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2D ADE, point source solution
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The advection diffusion equation (ADE) can be written

The boundary condition is

C(x, y, t) ! 0
p

x2 + y2 ! 1for

As initial condition we have (we assume a release uniform over a depth H)

C(x, y, 0) =
M

H
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2D ADE, point source solution

The form of the initial condition suggests to look for a solution in the form of

With boundary conditions

And initial conditions

C(x, y, t) =
M

H
C1(x, t)C2(y, t)

C2(y, 0) = �(y)

C1,2(1, t) = 0

This technique, called “separation of variables” only works for certain types of PDE and 
boundary conditions (no universal method).

C1(x, 0) = �(x)



2D ADE, point source solution

Inserting 

into the advection diffusion equation, we obtain.

To simplify notation, we take u, v = 0 (no advection). Setting 

C(x, y, t) =
M

H
C1(x, t)C2(y, t)

Satisfies the diffusion equation, the I.C and the B.C. The final solution is then (generalization to 3D 
and u, v ≠ 0 is immediate):
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2D diffusion equation, joining rivers

‣Advection is assumed to prevail along the flow direction. In 
the transverse direction transport occurs due to (turbulent) 
diffusion. We assume that a steady state is reached. Flow in 
rivers is typically turbulent and thus unsteady by definition 
but can be statistically stationary (all statistics time 
invariant).

‣Two rivers joining, one contains a uniform concentration 
C0 of a given substance.

‣Regional example: Rhone-Arve junction in Geneva 



‣Only B.C. matter because we are interested in steady-state solution. We set x=0 and y=0 at the 
junction. We also assume a situation with wide and shallow river, or equivalently we remain in a 
domain where the concentration front has not reached the opposite side of the river.

Joining rivers: modeling
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‣ We start with the 2D ADE, with x coordinate along the flow (y transverse coordinate). We 
assume a straight river geometry and a small junction angle.

steady state no advection transverse to 
the flow due to small angle

Pex<<1
Advection dominates 

along the flow

C(x = 0, y > 0) = 0

C(x = 0, y < 0) = C0 C(x, y ! �1) = C0

C(x, y ! 1) = 0



Joining rivers: model solution

‣ Performing the change of variables 

reduces the advection diffusion equation to the simpler diffusion equation
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‣The variable η has the dimension of a time that corresponds to the flow time from the junction 
to the position x.

‣From the solution for the gate opening we directly obtain the solution

C(x, y) =
C0
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Advection Diffusion Reaction equation

‣Production/Loss of mass through physical (e.g. sediment deposition, radioactive decay), chemical 
(e.g. stoichiometric reactions) and biological processes (e.g. respiration).

‣We distinguish between homogeneous (occur everywhere in the domain) and heterogeneous 
(occur at boundaries) processes.

homogeneous reactions -> source/sink terms in 
the continuity equation
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heterogeneous reactions -> time-dependent 
boundary condition

C(x = xi, t) = f(t)

‣Reaction rate R relevant for deciding whether reaction have to be considered or not (for times t 
<< 1/R reaction can be neglected).



Reaction kinetics

aA+ bB ! cC + dD

‣Consider the reaction

example CH4 + 2O2 = CO2 + 2H20

A, B reactants
C, D products a, b, c, d stoichiometric coefficients

‣We introduce the rate of change RA of a substance A (depletion corresponds to negative rate)

at equilibrium we have
cRA = �aRC ) RA = �a

c
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Reaction kinetics

‣ In general product i formed by j reactants

overall reaction order

d[i]

dt
=
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= Ri = kiC
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‣ The nl are not necessarily equal to the stoichiometric coefficients (can even be fractional) -> to 
be determined experimentally.

from experiment, dimensional quantity



First order (linear) reactions

‣Important simple case (e.g. radioactive decay)

‣Initial condition 

dC

dt
= ±kC [k] =

1

T

C(t = 0) = C0

‣Solution C(t) = C0e
±kt

‣Decay half-life (or doubling period) independent of initial condition

t1/2 =
ln 2

k



Advection Diffusion Reaction equation

‣From the continuity equation we obtain the ADR equation 

‣Example 1: 1D linear ADR equation, point source in an infinite domain
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‣Solution (blackboard derivation) C(x, t) =
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‣Example 2: 1D linear ADR equation, steady release (blackboard)


