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Introduction: transported components

‣ Sediment (e.g. rivers) 

2

Fluid motion is associated to the transport of various components

Increased deposition (positive interaction) 
or sediment anchoring 

Increased scouring due to flow deflection 
(negative interaction)
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Introduction: transported components

‣ Huge variety of aerosol (particles in suspension in the air)

3

Soot (Diesel): 
ca. 0.1 μm Amonium sulfate:

ca. 0.1 μm

Marine salt: 
0.2 - 10 μm

Mineral dust
0.2 - 10 μm

+ secondary aerosols 
from volatile organic 
compounds
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Introduction: transported components

‣Transport of Saharan dust: aggregate formation (iberulites, Switzerland 
2021)

Iberulites from Saharan dust
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?

Introduction: transported components

‣Transport of Saharan dust: aggregate formation (iberulites, Switzerland 
2021)
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Environmental Microbiology, Volume: 9, Issue: 12, 
Pages: 2911-2922, First published: 23 October 
2007, DOI: (10.1111/j.1462-2920.2007.01461.x) 

Introduction: transported components

‣ Flow of life in the atmosphere !
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viruses

NIAID-RML

bacteria

< <
1 µm

Introduction: transported components

‣Bioaerosol affecting crops, health and cloud formation

Fungal spores Pollen

https://en.wikipedia.org/wiki/National_Institute_of_Allergy_and_Infectious_Diseases
https://en.wikipedia.org/wiki/Rocky_Mountain_Laboratories
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Introduction: transported components
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‣Chemicals (gases)

‣ Contaminants (organic and inorganic)
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Scales

9

Environmental transport occurs over a huge range of scales.

Saharan dust 
event

Tracer 
diffusion

vs
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Scales

10

Transport of Saharan dust: LIDAR measurement in Payerne
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Scales
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Transport of Saharan dust: numerical forecasts (Copernicus 
Atmosphere Monitoring Service)

https://atmosphere.copernicus.eu/global-forecast-plots 
https://atmosphere.copernicus.eu/charts/packages/cams/products/fire-
activity?base_time=202309270000&projection=classical_global 

https://atmosphere.copernicus.eu/global-forecast-plots
https://atmosphere.copernicus.eu/charts/packages/cams/products/fire-activity?base_time=202309270000&projection=classical_global
https://atmosphere.copernicus.eu/charts/packages/cams/products/fire-activity?base_time=202309270000&projection=classical_global
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Scales

12

2017 north America fires

6th 8th 7th 

Surface PM concentration (Payerne, CH)
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Scales: 2023 Canada fires

13

AutoPollen Meeting 
14-15 September 2023 

Brussels, Belgium  

Case study:   27 May 2023 

22:17-00:27 

BB 
BB 

15 
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Methods

‣Large scale, compute air parcel trajectories and dispersion/deposition of atmospheric 
pollutants e.g. Hysplit, SILAM, ICON ART

https://www.ready.noaa.gov/HYSPLIT_traj.php

‣Shorter or intermediate scale: CFD software (e.g. FLUENT)

‣Simplified physical models

14

Depending on the scale and on the substance, various approaches are applied

https://www.ready.noaa.gov/HYSPLIT_traj.php
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Issues

‣Black box models, output always look “nice”, little 
effort to run

‣Processes may be forgotten: e.g. pollen 
measurement on the side of GMO maize field

15

Necessary to understand 
processes to avoid pitfalls
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What are the relevant transport processes ?

16

‣ Advection: movement of a substance driven by the bulk flow. Mathematically described 
by a continuity equation (we assume a solenoidal flow                   ) 

@C

@t
+ urC = 0

J(x, y, z, t) = C(x, y, z, t)u(x, y, z, t)

 If we have only transport by advection

General expression (continuity equation)

Amount of substance transferred per unit area and unit of timeJ

r · v = 0

@C

@t
+r · J = 0

)
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What are the relevant transport processes ?

17

‣Convection: buoyancy-driven motion. Not directly treated in this lecture,

6 

 

x For case D and E, the Rayleigh number is very high. 

 

 
Figure 4: Case D, ∆T=20K and Ra=10982 

 
Figure 5:  Case  E,  ѐTсϱ0K  and  Raс2ϳ4ϱϱ 

 

For both cases, the solution has converged for 2500 iterations. This time, we have clearly convection 

cells on both figures. Thus, there must be a minimum Rayleigh number of 10 times the critical 

Rayleigh number to observe clearly enough Rayleigh-Bénard instability. It may be assumed that 

instabilities can occur for smaller changes and thus at lower Rayleigh number, but their 

establishment would probably be very long, which would require a very large computation time. 

 

To finish, another reason we can learn to explain this high Rayleigh number is that the geometry we 

use for this study is not ideal (in fact, it should be theoretically infinitely long and a very low height to 

get rid of edge effects). Thus, our case study does not correspond exactly to the theoretical 

framework of instability. 

 

B. Variation of L at fixed H (=2mm) and ∆T (=50K) 
 

In this part of our study we want to observe the influence of the length (L) of the horizontal plates. 

We have modeled two different cases; one with a length L=5mm and another with a length L=25mm. 

We have decided to display the results for velocity vector colored by static temperature. 

 

 
Figure 6: L=5mm 

 

Rayleigh-Bénard instability
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What are the relevant transport processes ?

18

‣Molecular diffusion: occurs in a fluid at rest or in a laminar flow, due to the thermal 
excitation of fluid molecules.

‣Turbulent diffusion: similar to molecular diffusion but occurs in a turbulent flow. Similar 
mathematical description, but diffusion coefficient typically orders of magnitude larger.
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Introduction

19

‣Shear: Advection with a gradient velocity 
profile (e.g. log-profile in the boundary layer)

‣Dispersion: Combined effect of shear and 
transverse (turbulent) diffusion

Movement of center of mass: advection, convection, shear
Mixing, spreading: diffusion, dispersion

Pollutant
concentration

profiles

Plume
centerline

He at x3

He at x2

He at x1+y

-y

Actual stack height
Effective stack height
pollutant release height
Hs���ǻK
plume rise

=
=
=
=
=

Hs 
He

ǻK

z  

Wind x

Hs
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III) Molecular diffusion
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Molecular diffusion

21

Basic concept: random migration of molecules or small particles due to thermal energy (solute in 
solvent, e.g. benzene in water)

Simple example: ideal gas (“randomly” moving point particles that do 
not interact except when they collide elastically)

Kinetic energy (average !): h1
2
mv2xi =

1

2
kBT

Boltzmann constant: kB=1.38 10-23 J/K

In three dimensions: h1
2
(mv2x +mv2y +mv2z)i =

3

2
kBT
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Molecular diffusion

22

Average velocity of N2 molecules at 
room temperature: 464 m/s !

The typical average thermal velocities are 
very large.

The trajectories of molecules are 
however not straight (collisions) !

Air at ambient temperature (2.7 1025 molecules / m3)

Mean free path between two collisions (air, ambient pressure): 68 
nm.
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Diffusion: random walk description

23

No chance to solve the equation of 
motion for all the particles. 

Trajectories of molecules in solvent are 
extremely complex (chaotic).

Use a statistical approach: probability to 
have the particle at a given position 
p(x,y,z,t).

Many particles (N): probability density p(x,y,z,t) proportional to 
concentration.

C(x, y, z, t) = Np(x, y, z, t)



/37

1D random walk

24

Simple model for diffusion: the 1D random walk (example diffusion of tracer molecules in a 
narrow pipe).

‣ Repeated steps to the left or to the right with equal probability, no memory

‣Step n corresponds to displacement

‣ τ and δ  depend on particle size and shape, liquid properties and temperature

�n = anvx⌧ = anu⌧ = an�
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1D random walk: example trajectories

25

Time (number of steps, step duration 1)
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Figure 1: realizations of the random walk in one dimension

• The law of large numbers tells us that if we take the average over a su�cient number of

realizations we will converge to the real expectation value. From Figure 2 we see that the

average distance squared is proportional (actually even equals for the case we consider !) to

the number of steps (in accordance with the result of the lecture since the number of steps is

itself proportional to the time).

• The maximal distance squared is proportional to the number of steps squared if we take a

su�cient number of realizations (i.e. much larger than the number of steps, see how it begins

to fail on Figure 3 when the number of steps is too large). The distance dmax = n2
with n

the number of steps corresponds to a trajectory where all the steps go in the same direction

(+1 or �1).
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Figure 2: average and maximal distance squared over several simulated realizations of the random

walk

• The central limit theorem tells us that the distribution of the sum of a large number of

independent and identically distributed random variables follows a Gaussian distribution
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1D random walk: histograms of positions

26
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1D random walk: average and max distance2

27
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1D random walk: first observations

28

‣In one dimension all the trajectories come back to the origin

‣As time increases the particles explore a larger domain (dispersion)

‣Average (root-mean-squared) distance from he starting point proportional to the square 
root of time 
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average distance squared is proportional (actually even equals for the case we consider !) to

the number of steps (in accordance with the result of the lecture since the number of steps is

itself proportional to the time).
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su�cient number of realizations (i.e. much larger than the number of steps, see how it begins

to fail on Figure 3 when the number of steps is too large). The distance dmax = n2
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(+1 or �1).

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

X: 10
Y: 100

X: 10
Y: 10.27

1D Random Walk − Max and average of distance2 versus time

Time

D
is

ta
nc

e 
Sq

ua
re

d

X: 5
Y: 25

X: 5
Y: 5.056

Figure 2: average and maximal distance squared over several simulated realizations of the random

walk

• The central limit theorem tells us that the distribution of the sum of a large number of

independent and identically distributed random variables follows a Gaussian distribution

3
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1D random walk: microscopic description

29

‣Discrete evolution equation (particle label i, timestep label n): 

‣Large number of particles, average spreading given by the standard deviation σ(t) on the 
position at the time t

‣Diffusion coefficient as a dimensional parameter characterizing the spreading

xi(n+ 1) = xi(n) + an�

�2(t = n⌧) = h(x(n)� hx(n)i)2i = hx(n)2i � hx(n)i2 =
�2

⌧
t

�(t) =
p

(2Dt)2D =
�2

⌧
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Diffusion coefficient

30

‣Dimension [D]=L2/T, unit m2/s, often expressed in cm2/s

‣Typical values for solutes in water (ambient temperature) ~10-5cm2/s

‣Typical values for dispersed gases (ambient temperature) ~10-1cm2/s

‣In solids much lower values (example: gas in metal, or helium leaking out of a balloon)

‣Increases with temperature and decreases with density.
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How fast is diffusion ?

31

‣Thermal velocities are extremely large, does this result in a fast spreading ?

‣Time for spreading over one meter with D=10-5cm2/s ? 116 days !!

‣Common experience (e.g. cigarette smoke in a room), the process is much faster.

‣Turbulence results in a diffusion coefficient orders of magnitude larger.
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Generalization to 2D and 3D

32

‣All we have learned for 1D can be 
generalized to 2D and 3D.

‣We allow the particle to explore 
the thee dimensions at each time 
step.

hr2i = hx2 + y2 + z2i = 6Dt

‣ Non-trivial effect: probability never to return at origin is 0 in 1D and 2D. 
However, a drunk bird only has a 34% chance to return home (3D diffusion).
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Macroscopic description: Fick’s first law

33

‣Microscopic -> Macroscopic by

‣Assumption: steady state (fixed concentration profile) 

‣The solute moves from regions of high concentration to a region of low concentration

‣J(x,y,z) (bold letter -> vector) the diffusion flux. Amount of substance transferred per unit 
area and unit of time (typical units mole m-2 s-1)

C(x, y, z, t) = Np(x, y, z, t)
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Derivation of Fick’s first law

34

N(x) N(x+δ)

‣ At each timestep τ each particle close to the border between two regions of different 
concentrations (space divided in boxes of length δ and section A) has a probability 1/2 to 
cross the border.

‣ Across the barrier the net number of crossing particles is given by

N(x)

2
� N(x+ �)

2

A

δ
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Derivation of Fick’s first law

35

‣Over a barrier of section A and per time unit we have a flux

qx = � �2

2⌧

✓
N(x+ �)/� �N(x)/�

A�

◆

qx = � �2

2⌧

✓
N(x+ �)/(A�)�N(x)/(A�)

�

◆

jx = �1

2

✓
N(x+ �)�N(x)

A⌧

◆
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Derivation of Fick’s first law

36

‣We then use the fact that C(x) = N(x)/(A�)

‣In the macroscopic description, we consider that δ<<1

J(x, y, z) = �DrC(x, y, z)

J(x) = �D
dC(x)

dx
1D

3D

valid only in the isotropic case ! 

jx = � �2

2⌧

✓
C(x+ �)� C(x)

�

◆

‣Application: exercise set 2, diffusion in a lake

No time dependence, 
fixed concentration 
profile
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Derivation of Fick’s second law
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‣We start from the continuity equation

‣We assume that at each time the concentration profile results in a flux coming from diffusion 
(no advection)

J(x, y, z) = �DrC(x, y, z)

‣We combine the two relations and use the fact that 

@C

@t
+r · J = 0

(r ·rf) = r2f

@C(x, y, z, t)

@t
= Dr2C(x, y, z, t)

@C(x, t)

@t
= D

@2C(x, t)

@x2
1D

3D
Diffusion equation


