al, The contribution of a central pattern generator in a reflex-based
neuromuscular model, Frontiers in Human Neuroscience, Vol 8, 371, 2014




Proximal

Distal

Mainly CPG-driven

High inertia
Low compliance
Low ‘preflexes’

Low inertia
High compliance
¢ High ‘preflexes’

Length and position feedback

Mainly sensory-driven
Force and velocity feedback

A proximal-distal grac

lent?

Proximal joints are 4 . .
more CPG driven | Descending modulation
Reflexes l CPG l
MN
Proximal N + N / Proximal
flexors r\}( - \r\) extensors
MN
’]@
Distal joints are more @
sensory driven I
L
Distal Distal
flexors extensors

lispeert and Daley, J. of Exp. Biol., JEB 2023



Modeling the human spinal cord

( - CMA-ES
Optimizer

A J

A. Di Russo

;
Musculoskeletal
Bio-inspired controller model

A. Bruel

Simon
Danner

Di Russo et al . Investigating the roles of reflexes and
central pattern generators in the control and
modulation of human locomotion using a
physiologically plausible neuromechanical model.

J. Neural Eng.. 2023

Sensory
information



Modeling the human spinal cord
CMA-ES |

Optimizer P CPG circuit A. Di Russo
'Musculoskeletal
N Sensory |
feedback mode
ING® IN,
TN IN, A. Bruel
TN IN,
= LN A s
1@ / \ d@; GMAX ‘Y= 1LPSO

’ — Simon

Danner

Di Russo et al . Investigating the roles of reflexes and
central pattern generators in the control and
modulation of human locomotion using a
physiologically plausible neuromechanical model.

J. Neural Eng.. 2023

Sensory
information



Control of speed
0.55m/s, 0.92m, 1.67 s 1.17m/s, 1.57 m, 1.34 s 1.86 m/s, 1.98 m, 1.06 s

Di Russo et al. J. Neural Eng..




Effects of controller's missing components

Missing CPGs and
Missing balance control feedforward signals Missing reflexes

Bio-inspired controller

SCONE

Di Russo et al. J. Neural Eng.. 2023



2 Using a similar model as a robot controller

Van Der Noot et al, The International JOUHIEIGIR obotics Research, 2018



Descending

modulation

Central pattern
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generators

QY

Reflexes

Descending
modulation

—

Spinal cord

Central pattern
generators

Reflexes

RERRRRRRARRRRRRARA:

Musculoskeletal
system




Jocelyne Bloch (UNIL) Grégoire Courtine (EPFL)

Harness

Multidirectional
body weight support

Spinal
cord injury

l Implantable
platform for real
time control of

epidural electrical

‘ stimulation (EES)
Y -
) I, 5

16 electrodes
paddle lead

Descending
modulation

—

(| S
< _ - electrical =% &
_———— stimulation B

Spinal cord

Central pattern
generators

Reflexes / ‘ \",l, o)
ARRRRRRRARRRRRREAN

Musculoskeletal
system



100%

Cephalized

— control
LS e S m— e S '~ ‘S —
E E Height of
v 8 center of mass
=
L e) ey
g 5 i
o g  Spinal
= control

Ostrich

Lamprey Salamander

|

Low instability Mechapical (static) insggability

Size of support polygon

High instability

>

lispeert and Daley, J. of Exp. Biol., JEB 2023

Mechanical (static) instability
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/@h w1 ol cled Incredible progress

MIT Biomimefic Robotics.Laboratory

swrin, y— In legged robotics
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Open source MIT Mini Cheeta

Unitree, China Boston Dynamics, USA

Affordable commercial platforms




/‘h MIT, Mlﬂl Che ‘rah

MIT Biomimefic Robotics aborafory
Sangbae Kim

Unitree, China Boston Dynamics,

Affordable commercial platforms ast GPU based simulators "‘ 0



How to learn and plan movements
taking into account spinal cord dynamics?




How to learn and plan movements
taking into account spinal cord dynamics?

brain 2
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(internal model) -
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CPG-RL: Learning Central Pattern Generators for Locomotion

_________________________________________________________________________ G. Bellegarda
i = Spinal . : _
Higher Centers : G Ythtlln Cord Pattern | |
(Policy) 5 eneration ?‘j Formation | |
A
s
o, _
ste : M. Shafiee
p o :

4
h
¢i =1 0.1 0 0.1 X M
X (m)

Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



CPG-RL: Learning Central Pattern Generators for Locomotion

Modulation of frequencies and amplitudes of the CPG,
as well as the limb orientation (yaw movement)

_________________________________________________________________________ G. Bellegarda
_h Spinal s .
Higher Centers i ythm Cord Pattem ;
T DA Descending d1’ivc§‘ FL FR : 3 :
o\ ——— C2% &
A\ e— ST SCEE -
2 @ e M. Shafiee
N HL HR '

Neural network,

3 hidden layers
[512, 256,128]
PPO, Proximal
Policy Optimization

Proximal policy optimization (PPO) is a model-free, online,
on-policy, reinforcement learning method.

Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



CPG-RL: Learning Central Pattern Generators for Locomotion

_________________________________________________________________________________________________________________________

Body Linear/Angular Body Height, .
. Velocity Commands Ground Clearance |

Central Feedback (efference copy) I S el |
_______________________________________________________________________ . Bellegarda
l 5 = Spinal )
Higher Centers : G ythtm Cord Pattern | |
(Policy) 5 eneration ﬂ Formation | |

L : E 3
gcd i ‘ .
ste ! M. Shafiee
™~ = !

Neural network,
3 hidden layers
[512, 256,128]
PPO, Proximal
Policy Optimization

Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



CPG-RL: Learning Central Pattern Generators for Locomotion

_________________________________________________________________________________________________________________________

i Body Linear/Angular . Body Height, i !
i Velocity Commands Higher Commands Ground Clearance |
______________________________________________________________________________________________________________________ Environment /]
Central Feedback (efference copy) G. Bell d
_______________________________________________________________________ . Bellegarda
l i Rh Spinal | —tr)
Higher Centers 5 G Yﬂltllﬂ Cord Pattern | |
(Policy) ; eneration g»*j Formation | |
FL FR Rhyjthmic output . i Motor torques
o ol -
: ~ ste ! M. Shafiee
| HL HR |
Limb-Loading Sensing -
(Cutaneous Receptors, Golgi Tendon Organs)
Proprioceptive Sensing B

(Muscle Spindles, Golgi Tendon Organs)

Vestibular Sensing
(Inner Ear)

F 3

Visual Perception

Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



A simple reward is sufficient to learn omnidirectional control

Reward function for the PPO: During training: modulation of
velocity commands, height, and

+ Track base velocity commands (v, v, w,) || 9round clearance.
- Penalize other base velocities (vZ; Wy, a)y) ground coefficient of friction varied in [0.3, 1]

limb mass varied within 20% of nominal values

added base mass up to 5 kg

external push of up to 0.5 m/s applied in a random
direction to the base every 15 seconds

- Penalize energy

3

nVIDIA. Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



Omnidirectional control
can easily be learned

NVIDIA.
ISAAC

>



Body Height and Swing Foot Height can be adjusted on the fly

Body Height: 0.3 (m) 0.19 (m) 0.3 (m)

<3

NVIDIA.

ISAAC

§ Body Linear/Angular . Body Height, :
i Velocity Commands Higher Commands Ground Clearance
Central Feedback (efference copy) \-/
]
l — |Spinal

i Cotiers e e Modulation of height

(Policy)

Descending drive!

and ground clearance







Is learning faster with a CPG than in joint angle space?
No!
Is It “easier”?

Yes, (much) simpler to design reward functions



Compare with learning directly in joint motor commands

Body Linear/Angular
Velocity Commands

G. Bellegarda

Environment

Higher Centers
(Policy)

Limb-Loading Sensing
(Cutaneous Receptors, Golgi Tendon Organs)

»

Proprioceptive Sensing
(Muscle Spindles, Golgi Tendon Organs)

Vestibular Sensing
(Inner Ear)

A

Visual Perception

Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



Learning without the CPG tends to generate pathological gaits

Same reward function:
+ Track base velocity command (vy, vy, w,)

- Penalize other base velocities (v, wy, wy)
- Penalize energy

w
o
T

CPG-RL
Joint PD
Joint PD Special Reward

=
o
T

Mean Reward
N
o

o

500 1000 1500 2000
Number of Training Iterations

o

Training is not faster
with CPG-RL

But the same (simple)
reward function leads to
more natural-looking




Which sensory information is important?

Limb contact seems to be necessary and sufficient



Which sensory information is important?

_________________________________________________________________________________________________________________________

; Body Linear/Angular
Velocity Commands

l

Higher Centers
(Policy)

FL

Rhythm

Generation

FR

¢ =

Rhy

Body Height,
Ground Clearance

Pattern

ﬁ Formation

. =
9 dute,
Rl Iy

Environment

Limb-Loading Sensing
(Cutaneous Receptors, Golgi Tendon Organs)

Proprioceptive Sensing
(Muscle Spindles, Golgi Tendon Organs)

Vestibular Sensing

(Inner Ear)

Visual Perception

G. Bellegarda

Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



_____________________________

Which sensory information is important?

; Body Linear/Angular . Body Height,
i Velocity Commands ngher Commands Ground Clearance
Central Feedback (efference copy) ]
[ = e A
Higher Centers = ythtlln Cord Patter.n
(Policy) eneration ﬁ Formation
FL Rhyjthmic output '

' FR
e (N
i e

H HR g é (?n:

Environment

pindles, Golgi Tendo
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(lnner Ear

F 3

e

G. Bellegarda

Bellegarda and ljspeert, Robotics and Automation Letters (RAL), 2022



Limb contact seems to be necessary and sufficient
sensory feedback




Adding exteroception, study of gait transitions

_________________________________________________________________________________________________________________________

; Body Linear/Angular . Body Height,
Velocity Commands Higher Commands Ground Clearance
______________________________________________________________________________________________________________________ Environment
Central Feedback (efference copy)
l s S ——— o
: : . Shafiee
Higher Centers 5 G Ythtlln Cord Pattern
(Policy) ; eneration !»*j ¢ Formation
FL FR | Rhyfthmic output '

N

I N ek |
) -“'/‘/g ;

SO : o,
HL HR ; ) g

Limb-Loading Sensing . G. Bellegarda
(Cutaneous Receptors, Golgi Tendon Organs)

Proprioceptive Sensing
(Muscle Spindles, Golgi Tendon Organs)

F

Vestibular Sensing

Visual Perception

Shafiee et al, Nature Communications, 2024



Gait transitions based on exteroception

Adding vision allows for anticipatory behaviors

Testing different possible criteria for gait transitions: maximizing energy :
efficiency, minimizing peak forces, and maximizing viability (i.e. avoiding falls). \ snaee

- Ty
=

YYYYYYYYYYYYYY Maximizing viability can explain gait transitions
both on flat terrains and on terrains with gaps

Shafiee et al, Nature Communications, 2024 G. Bellegarda



Adding more sophisticated descending modulation

/ Mesencephalic

Robot Computer N\

Locomotor Vestibular Visual
Region (MLR) system System
(Desired Velocity) (IMU data) (Visual Info)
Y EEEEERER IIIII.‘
. o,
CPG in Spinal Cord = Descending .
n Modulation n ; 4
Frequ_ency n % 6 S [ ]
Amplitude = CPG ¢ [ ]
"States coo 01\‘ . h ii! '
. 00 n 7 _IMU
Oscillatory : | Offset :
Feet Movement Y + 4
.Alllllllllllllli.
Joint state + Internal Kinematic Model
f Contact State Joint state + f
Joint desired state Contact State
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Ge et al, IROS2024
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M. Shafiee
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G. Sartoretti
(NUS)

et
Sun GE
(NUS)



The descending policy A robotics approach can be
can learn locomotion useful for neuroscience

over complex terrain

G. Bellegarda

(NUS)
Surprisingly robust against -

time delays (50ms) .. A
Ge et al, IROS2024 SS)




e

Shafiee et al, ICRA ZOMript N preparation




CPG and reinforcement learning (RL): Conclusion

A policy trained with RL can learn to use the CPGs for agile locomotion:

— Online modulation of speed, heading, body height, and swing
foot height

« Compared to learning in joint angle space: learning with CPGs is not
faster, but simplifies the design of the reward functions

« Surprisingly robust locomotion and sim-to-real transfer
« The multi-layered control can handle (big) time delays

« Framework allows to address scientific questions about descending
pathways and which sensory modalities are important



Take-home messages

The nervous system combines feedback
and feedforward control in multi layers

Their respective roles have probably
changed during evolution

Roles depend on mechanical stability
(but also on size, locomotor period and
time to locomotor maturity)

There might be proximal-distal
gradients of feedforward-feedback
control in mammal limbs

The spinal cord offers a good substrate
for learning and planning

100% 4

Respective role

in motor control

Descending modulation .
Cephalized

| control

Central pattern generators

| Spinal
/// control

Spinal sensing and reflexes

Y

Small animals Size Large animals

Low instability Mechanical (static) instability High instability
A ]

Fast locomotion Locomotor period Slow locomotion
Precocial species Time to locomotor maturlty Altricial species

lispeert and Daley, J. of Exp. Biol., JEB 2023



Science -> Benefits for robotics

brain s Energy efficiency
Q1 Principles _[fas‘éfh’;?n?"y]— 8 | L
Y . Multi-functionality
| . =] 8 Agility Fast learning
§ spinal networks ||
- gs; CPG 2l 155 ] : .
Q2 Evolution ,%; £ Computationally light-weight
2 { freﬂexesj bt_g
3 @@O( — s Fault-tolerance
i T |5 L
Q3 Learning | . Distributed control
) || ik
— £3 Robustness against noise
—(_environment ] | and time delays




Biorobotics Laboratory (ljspeert)

locomotion




Roombots as assistive furniture

Smart assistive environment for persons with limited mobility

Jamie Paik

Center for Intelligent
Systems

Collaboration Also contributions from Diego Paez-Granados
Grant and Emmanuel Senft Alexandre Alahi




Self-Reconfigurable Modular Robots

Crystalline M-TRAN
Rus et al. 2000 Murata et al. 2000

Metamorphic Robot MOLECUBES
Chirikjian et al1995 ; Zykov et al 2007

ATRON
Jorgensen et al 2004

Polybots
Yim et al. 2000

Soldercubes !

SuperBot '
Neubert et al. 2015 ¢

~ Salemi et al. 2006




Roombots: Robots for assistive environments
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Roombots as assistive furniture

Smart assistive environrpent for persons with limited mobility




Roombots as assistive furniture

Multiple applications as well as interesting research

guestions for Al and robotics:

« How to make robotic furniture useful and multifunctional?

« Which user interfaces and interactions?

 How to achieve robust collective navigation?

 How to add object manipulation?

+ Decentralized vs centralized control?

 How much learning? Which type of learning?
(e.g. imitation and reinforcement learning) ..,




https://qgitlab.com/farmsim F ARM S
Framework for animal and robot
modeling and simulation

Jonathan Shravan
Arreguit O'Neil Ramalingasetty

Simon Danner

Arreguit, Tata Ramalingasetty, ljspeert, BioRxiv, 2023

Tata Ramalingasetty et al, IEEE Access 2021


https://gitlab.com/farmsim

Possible projects

See:
https://biorob.epfl.ch/students/projects/

And contact the project supervisor
+ auke.ijspeert@epfl.ch in cc



https://biorob.epfl.ch/students/projects/
mailto:auke.ijspeert@epfl.ch

People at BIOROB, EPFL

Auke.lispeert@epfl.ch

rreguit O’'Neil S. Fiaux F. Longchamp A. Guignard
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