

Environmental transport phenomena: Lecture V

Benoît Crouzy (benoit.crouzy@epfl.ch)

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

MeteoSwiss

2D ADE, point source solution

The advection **diffusion equation** (ADE) can be written

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2}$$

The **boundary** condition is

$$C(x, y, t) \rightarrow 0 \quad \text{for} \quad \sqrt{x^2 + y^2} \rightarrow \infty$$

As **initial** condition we have (we assume a release uniform over a depth H)

$$C(x, y, 0) = \frac{M}{H} \delta(x) \delta(y)$$

2D ADE, point source solution

The form of the initial condition suggests to look for a solution in the form of

$$C(x, y, t) = \frac{M}{H} C_1(x, t) C_2(y, t)$$

With **boundary** conditions

$$C_{1,2}(\infty, t) = 0$$

And **initial** conditions

$$C_1(x, 0) = \delta(x) \quad C_2(y, 0) = \delta(y)$$

This technique, called “**separation of variables**” only works for certain types of PDE and boundary conditions (no universal method).

2D ADE, point source solution

Inserting

$$C(x, y, t) = \frac{M}{H} C_1(x, t) C_2(y, t)$$

into the advection diffusion equation, we obtain.

$$C_2 \left[\frac{\partial C_1}{\partial t} + u \frac{\partial C_1}{\partial x} - D_x \frac{\partial^2 C_1}{\partial x^2} \right] + C_1 \left[\frac{\partial C_2}{\partial t} + v \frac{\partial C_2}{\partial y} - D_y \frac{\partial^2 C_2}{\partial y^2} \right] = 0$$

To simplify notation, we take $u, v = 0$ (no advection). Setting

$$C_1 = \frac{1}{\sqrt{4\pi D_x t}} e^{-\frac{x^2}{4D_x t}} \quad C_2 = \frac{1}{\sqrt{4\pi D_y t}} e^{-\frac{y^2}{4D_y t}}$$

Satisfies the diffusion equation, the I.C and the B.C. The final solution is then (generalization to 3D and $u, v \neq 0$ is immediate):

$$C(x, y, t) = \frac{M}{H} \frac{1}{4\pi \sqrt{D_x D_y t}} e^{-\left[\frac{x^2}{4D_x t} + \frac{y^2}{4D_y t} \right]}$$

2D diffusion equation, joining rivers

- ▶ Two rivers **joining**, one contains a **uniform concentration** C_0 of a given substance.
- ▶ **Advection** is assumed to prevail along the flow direction. In the transverse direction transport occurs due to (turbulent) **diffusion**. We assume that a **steady** state is reached. Flow in rivers is typically **turbulent** and thus **unsteady** by definition but can be **statistically stationary** (all statistics time invariant).
- ▶ **Regional** example: Rhone-Arve junction in Geneva

Joining rivers: modeling

► We start with the 2D ADE, with x coordinate along the flow (y transverse coordinate). We assume a straight river geometry and a **small junction angle**.

► **Only B.C.** matter because we are interested in steady-state solution. We set $x=0$ and $y=0$ at the junction. We also assume a situation with **wide and shallow river**, or equivalently we remain in a domain where the concentration front has not reached the opposite side of the river.

$$C(x = 0, y > 0) = 0$$

$$C(x = 0, y < 0) = C_0$$

$$C(x, y \rightarrow \infty) = 0$$

$$C(x, y \rightarrow -\infty) = C_0$$

Joining rivers: model solution

- ▶ Performing the change of variables

$$\eta = \frac{x}{u} \quad \xi = y$$

reduces the advection diffusion equation to the simpler diffusion equation

$$u \frac{\partial C}{\partial x} = D_y \frac{\partial^2 C}{\partial y^2} \quad \longrightarrow \quad \frac{\partial C}{\partial \eta} = D_y \frac{\partial^2 C}{\partial \xi^2}$$

- ▶ The variable η has the dimension of a time that corresponds to the flow time from the junction to the position x .
- ▶ From the solution for the gate opening we directly obtain the solution

$$C(x, y) = \frac{C_0}{2} \left[1 - \operatorname{erf} \left(\frac{y}{\sqrt{4D \frac{x}{u}}} \right) \right]$$

Advection Diffusion Reaction equation

- ▶ Production/Loss of mass through **physical** (e.g. sediment deposition, radioactive decay), **chemical** (e.g. stoichiometric reactions) and **biological** processes (e.g. respiration).
- ▶ We distinguish between homogeneous (occur everywhere in the domain) and heterogeneous (occur at boundaries) processes.

homogeneous reactions -> source/sink terms in the continuity equation

$$\frac{\partial C}{\partial t} + \nabla \cdot \mathbf{J} = \sum_i S_i$$

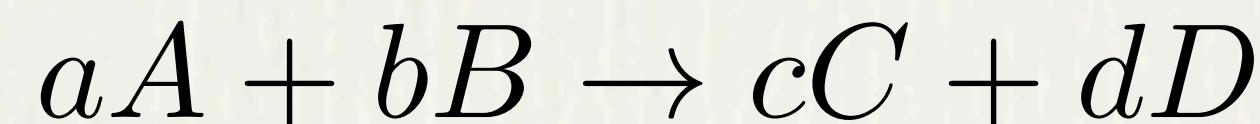
heterogeneous reactions -> time-dependent boundary condition

$$C(x = x_i, t) = f(t)$$

- ▶ **Reaction rate** R relevant for deciding whether reaction have to be considered or not (for times $t \ll 1/R$ reaction can be neglected).

Reaction kinetics

- ▶ Consider the reaction



A, B **reactants**
C, D **products**

a, b, c, d **stoichiometric coefficients**

example

- ▶ We introduce the **rate of change** R_A of a substance A (depletion corresponds to negative rate)

$$\frac{d[A]}{dt} = \frac{dC_A}{dt} = R_A$$

at **equilibrium** we have

$$bR_A = aR_B \Rightarrow R_A = \frac{a}{b}R_B$$

$$cR_A = -aR_C \Rightarrow R_A = -\frac{a}{c}R_C$$

Reaction kinetics

- ▶ In general product i formed by j reactants

from **experiment**, dimensional quantity

$$\frac{d[i]}{dt} = \frac{d[C_i]}{dt} = R_i = k_i \overset{\nearrow}{C_1^{n_1} C_2^{n_2} \dots C_j^{n_j}}$$

$$O_i = \sum_{l=1}^j n_l \quad \text{overall reaction order}$$

- ▶ The n_l are not necessarily equal to the stoichiometric coefficients (can even be **fractional**) -> to be determined experimentally.

First order (linear) reactions

- ▶ Important simple case (e.g. radioactive decay)

$$\frac{dC}{dt} = \pm kC \quad [k] = \frac{1}{T}$$

- ▶ Initial condition $C(t = 0) = C_0$

- ▶ Solution $C(t) = C_0 e^{\pm kt}$

- ▶ Decay **half-life** (or doubling period) independent of initial condition

$$t_{1/2} = \frac{\ln 2}{k}$$

Advection Diffusion Reaction equation

- From the continuity equation we obtain the **ADR equation**

$$\frac{\partial C}{\partial t} + \mathbf{U} \nabla C = D \nabla^2 C + R$$

- Example 1: 1D linear ADR equation, point source in an infinite domain

$$\frac{\partial C}{\partial t} + v_{adv} \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2} \pm kC$$

- Solution (blackboard derivation)

$$C(x, t) = \frac{M}{A \sqrt{4\pi D t}} e^{-\frac{(x - v_{adv} t)^2}{4Dt}} e^{\pm kt}$$

- Example 2: 1D linear ADR equation, steady release (blackboard)