

Environmental transport phenomena: Lecture III

Benoît Crouzy
(benoit.crouzy@meteoswiss.ch)

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE

Schweizerische Eidgenossenschaft
Confédération suisse
Confederazione Svizzera
Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

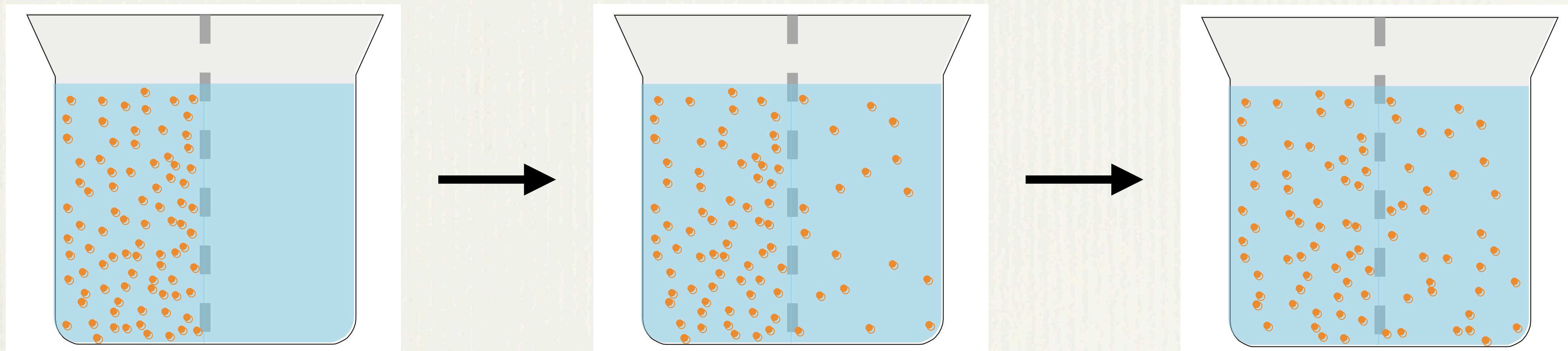
MeteoSwiss

Diffusion equation

Diffusion-like equations can be found in **different contexts**:

- ▶ diffusion of substances

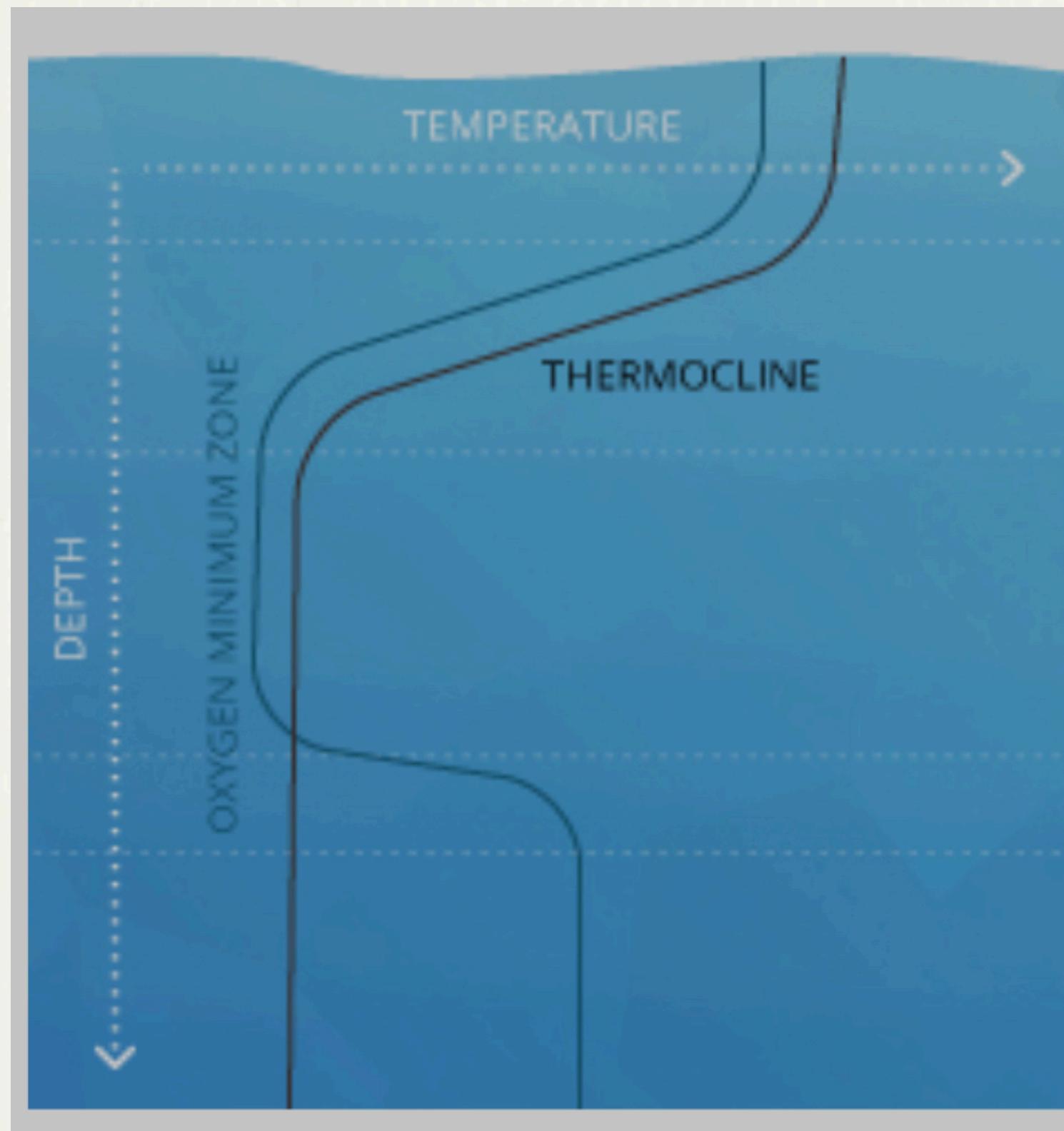
$$\frac{\partial C(x, t)}{\partial t} = D \frac{\partial^2 C(x, t)}{\partial x^2}$$



Diffusion equation

Diffusion-like equations can be found in **different contexts**:

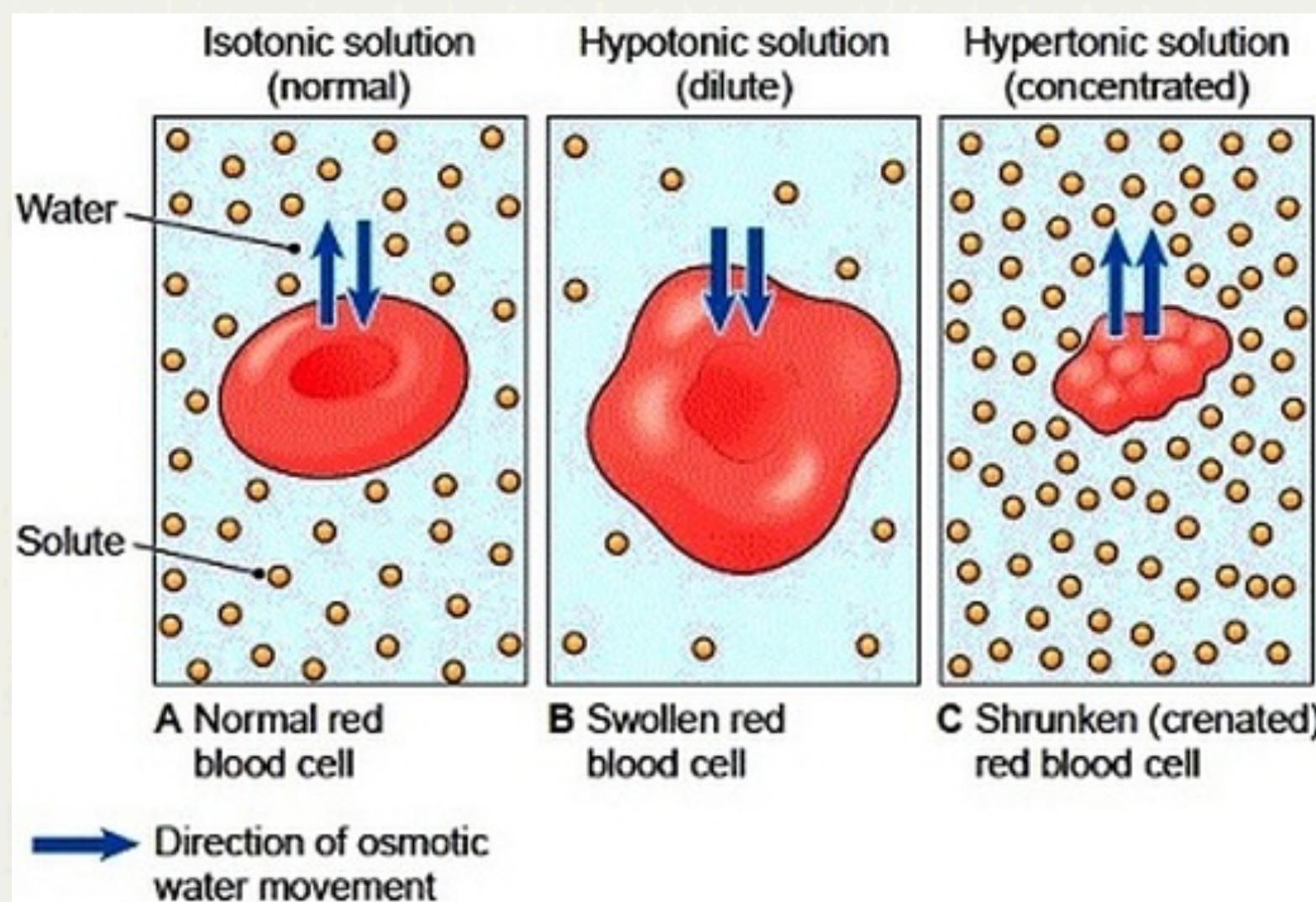
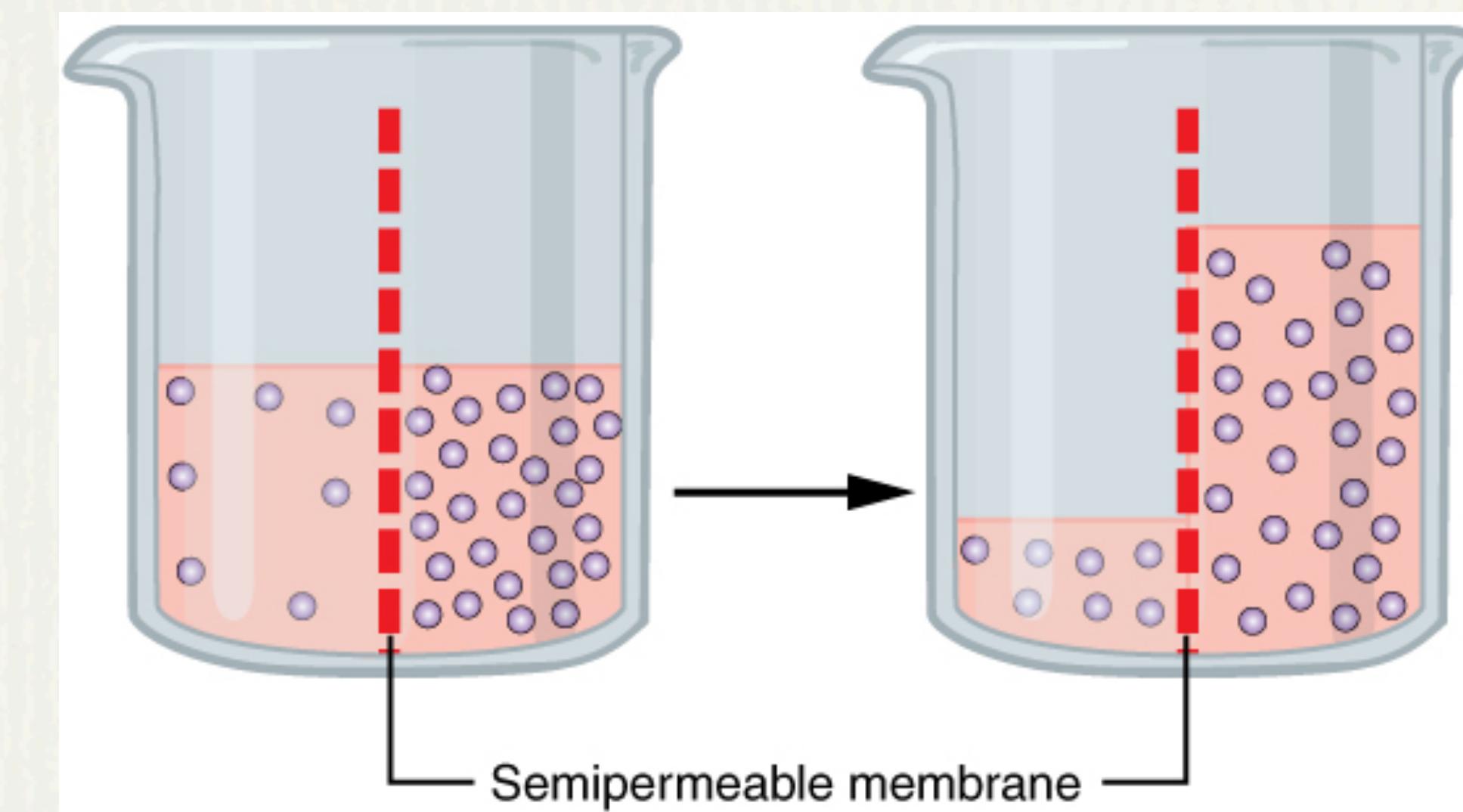
- ▶ diffusion of substances: oxygen diffusion in a water body



Diffusion equation

Diffusion-like equations can be found in **different contexts**:

- ▶ diffusion of substances: osmosis



Diffusion equation

Diffusion-like equations can be found in **different contexts**:

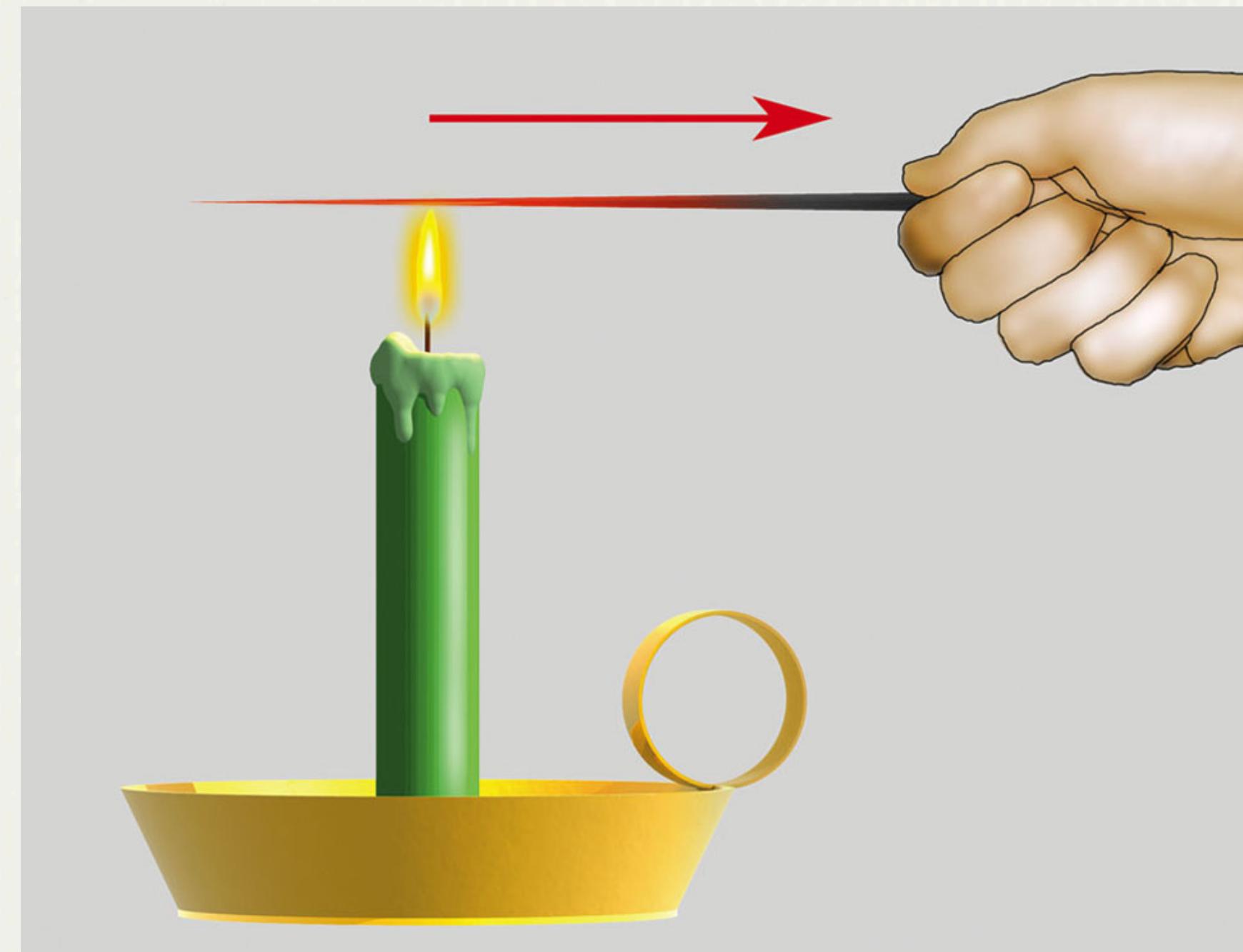
- Navier-Stokes: **momentum** diffusion

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla p + \boxed{\mu \nabla^2 \mathbf{v}} + \mathbf{f}$$

Diffusion equation

Diffusion-like equations can be found in **different contexts**:

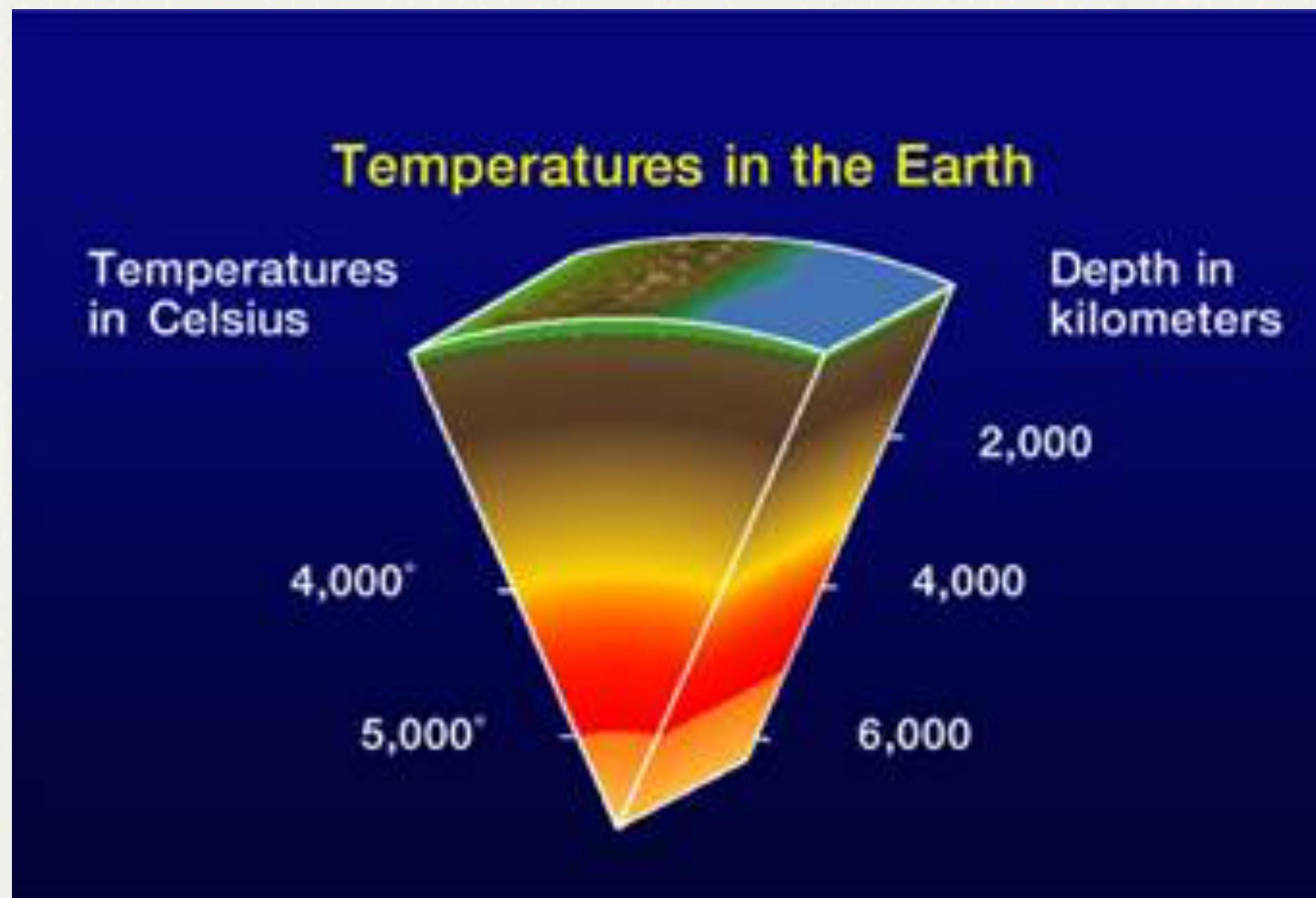
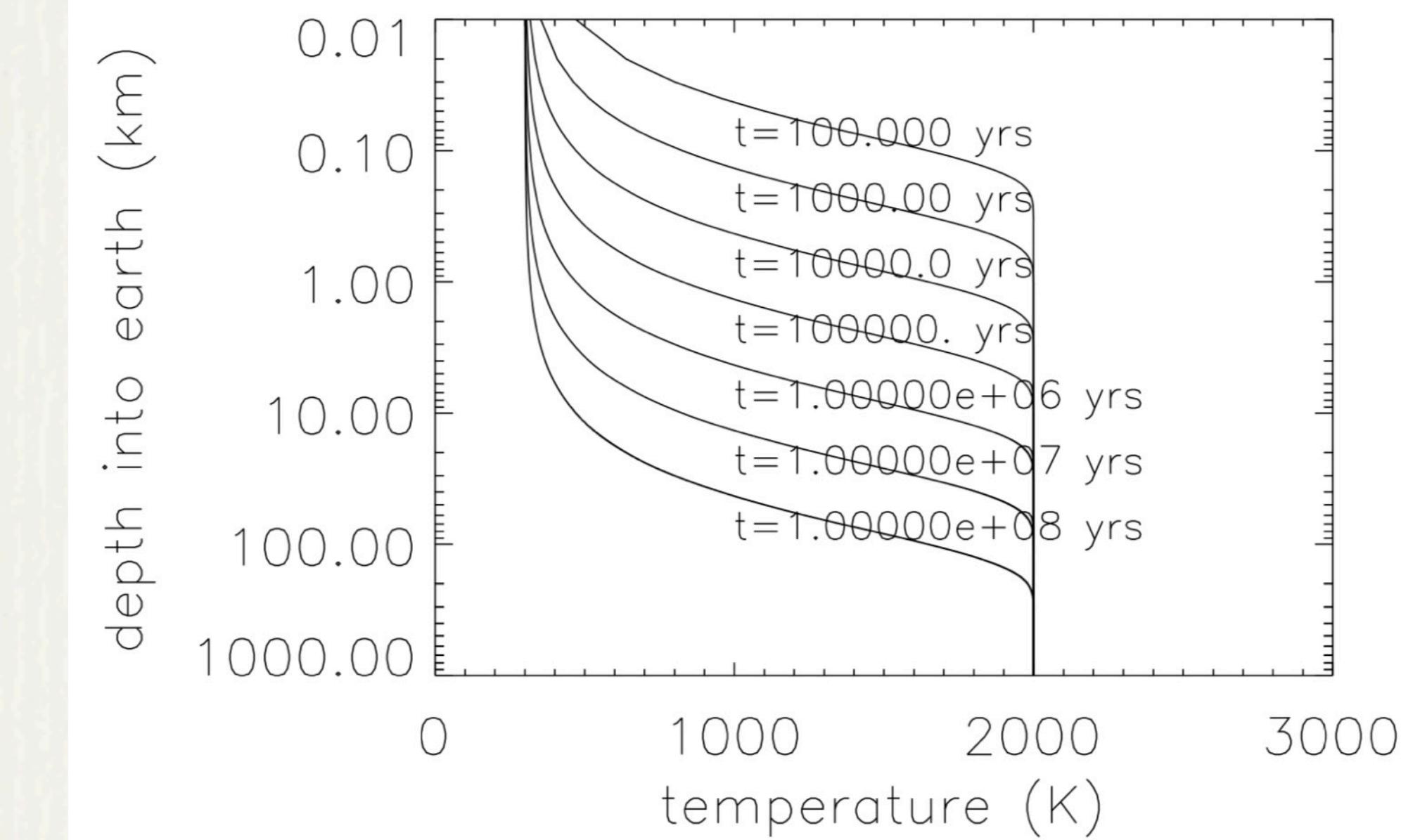
► **Heat** equation $\frac{\partial u}{\partial t} = \alpha \nabla^2 u$ u is the temperature and α the thermal diffusivity



Diffusion equation

Diffusion-like equations can be found in **different contexts**:

- ▶ **Heat** equation: cooling of the earth



Diffusion equation

Diffusion-like equations can be found in **different contexts**:

► Schrödinger equation (free particle)

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi$$

Diffusion in imaginary time

Diffusion equation (1D)

The diffusion equation needs to be supplemented with one **initial** condition and two **boundary** conditions. The complete problem takes the form:

► evolution equation

$$\frac{\partial C(x, t)}{\partial t} = D \frac{\partial^2 C(x, t)}{\partial x^2}$$

► domain boundary concentrations

$$C(x_{1,2}, t) = C_{1,2} \quad \forall t$$

or fluxes

$$\left. \frac{\partial C(x, t)}{\partial x} \right|_{x=x_{1,2}} = C'_{1,2} \quad \forall t$$

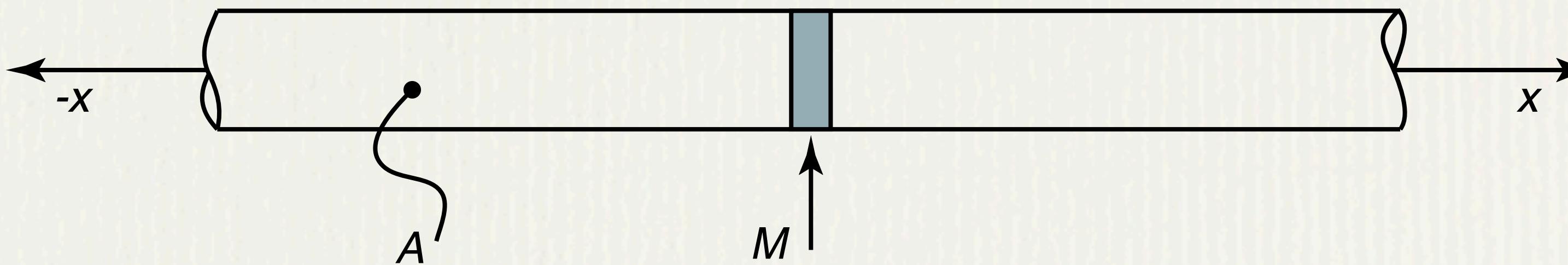
domain boundaries: $x_{1,2}$

► initial concentration distribution

$$C(x, 0) = f(x)$$

1D diffusion equation: point source solution

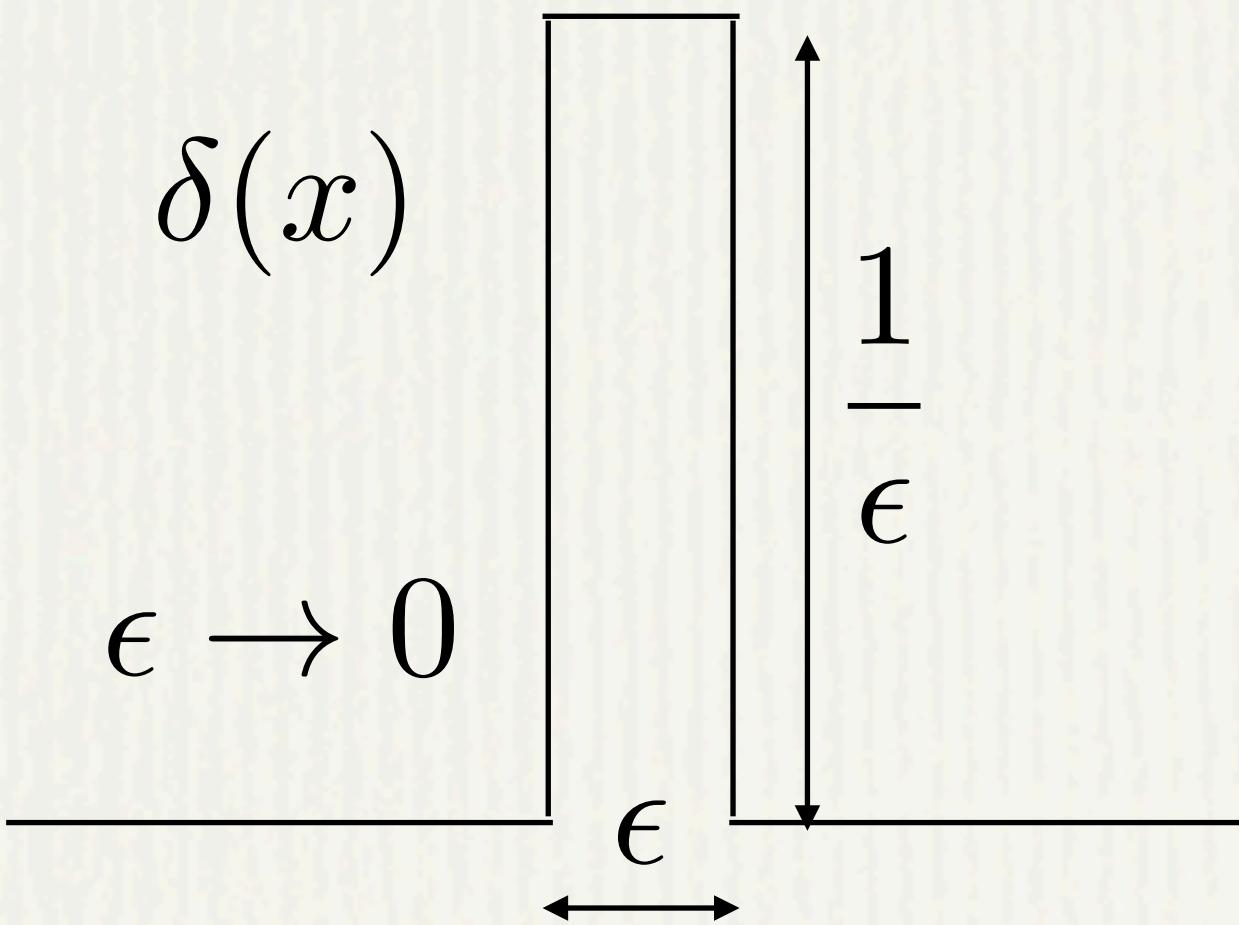
- We assume an **infinite** 1D domain and a **point** release (e.g. pipe with uniform concentration over the section A)



$$\frac{\partial C(x, t)}{\partial t} = D \frac{\partial^2 C(x, t)}{\partial x^2}$$

$$C(x, t = 0) = \frac{M}{A} \delta(x)$$

$$C(x = \pm\infty, t) = 0$$



- **Dirac** distribution $\delta(x)$ satisfies (intuition: finite mass in a point):

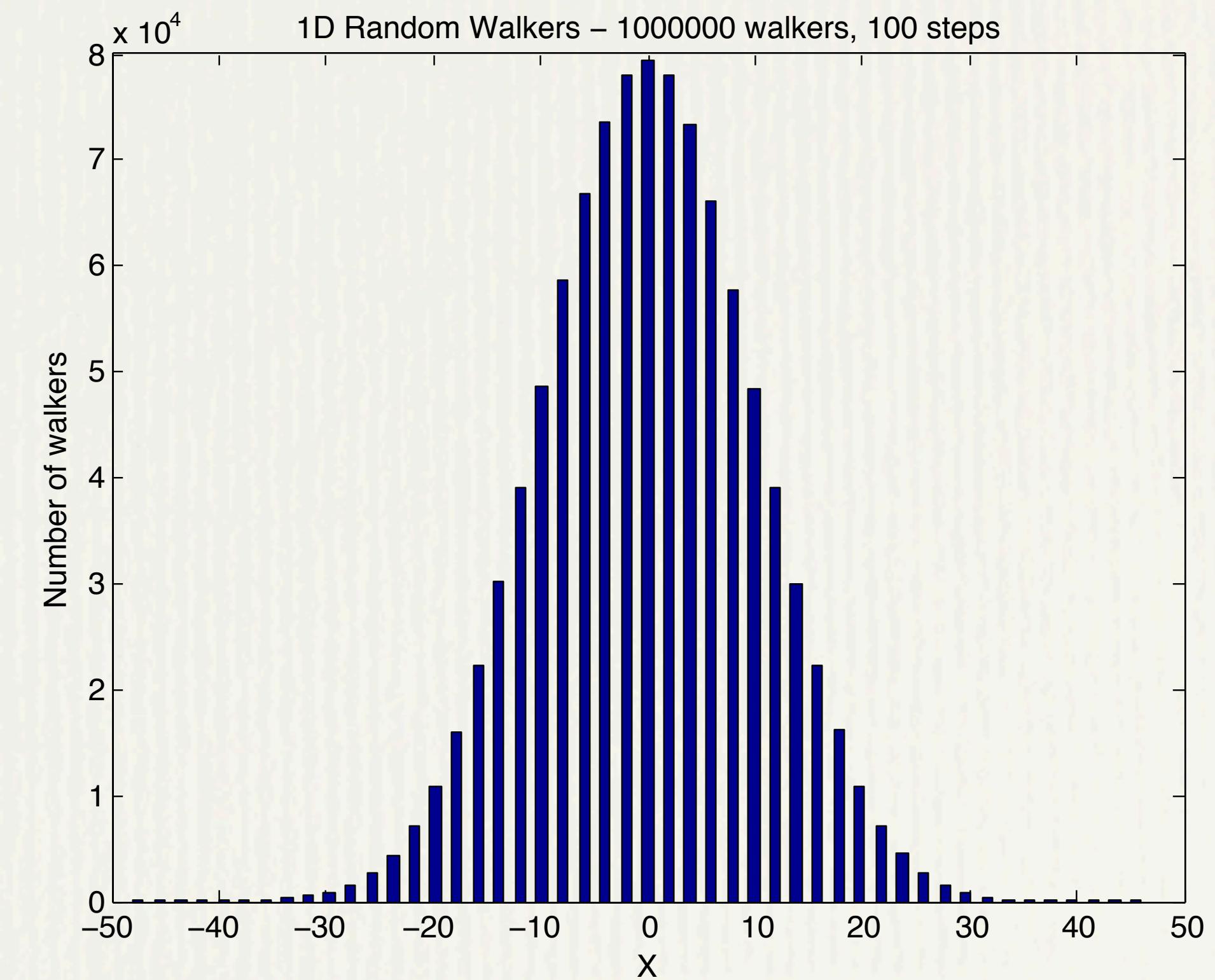
$$\int \delta(x) dx = 1$$

$$\int \delta(x - x_0) f(x) dx = f(x_0)$$

1D diffusion equation: point source solution

$$C(x, t) = \frac{M}{A\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}} \quad \sigma(t) = \sqrt{2Dt}$$

- ▶ Results known from normal distribution can be used: 68% of the particles found within one standard deviation, 95% within two...



- ▶ Generalisation to a point source located at position $x=\mu$ is immediate

$$C(x, t) = \frac{M}{A\sqrt{4\pi Dt}} e^{-\frac{(x-\mu)^2}{4Dt}}$$