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The beauty of animal locomotion 



Big questions in animal motor control

What are the key principles of animal locomotion?Q1 Principles

Q2 Evolution

Q3 Learning

How have these changed during evolution?

How do animals perform learning and planning?

Robotics can help address these questions!



The beauty of animal locomotion 

How is this possible with neurons that are so slow?

Science Robotics 2024

~1016 [bits/m2]

~10-6 [s]~10-3 [s]

~1013 [bits/m2]



Motor Cortex: motor plan

Cerebellum: motor learning

Basal Ganglia: action selection

Spinal cord

Reflexes Central pattern 

generators

Musculoskeletal system, “Clever” mechanics

Descending 

modulation

FeedforwardFeedback



Much more than 

the morphologyFish

Amphibians/reptiles

Mammals Humans

Q2 Evolution The neural organization 

is surprisingly conservedAlso in 

invertebrates (insects)

Büschges and Ache, 

Physiological Reviews, in print 



Brain centers involved in vertebrate motor control 

Brain Stem
Selection of the Motor Program

Spinal cord
CPGs and reflexes

Spatiotemporal Sequences 

Activation of muscles

Cerebral cortex
Definition of the motor plan

Cerebellum
Timing, Coordination, and 

Learning

From: Principles of Neural Science. 4th edition. Edited by E.R. Kandel, J.H. 

Schwartz and T.M. Jessell. Appleton & Lange, New York.

Decerebrated animal



Building bricks for motor control: pattern generators

Cerebral 

cortex

Cerebellum

Spinal Cord

Brain Stem

Thalamus
Caudate

SC

IC

Dorsal roots = input from sensory feedback

Ventral roots = output to muscles

Pattern 

generators

Descending

pathways

Simple inputs ➔ complex outputs.  E.g gait transition by electrical stimulation of 

the brain stem (Shik and Orlosky 1966)

Afferent

pathways



Cross-section of the spinal cord

http://www.pharmacy180.com/article/spinal-cord-3554/

Central pattern 

generators

Reflexes

Important: the spinal cord is not just a relay station. 

It has multiple sophisticated circuits for motor control

http://www.pharmacy180.com/article/spinal-cord-3554/


Jerry Loeb’s Puppet analogy

5 ms

40 ms

100 ms

1-3 steps

Ijspeert and Daley, JEB 2023
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Feedforward
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Q1 Principles

Musculoskeletal system
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Central pattern 

generators

(CPGs)

Feedforward

Reflexes

Feedback

Internal models

Feedback and 

Feedforward

muscle-dynamics

body-dynamics

Q1 Principles

Musculoskeletal system

Spinal cord Brain

The concept of CPG + reflexes is interesting for:

(1) Low bandwidth communication

between higher centers and spinal cord

(2) Fast feedback loops in the spinal cord

(3) providing motor primitives for a large 

range of movements



Ryczko, Simon, Ijspeert, 

Trends in Neuroscience, 2020 

Ijspeert and Daley,  J. of Exp. Biol., JEB 2023

Q2 Evolution Hypothesis: lower vertebrates are relying proportionally more on CPG circuits. 

Higher vertebrates (like mammals) that are mechanically unstable rely more 

on sensory feedback and on descending modulation



Ryczko, Simon, Ijspeert, 

Trends in Neuroscience, 2020 

Ijspeert and Daley,  J. of Exp. Biol., JEB 2023

Q2 Evolution



Salamander locomotion

TSI, Swiss Italian Television

• Relatively simple animal

• Interesting bimodal 

locomotion

• Its body plan has 

changed little over 150 

million years (Gao & 

Shubin, Nature, 2002). 

• Good link between

lamprey and mammal

research

• Impressive regeneration

abilities



Bimodal locomotion (cartoon)

Pleurodeles Waltl

Swimming:

Traveling wave in axial muscles

Wavelength ≈ body length

Limb retractors are tonic

Short cycle durations

Walking:

Standing wave 

Limb retractors/protactors are 

phasic

Longer cycle durations



A mathematical model to study the 

transition from swimming to walking

Ijspeert et al, Science, March 2007

B BBody CPGL L

Forelimb 

CPG

Hindlimb 

CPG

System of coupled oscillators
Gait transition due to an 

increase of the descending drive

Walking Swimming



x

Modeling the CPG with coupled oscillators
A segmental oscillator is modeled as an amplitude-controlled phase oscillator as used in (Cohen, 

Holmes and Rand 1982, Kopell, Ermentrout, and Williams 1990) :
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Example with two oscillators
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Descending 

modulation

Ijspeert et al, Science, 2007, Crespi et al, IEEE TRO, 2013.

CPGs can modulate speed, heading, and type of gait

under the modulation of a few drive signals



Distributed control

Knuesel et al. Frontiers in Neurorobotics, 2020

CPGs can be implemented in a distributed way, 

with robustness about changing morphology



Modeling the salamander locomotor circuits: 

different levels of abstraction
• Coupled oscillators 

(Ijspeert et al 2007, Knüsel et al 

2020, Suzuki et al 2021)

• Leaky-integrator neurons 

(Ijspeert 2001)

• Integrate-and-fire neurons 

(Knuesel et al 2013, Pazzaglia et al 

2025)

• Hodgkin-Huxley types of neurons 

(Bicanski et al 2013) 28



The big question

Sherrington Graham Brown

Feedback 

control

Feedforward

control

Sensory feedback CPGs

Kuo 2002, 

Motor Control

vs

Peripheral control Central control

CPGsSensory feedback

Half centersChain of reflexes



Musculoskeletal system

The bridge: body dynamics

Sensory feedback Central pattern generators



Passive walker

Collins, S. H., Wisse, M., Ruina, A. (2001) 

International Journal of Robotics Research, 

Vol. 20, No. 2, Pages 607-615

trout swimming

Liao, J. C. (2004). 

Journal of Experimental Biology, 

Vol. 207(20), 3495-3506.

MIT tow tank, Lauder Lab Harvard

http://web.mit.edu/towtank/www/

Musculoskeletal system

Dead !

The bridge: body dynamics

Sensory feedback Central pattern generators

http://web.mit.edu/towtank/www/


Ijspeert and Daley,  J. of Exp. Biol., JEB 2023



36

The lamprey
• Lamprey: one of the most primitive vertebrate

• Anguilliform swimming

• Believed to be very similar to the ancestor of all vertebrates

• Has been studied in detail by neurobiologists

• Very nice example of fruitful interaction between 

neurobiology and computational neuroscience (i.e. modeling)
Movie by J.T. Buchanan



37

Numerical models of lamprey circuit

Williams, T. L., Sigvardt, K. A., Kopell, N., Ermentrout, G. B., & Rempler, M. P. (1990). Forcing of coupled nonlinear oscillators: 

Studies of intersegmental coordination in the lamprey locomotor central pattern generator. J. of Neurophysiology, 64, 

862–871.

Cohen, A. H., Bard Ermentrout, G., Kiemel, T., Kopell, N., Sigvardt, K. A., & Williams, T. L. (1992). Modelling of intersegmental 

coordination in the lamprey central pattern generator for locomotion. Trends in Neurosciences, 15(11), 434–438. 

https://doi.org/10.1016/0166-2236(92)90006-T

Ekeberg, Ö. (1993). A combined neuronal and mechanical model of fish swimming. Biological Cybernetics, 69, 363–374.

Grillner, S., Degliana, T., Ekeberg, Ö., El Marina, A., Lansner, A., Orlovsky, G. N., & Wallén, P. (1995). Neural networks that co-

ordinate locomotion and body orientation in lamprey. Trends in Neuroscience, 18(6), 270–279.

Wadden, T., Hellgren, J., Lansner, A., & Grillner, S. (1997). Intersegmental coordination in the lamprey: Simulations using a 

network model without segmental boundaries. Biological Cybernetics, 76, 1–9.

Hamlet, C., Fauci, L., Morgan, J. R., & Tytell, E. D. (2023). Proprioceptive feedback amplification restores effective locomotion 

in a neuromechanical model of lampreys with spinal injuries. Proceedings of the National Academy of Sciences of the 

United States of America, 120(11), e2213302120. https://doi.org/10.1073/pnas.2213302120

https://doi.org/10.1016/0166-2236(92)90006-T
https://doi.org/10.1073/pnas.2213302120


https://www.ttbook.org/interview/weird-world-eels

Eels are amazingly robust

Peter Wallen, PhD thesis, 1982

Likely explanation: important role for 

stretch and pressure feedback

Coordinated swimming despite one or 

two full spinal cord transections



Synchronization through local pressure feedback

• CPG: Distributed phase oscillators

• Local sensory pressure feedback

• Sensors: dorsal cells (mechano-receptors)

Phase oscillator dynamics:

CPG 

coupling
Local 

feedback

CPG

oscillator

R. Thandiackal

Muscle contraction signal

ሶ𝜙𝑖 = 𝜔 + σ𝑗=1
𝑁 𝑤𝑖𝑗 sin 𝜙𝑖 − 𝜙𝑗 − 𝜓𝑖𝑗 + 𝑏 𝐹𝑖 cos(𝜙𝑖)

𝑢𝑖 = cos(𝜙𝑖)

Thandiackal et al, Science Robotics, 2021



Oscillator and neural network implementations

Thandiackal et al, Science Robotics, 2021

Grillner, Sci. Am. 1996



Thandiackal et al, Science Robotics, 2021

K. Melo

L. Paez

R. Thiandiackal



Test of different configurations

CPG 

coupling
Local 

feedback

CPG

Muscle contraction signal

ሶ𝜙𝑖 = 𝜔 + σ𝑗=1
𝑁 𝑤𝑖𝑗 sin 𝜙𝑖 − 𝜙𝑗 − 𝜓𝑖𝑗 + 𝑏 𝐹𝑖 cos(𝜙𝑖)

𝑢𝑖 = cos(𝜙𝑖)

Central Mainly peripheral Combined



Test of different configurations

CPG 

coupling
Local 

feedback

CPG

Muscle contraction signal

ሶ𝜙𝑖 = 𝜔 + σ𝑗=1
𝑁 𝑤𝑖𝑗 sin 𝜙𝑖 − 𝜙𝑗 − 𝜓𝑖𝑗 + 𝑏 𝐹𝑖 cos(𝜙𝑖)

𝑢𝑖 = cos(𝜙𝑖)



Local pressure feedback

46



Local pressure feedback

Sensory feedback can synchronize decoupled oscillators 47



Sensory feedback can synchronize decoupled oscillators



Why a caudo-rostal traveling wave? 

Why does the traveling wave travel from head to tail?

1. Asymmetry of the body (tail and head)

2. Spatial shift between actuation and perception

Pressure-sensitive dorsal cells in the 

lamprey tend to have receptive fields 

that are caudal (i.e. closer to the tail) 

to their position in the spinal cord

49



Shorter transients and most robust swimming with the 

combined configuration



Robustness to neural 

disruptions

The combination of 

central and peripheral 

mechanisms is much 

more robust against 

lesions than any of 

these mechanisms 

alone



Lamprey and salamander summary
CPG circuits can generate and modulate various locomotion patterns (central 

mechanism)

• Probably weaker inter-oscillator couplings than we thought

Local sensory feedback (peripheral mechanism):

• helps handle perturbations

• Can also contribute to

• synchronize oscillators (i.e. replace intersegmental coupling)

• generate rhythms (i.e. replace oscillators)

• High flexibility and self-organized locomotion (multiple mechanisms are 

contributing)

• Strong robustness and redundancy: many aspects of locomotion can be 

generated both by central and peripheral mechanisms

• Work in progress: adding stretch feedback improves robustness as well



New: exploring stretch and pressure feedback

Manuscript submitted



Stretch and local pressure feedback on ground

Manuscript

submitted

P+S

The swimming circuit 

can lead to 

terrestrial obstacle-

based locomotion

Stretch feedback is 

beneficial, 

not pressure 

feedback



The feedback can 

lead to synchronized 

swimming like in 

transected eels

Manuscript submitted

But for this to work 

the oscillators need to 

be able to 

spontaneously 

oscillate



Two conditions for 

synchronized swimming: 

(1) the feedback should 

be strong enough

(2) The oscillators below 

transection should be 

capable of 

spontaneous 

oscillations

This could explain why 

eels can swim directly 

after transection and not 

salamanders

EelsSalamanders

Synchronized swimmingDesynchronized swimming

Synchronized



Jonathan 

Arreguit O’Neil

Swimming and walking coordinated through sensory feedback

Manuscript in preparation

No axial coupling

No interlimb coupling

(but intralimb coupling)

Three types of feedback:

• Limb force

• Muscle stretch

• Muscle stretch velocity

FARMS

Quite good locomotion coordinated by sensory feedback



Manuscript in preparationManuscript in preparation

FARMS

It even works for amphibious centipede locomotion!



Ijspeert and Daley,  J. of Exp. Biol., JEB 2023

Ryczko, Simon, Ijspeert, 

Trends in Neuroscience, 2020 

Q2 Evolution

From amphibians

• Low to the ground

• Slow 

• Anamniotes (eggs in water)

to reptiles

• More erect

• Faster, more agile 

• Amniotes (eggs in a shell)

Salamander Komodo dragon



Robotic Paleontology: reverse engineering the 

locomotion of Orobates, an early tetrapod

John A. Nyakatura, Kamilo Melo, Tomislav Horvat, 

Kostas Karakasiliotis, Vivian R. Allen, Amir Andikfar, 

Emanuel Andrada, Patrick Arnold, Jonas Lauströer, John 

R. Hutchinson, Martin S. Fischer & Auke J. Ijspeert 

Nature 565, 351–355 (2019) 

John A. Nyakatura John R. Hutchinson

T. HorvatK. Melo

K. Karakasiliotis



Robotic Paleontology: reverse engineering the 

locomotion of Orobates, an early tetrapod

What was the 

most likely gait?Well-preserved 

fossil

Foot track for the 

same species



HL/SVL

FL/HL

0.39

0.75

0.55

0.67

0.17

1.0

0.3

0.85

0.41

0.93

Sprawling locomotion in extant tetrapods
Salamander Skink Iguana Caiman

Slide from J. Nyakatura

SVL: Snout-

Vent length FL: Front 

limb length

HL: Hind 

limb length



X-ray motion analysis & measurement of ground reaction forces

Slide from J. Nyakatura



Defining a sprawling gaits space

Skink Salamander

CaimanIguana



Nyakatura et al, Nature, 2019



Gait parameters – dynamic simulation

Inverse-kinematic 

controllers are used 

to generate gaits that: 

• Step in the 

footprints 

• Allow modulation 

of quantities 

defining the SGS 

(sprawling gait 

space)



Most likely gaits

Metrics for finding the most likely gaits:

• Bone collisions

• Power expenditure

• Balance

• Precision

• GRF Ground reaction forces

Exclusion-based approach: 

filtering out unlikely gaits (lowest 

50% percentile for each metric) https://biorob2.epfl.ch/pages/Orobates_interactive/

https://cyberbotics2.cyberbotics.com/orobot/simulation.php

https://biorob2.epfl.ch/pages/Orobates_interactive/
https://cyberbotics2.cyberbotics.com/orobot/simulation.php


• Bone collisions

• Power expenditure

• Balance

• Precision

• GRF Ground reaction forces

Exclusion-based approach: 

filtering out unlikely gaits (lowest 

50% percentile for each metric)

Most likely gaits

Metrics for finding the most likely gaits:

https://biorob2.epfl.ch/pages/Orobates_interactive/

https://cyberbotics2.cyberbotics.com/orobot/simulation.php

Orabates could have 

used many different 

types of gaits

The most likely one is 

close to the Caiman’s

https://biorob2.epfl.ch/pages/Orobates_interactive/
https://cyberbotics2.cyberbotics.com/orobot/simulation.php


Nyakatura et al, Nature, 2019



Nyakatura et al, Nature, 2019



Nyakatura et al, Nature, 2019



Paleontology:

take-home messages
• Orobates could in principle

have used a large diversity

of gaits

• Most likely: a quite erect and 

athletic gait

• More similar to Caiman than 

to salamander

• More advanced than initially 

thought for this stem amniote

• New quantitative 

methodology for 

paleontology



Indirect evidence of CPGs in human: Minassian et al, Neuroscientist, 2017

Ijspeert and Daley,  J. of Exp. Biol., JEB 2023



Great progress in humanoid robots

Asimo, Honda

Qrio, SONY Atlas, Boston Dynamics

Wabian, Waseda U.

DB, Sarcos

HRP2

New Atlas

Figure AI G1, Unitree Optimus, Tesla

Apollo Apptronic A2, Agibot

Digit, Agility R.

Nao, Aldebaran



https://www.youtube.com/watch?v=6XR7cr3QIV8



Human motor control relies more on sensory signals 

and higher-brain centers (supra-spinal control)

Ijspeert and Daley, JEB 2023

More complex internal

models

More complex

descending modulation

R
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studyblue.com

Sprawling posture Upright posture

Low center of mass

Large support polygon

High center of mass

Small support polygon

Salamander Mammal

Key transition from amphibians to mammals



Geyer and Herr, 2010.

Song and Geyer 2015 

Taga 1995, 1998 

Nakamura lab 

(Sreenivasa et al 2012)
Ting lab (Simpson et al 2016)

Neuromechanical models of human locomotion

Lee et al 2019e

Falisse et al 2019

Ong et al 2019

Ramadan et al 2022



Sensory-driven model

+

7 muscles per leg

+

Different reflexes
(positive and negative force feedback, 

limits of overextension, …) 

+

Posture control (torso angle)

Geyer and Herr’s sensory-driven model

H Geyer, HM Herr. A muscle-reflex model that encodes principles of legged mechanics 

produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil

Eng 18(3): 263-273, 2010. 



Good match to human data

H Geyer, HM Herr. A muscle-reflex model that encodes principles of legged mechanics 

produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil

Eng 18(3): 263-273, 2010. 



Hypotheses: adding a CPG to the feedback-driven controller 

can

1) Improve the control of speed

2) Improve robustness against sensory noise

3) Improve robustness against sensory failure

4) Reduce transient times.

This can be seen as adding a feedforward controller to a 

feedback controller

• Is it worth adding a CPG to the sensory-driven network? 

• Yes, we think so!

Florin Dzeladini

N. van der Noot

Benefits of a CPG?

A. Wu
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1) Improve the control of speed
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3) Improve robustness against sensory failure

4) Reduce transient times.

This can be seen as adding a feedforward controller to a 

feedback controller

Florin Dzeladini
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A. Wu

• Is it worth adding a CPG to the sensory-driven network? 

• Yes, we think so!



CPG construction

We start with the sensory-driven model:

Sensory 

signals

Dzeladini et al 2014, 

Frontiers in Human 

Neuroscience



CPG construction

Phase reset… and add a CPG 

that replicates the 

control signals 

produced during 

steady-state

Simple input: descending 

drive adjusts intrinsic 

frequency and amplitude

C
P

G

Dzeladini et al 2014, 

Frontiers in Human 

Neuroscience
Sensory 

signals



CPG construction

Feedback & CPG network

→ pure feedforward

→ pure feedback

pure 

feedforward
pure

feedback

Dzeladini et al 2014, 

Frontiers in Human 

Neuroscience

Similarly to Kuo 2002,  Motor Control



Optimization of parameters

Optimizer: 

Particle Swarm optimization

Open parameters (25):

Reflex gains and thresholds

Fitness function (staged evol.):

1) Reach a minimum distance

2) Reach a desired speed

3) Limit knee over extension

4) Minimize energy



Dzeladini et al, The contribution of a central pattern generator in a reflex-based 

neuromuscular model, Frontiers in Human Neuroscience, Vol 8, 371, 2014

Neuromechanical model

A CPG simplifies the 

control of speed

Best speed control when 

CPGs are added to the 

hip’s control circuits



Proximal joints are 

more CPG driven

Distal joints are more 

sensory driven

A proximal-distal gradient?

Ijspeert and Daley,  J. of Exp. Biol., JEB 2023



Modeling the human spinal cord
A

A. Di Russo

A. Bruel

Di Russo et al . Investigating the roles of reflexes and 

central pattern generators in the control and 

modulation of human locomotion using a 

physiologically plausible neuromechanical model. 

J. Neural Eng.. 2023

Simon 

Danner



A
Modeling the human spinal cord

A. Di Russo

A. Bruel

CPG circuit

Sensory 

feedback

Simon 

Danner

Di Russo et al . Investigating the roles of reflexes and 

central pattern generators in the control and 

modulation of human locomotion using a 

physiologically plausible neuromechanical model. 

J. Neural Eng.. 2023



Control of speed
PA

0.55 m/s, 0.92 m, 1.67 s 1.17 m/s, 1.57 m, 1.34 s 1.86 m/s, 1.98 m, 1.06 s

Di Russo et al.  J. Neural Eng.. 2023

SCONE



Effects of controller’s missing components
Missing CPGs and 

feedforward signalsMissing balance control Missing reflexes

SCONE

Di Russo et al.  J. Neural Eng.. 2023



Van Der Noot et al, The International Journal of Robotics Research, 2018

Using a similar model as a robot controller

Renaud 

Ronsse

Nicolas 

Van der 

Noot



Descending 

modulation

Central pattern 

generators

Musculoskeletal 

system

Reflexes

Spinal cord



Descending 

modulation

Central pattern 

generators

Reflexes

Spinal cord

Jocelyne Bloch (UNIL) Grégoire Courtine (EPFL)

Musculoskeletal 

system

Epidural 

electrical 

stimulation



Ijspeert and Daley,  J. of Exp. Biol., JEB 2023



Incredible progress

in legged robotics

Open source MIT Mini Cheetah

Affordable commercial platforms

Sangbae Kim

Unitree, China Boston Dynamics, USA



Open source MIT Mini Cheetah Good use of deep reinforcement learning

Affordable commercial platforms Fast GPU based simulators

Sangbae Kim Marco Hutter

Unitree, China Boston Dynamics, USA



How to learn and plan movements 

taking into account spinal cord dynamics?

G. Bellegarda

M. Shafiee



How to learn and plan movements 

taking into account spinal cord dynamics?

G. Bellegarda

M. Shafiee



CPG-RL: Learning Central Pattern Generators for Locomotion

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

G. Bellegarda

M. Shafiee



CPG-RL: Learning Central Pattern Generators for Locomotion

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

G. Bellegarda

Neural network, 

3 hidden layers 

[512, 256,128]

PPO, Proximal 

Policy Optimization

M. Shafiee

Proximal policy optimization (PPO) is a model-free, online, 

on-policy, reinforcement learning method.

Modulation of frequencies and amplitudes of the CPG, 

as well as the limb orientation (yaw movement)



CPG-RL: Learning Central Pattern Generators for Locomotion

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

G. Bellegarda

Neural network, 

3 hidden layers 

[512, 256,128]

PPO, Proximal 

Policy Optimization

M. Shafiee



CPG-RL: Learning Central Pattern Generators for Locomotion

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

G. Bellegarda

M. Shafiee



A simple reward is sufficient to learn omnidirectional control

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

Reward function for the PPO:

+ Track base velocity commands (𝑣𝑥 , 𝑣𝑦, 𝜔𝑧)

- Penalize other base velocities (𝑣𝑧, 𝜔𝑥, 𝜔𝑦)

- Penalize energy

During training: modulation of 
velocity commands, height, and 
ground clearance.



Omnidirectional control 

can easily be learned



Modulation of height

and ground clearance



Robustness against perturbations



Is learning faster with a CPG than in joint angle space?

No!

Is it “easier”?

Yes, (much) simpler to design reward functions



Compare with learning directly in joint motor commands

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

G. Bellegarda

Motor commands



Learning without the CPG tends to generate pathological gaits

Same reward function:

+ Track base velocity command (𝑣𝑥, 𝑣𝑦, 𝜔𝑧)

- Penalize other base velocities (𝑣𝑧, 𝜔𝑥, 𝜔𝑦)

- Penalize energy

Training is not faster 

with CPG-RL

But the same (simple) 

reward function leads to 

more natural-looking 

gaits



Which sensory information is important?

Limb contact seems to be necessary and sufficient



Which sensory information is important?

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

G. Bellegarda



Which sensory information is important?

Bellegarda and Ijspeert, Robotics and Automation Letters (RAL), 2022

G. Bellegarda



Limb contact seems to be necessary and sufficient 
sensory feedback



Adding exteroception, study of gait transitions

G. Bellegarda

Shafiee et al, Nature Communications, 2024

M. Shafiee



Gait transitions based on exteroception

G. Bellegarda

M. Shafiee

Shafiee et al, Nature Communications, 2024

Adding vision allows for anticipatory behaviors

Testing different possible criteria for gait transitions: maximizing energy 

efficiency, minimizing peak forces, and maximizing viability (i.e. avoiding falls).

Maximizing viability can explain gait transitions 

both on flat terrains and on terrains with gaps



Adding more sophisticated descending modulation

Ge et al, IROS2024

G. Bellegarda

M. Shafiee

G. Sartoretti 

(NUS)

Sun GE 

(NUS)



G. Bellegarda

M. Shafiee

G. Sartoretti 

(NUS)

Sun GE 

(NUS)Ge et al, IROS2024

The descending policy 

can learn locomotion 

over complex terrain

Surprisingly robust against 

time delays (50ms) 

A robotics approach can be 

useful for neuroscience



Extension to many morphologies

G. Bellegarda

Shafiee et al, ICRA 2024, Manuscript in preparation

M. Shafiee



CPG and reinforcement learning (RL): Conclusion

• A policy trained with RL can learn to use the CPGs for agile locomotion:

– Online modulation of speed, heading, body height, and swing 

foot height

• Compared to learning in joint angle space: learning with CPGs is not 

faster, but simplifies the design of the reward functions

• Surprisingly robust locomotion and sim-to-real transfer

• The multi-layered control can handle (big) time delays

• Framework allows to address scientific questions about descending 

pathways and which sensory modalities are important



Take-home messages
The nervous system combines feedback 

and feedforward control in multi layers

Their respective roles have probably 

changed during evolution

Roles depend on mechanical stability 

(but also on size, locomotor period and 

time to locomotor maturity)

There might be proximal-distal 

gradients of feedforward-feedback 

control in mammal limbs

The spinal cord offers a good substrate 

for learning and planning
Ijspeert and Daley,  J. of Exp. Biol., JEB 2023



➔ Benefits for robotics

Computationally light-weight

Q1 Principles

Q2 Evolution

Q3 Learning

Fault-tolerance

Distributed control

Agility

Robustness against noise 

and time delays

Energy efficiency

Multi-functionality

Science

Fast learning



Biorobotics Laboratory (Ijspeert)

Robotics

Engineering 

locomotion

Understanding 

locomotion

Biology Healthcare

Assisting

locomotion



Roombots as assistive furniture
Smart assistive environment for persons with limited mobility

Aude Billard

Jamie Paik

Alexandre Alahi

Also contributions from Diego Paez-Granados 

and Emmanuel Senft

,



1

4

Self-Reconfigurable Modular Robots
CEBOT
Fukuda et al. 1988

M-TRAN
Murata et al. 2000

SuperBot
Salemi et al. 2006

Polybots
Yim et al. 2000

MOLECUBES
Zykov et al 2007

ATRON
Jorgensen et al 2004

Crystalline
Rus et al. 2000

Metamorphic Robot
Chirikjian et al1995

Soldercubes
Neubert et al. 2015



Roombots: Robots for assistive environments





Accelerated 8 times

S. Hauser

M. Mutlu

Hauser et al, Robotics and Autonomous Systems, 2020



145 Kohdr et al, RAL 2019,  Hauser et al, Robotics and Autonomous Systems, 2020



Furniture with omnidirectional drive

Chuanfang 

Ning

Anastasia

Bolotnikova



Furniture with omnidirectional drive

Chuanfang 

Ning

Anastasia

Bolotnikova



Using gestures as interfaces

L.Tang

Tang et al, RAL 2023



Reorganization of furniture

L.Tang

D. Ruegg

Tang et al, under review



Reorganization of furniture

L.Tang

D. Ruegg

Tang et al, under review



Roombots as assistive furniture

Smart assistive environment for persons with limited mobility



Roombots as assistive furniture

Multiple applications as well as interesting research 

questions for AI and robotics:

• How to make robotic furniture useful and multifunctional?

• Which user interfaces and interactions?

• How to achieve robust collective navigation?

• How to add object manipulation?

• Decentralized vs centralized control?

• How much learning? Which type of learning? 

(e.g. imitation and reinforcement learning)



FARMS

Framework for animal and robot 

modeling and simulation
Shravan

Ramalingasetty

Jonathan 

Arreguit O’Neil

Pavan Ramdya

Simon Danner

https://gitlab.com/farmsim

Lobato-Rios et al, Nature methods 2022

Tata Ramalingasetty et al, IEEE Access 2021 Arreguit, Tata Ramalingasetty, Ijspeert, BioRxiv, 2023

https://gitlab.com/farmsim


Possible projects

See:

https://biorob.epfl.ch/students/projects/

And contact the project supervisor

+ auke.ijspeert@epfl.ch in cc

https://biorob.epfl.ch/students/projects/
mailto:auke.ijspeert@epfl.ch
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