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“The course aims at introducing basic physical aspects of molecular and turbulent 
diffusion, as well as of dispersion processes, their mathematical modeling, solutions and 
related environmental applications”

Summary



Describe and interpret the physical processes

Solve and elaborate simple physical models

Apply computational fluid dynamics (CFD) models

Develop numerical transport models with FLUENT: problem formulation, 
modeling, and interpretation of the results

Lecture goals



I) Part I: 6 weeks teacher Benoît Crouzy (benoit.crouzy@meteoswiss.ch)

II) Part II: 4 weeks teacher Fernando Porte-Agel (fernando.porte-agel@epfl.ch)

III) Fluent project: 4 weeks

Slides + Lecture notes + Reference (book)

Course organisation

Course grade: written exam 70% + project grade 30%
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•  Turbulent dispersion

• Mixing in rivers, lakes and in 
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ETP Project

Mixing between two rivers

1. Introduction and goal of the project

For this project we wanted to study the mixing between the “Rhône” and the “Arve”, two

rivers situated in Geneva. 

As we can  see  on  the  picture,  the  Arve (on the  right)  is  very concentrated  in  sediments

compared to the Rhône (on the left). Then, the evolution of the mixing should be illustrated

by the variation of sediment concentration in the “left bank” and “right bank” of the resulting

river (a homogeneous mixing when Cleft ≈ Cright). In the following we will try to compare the

results we find with a FLUENT simulation with the ones corresponding to the ideal solution

seen in course. More precisely, the quantitative question we will try to answer is:

Does the evolution of the mixing of sediments between two rivers in 2D follows the ideal

advection-turbulent-diffusion equation?

The complexity of the real situation led us to make some assumptions and so, finally, the

project doesn’t really illustrate the specific case of the “Rhône” and the “Arve”. However

some parameters like the depth, slope or flow rates are inspired from this example.

In addition, as our version of ANSYS FLUENT doesn't allow to construct features with a

length superior to 500 meters, we did a Reynolds similitude in order to simulate the flow 10

kilometers downstream of the junction of the two streams. This should work because the main

process of diffusion in rivers is usually due to turbulent diffusion. The Reynolds number is

well suited for keeping the same conditions of diffusion even if the length and width of the

river are changed.
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Burning biomass

Local bioaerosol
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Fluent project introduction

• Introductory session today (over exercise session)

• Tutorial at your own pace (Q&A after exercise week 3-4)

• Mini-project (Q&A after exercise week 7-8)



I) Dimensional analysis

II) Fluid dynamics (summary of concepts needed)

III) Molecular diffusion

‣Diffusion equation, Fick’s laws

‣Solutions for various initial and boundary conditions

‣Introduction to partial differential equations (methods and classification)

‣Advection-Diffusion-Reaction equation

Outline (Part I of the lecture)



I) Dimensional analysis



Dimensional analysis

‣ Review on units and dimensions

‣ Simple approach to tackle complex problems

‣ Physical modeling (scaled models)

‣ Interpretation of experimental data (relative importance of physical phenomena)



Metrology and environmental sciences

Standardisation of measurement / units assured by 
metrology institutes traditionally domain of physical 
sciences and engineering. However,

‣need for traceability / reproducibility in 
environmental sciences (e.g. climate change 
studies)

‣need to combine various sources of 
measurement for global environmental studies 

Calibration of optical particle 
counters at the Swiss institute 

for Metrology



Metrology and environmental sciences

climate analysis affected by technical 
changes ?



Dimension and units

Dimension: type of physical quantity, numerical value assigned by unit (SI units)

‣fundamental dimensions (eg. mass, length, time, electric current, temperature, 
amount of substance and luminous intensity) and units (kg, m, s, A, K, mol, cd)

‣derived dimensions

Dimensional homogeneity: all additive terms in physical equations 
must have equal dimensions (check your equations !)

[Qi] = L↵iM�iT �i

[µi] = L�1M1T�1

Always monomial 
power law !



Dimensional independence

Condition for independence of       ,      and Q1 Q2 Q3

det

0

@
↵1 ↵2 ↵3

�1 �2 �3

�1 �2 �3

1

A 6= 0

Counter-example: object in a fluid, obstacle dimension D, flow velocity V, dynamic 
viscosity μ and fluid density ρ can be combined into a dimensionless number. 

Re =
DV ⇢

µ

[Qi] = L↵iM�iT �i



Buckingham π-theorem

Systematic method for computing dimensionless parameters from physical variables

‣Any physical equation can be written in the form (n physical variables, written in terms 
of k independent units) 

‣It can be rewritten in the form (p=n-k)

with ⇡i = q
ai
1

1 q
ai
2

2 . . . q
ai
n

n

f(q1, q2, . . . , qn�1) = qn

F (⇡1,⇡2, . . . ,⇡p�1) = ⇡p

form of F a-priori unknown (use 
experimental data), exception for p=1 

then F=cste



Buckingham π-theorem

How to proceed to build dimensionless variables:

‣List the relevant physical quantities

‣List the involved fundamental dimensions

‣Write down the dimensional matrix

‣Find a basis of the kernel of this matrix (see basic linear algebra, Gauss-Jordan elimination)

0

@
↵1 ↵2 ↵3

�1 �2 �3

�1 �2 �3

1

A

[Qi] = L↵iM�iT �i



Buckingham π-theorem (Example 1)

Estimate of the energy released in the first Atomic Bomb explosion.

This document is adapted after the URL: http://www.pa.uky.edu/~sps/Month1.htm
(snapshot as of Sept. 10, 2004).

My only contribution was typesetting the above mentioned web document in LATEX.

The first explosion of an atomic bomb was the Trinity test in New Mexico in 1945. Several years

later a series of pictures of the explosion, along with a size scale, and time stamps were released and

published in a popular magazine. Based on these photographs a British physicist named G. I. Taylor

was able to estimate the power released by the explosion (which was still a secret at that time).

How can the following pictures be used to make this estimate?

1

First two assumptions need to be made:

1. The energy (E) was released in a small space.

2. The shock wave was spherical.

We have the size of the fire ball (R as a function of t) at several di↵erent times. How does the radius

(R) depend on:

• energy (E)

• time (t)

• density of the surrounding medium (⇢ – initial density of air)

Let’s perform a dimensional analysis of the problem:

2

Estimation of Trinity atomic test released energy from pictures 
(blackboard derivation)



Buckingham π-theorem

Remaks on the technique

‣Dimensional analysis simply states that there is a relationship between quantities. It 
doesn’t (except in the case of a single π, which must, therefore, be constant) states 
what the relationship is. For the specific relationship one must appeal to theory or, more 
commonly, to experimental data.

‣The choice of the kernel basis is not unique, intuition or trial/error is needed to obtain  
meaningful results (see examples). 



Buckingham π-theorem (Example 2)

D

ρ,μ

U Fd

Fd = f(⇢, µ, U,D)

p=n-k=5-3=2 ⇡2 =
⇢UD

µ
= Re

⇡1 =
Fd

⇢U2D2

for Re>1000 (viscous forces 
negligible compared to 
inertial forces)

Fd

⇢U2D2
= F (Re) ! Cst



Buckingham π-theorem (Example 2)

2Fd

⇢U2A
= Cd

From lab experiments (sphere)



Buckingham π-theorem (Example 3)

Vset /
gD2 (⇢pollen � ⇢air)

µ

Estimation of pollen settling velocity (blackboard derivation)

Rye pollen very allergenic but poor 
flyer due to large size



Buckingham π-theorem (Example 3)

Use of geometric size for non-spherical pollen grains: 
underestimation of settling velocity



Complete self similarity

lim
⇡n�1!0,1

F (⇡1,⇡2, . . . ,⇡n�1) = Cst

Complete similarity occurs if the following condition is satisfied.

Then πn-1 can be removed from the functional link the problem can be simplified.

⇡2 =
⇢UD

µ
= Re

In example 2 this is the case in the limit of large Reynolds number.



Incomplete self-similarity

F (⇡1,⇡2, . . . ,⇡n�1) ⇡ ⇡↵
n�1F̃ (⇡1,⇡2, . . . ,⇡n�2)

lim
⇡n�1!0,1

F (⇡1,⇡2, . . . ,⇡n�1) = 0,1

In limits where

πn-1 cannot removed from the functional link but the problem may still be simplified for 
πn-1 >>1 or for πn-1 ~ 0 where the following approximations can be made

Additional insight (theory, experiment) is needed to obtain the coefficient α. See following 
example Koch snowflake.



Incomplete self-similarity (example: Koch flake)

D

n=1 n=2

n=3 n=4

L1 L2

Pn

D
=

✓
Ln

D

◆�↵

· Cst ↵ > 0

When n goes to infinity the 
resulting object has an 
infinite perimeter (dimension 
between 1 and 2, fractal).



Fractals: real-world relevance
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Alaska-Canada boundary dispute:

https://www.google.ch/maps/@57.2685656,-135.2953876,482068m/data=!3m1!1e3

What is the length of the 
coastline of Britain ?



Fractals: identification 
of bioaerosols

Digital holography used for on-line pollen 
monitoring
Fractal dimension allows to distinguish coarse 
particulate matter from bioaerosols

https://amt.copernicus.org/articles/13/1539/2020/



Model Theory (environmental fluid mechanics)

‣ How to make a model (e.g. laboratory) of a real-world system ?
!!

!
!
!
!
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2.4. Data collection and statistics

After each flood disturbance, the flume bed was observed
and documented by means of the digital camera and the laser
scanner. The eroded material (sediment, seeds and plants) was
collected from the stilling basin at the downstream end of the
flume. After 2 hours of air drying, the collected sediments,seeds
and plants, were weighed and counted. The eroded biomass
was divided into three groups, namely: i) dead seeds or viable
seeds that had not germinated; ii) germinated seeds with roots
shorter than 2 mm; iii) germinated seeds with root longer than 2
mm, being this the minimal root length that could be accurately
measured.

In order to reduce the quantity of eroded non-germinated
biomass to a size that was readily countable and measurable,
only a small sub-sample was considered, particularly during
the first two runs. We determined that 1/8 of the total non-
germinated eroded material was a su�cient sub-sample to fully
characterize the biomass in the early stages of each experiment,
extending to the total biomass in the later stages. However, all
retrieved germinated seeds and plants were counted and the fol-
lowing properties were measured: (i) the number of roots, (ii)
the length of the main root, and (iii) the stem height. Sample
statistics, histograms and related moments were computed for
all samples.

After each run, samples of the non-eroded biomass were ob-
tained from a representative area of approximately 100 cm

2

within the last meter at the downstream end of the flume. The
same statistics were computed as for the eroded material to rep-
resent the characteristics of plants that remained growing within
the flume.

3. Results

In all the experiments, the growing vegetation a↵ected the
sediment flux in successive runs. Figure 3a shows the varia-
tion in sediment transport over time for the control runs (same
experimental procedure repeated without vegetation, see also
Table 1) and the two experimental conditions studied. These
data show a reduction (shift) in the amount of eroded material
with respect to the control experiments and also a reduction in
sediment erosion as the vegetation grows. This indicates the ef-
fect of the growing biomass as root anchoring of the sediment
gradually increases. Scatter plots of the amount of eroded sedi-
ment in relation to the amount of eroded biomass after each run
shows a positive correlation between these two variables (Fig-
ure 3b), corroborating the presence of a negative trend associ-
ated with increasing root anchoring of sediment. These plots
need to be interpreted remembering that the time sequence is
important because of vegetation growth. The experiments with
the highest flow rate show two di↵erent correlation trends plus
the presence of a shift between the repeated experiments. We
ascribe these e↵ects to a di↵erent vegetation growth rate be-
tween the two experiments, likely caused by the afore men-
tioned change in the room temperature, which slowly warmed
up the sedimentary bed.









Figure 4: (a) Plant with buried seeds showing practically no scouring after 4
runs; (b) Plants with both buried and exposed seeds showing; notice how roots
indeed still anchor the plant in the philosophy of the Type II erosion mechanism
of Edmaier et al. [6]; (c) Exemplary aggregate of seeds and related scouring

5

laboratory

real-world



Model Theory (environmental fluid mechanics)

‣Good model has comparable behavior to original

‣Physical behavior governed by physical equations

‣π theorem states that physical equations can be rewritten in dimensionless form.

‣ Model and original are similar if they have the same dimensionless numbers.



Model Theory (environmental fluid mechanics)

In environmental fluid mechanics we distinguish between

‣complete similarity

‣incomplete similarity: geometric (identical shapes), kinematic (ratio between lengths 
and times are identical), dynamic (ratio of all forces identical, e.g. Reynolds -> inertial vs. 
viscous or Froude -> inertial vs. gravitational, numbers are the same)

Reynolds similarity often difficult to achieve: if the velocity is fixed by the Froude similarity 
then viscosity has to be adjusted.

‣as long as the flow is fully turbulent (viscosity forces negligible) this similarity is often not 
necessary



Model Theory: geometric similarity

Ratios between corresponding lengths in model and application (or prototype) are the same. 



Model Theory: kinematic similarity

Flow field in prototype and model have the same shape and the ratios of corresponding 
velocities and accelerations are the same.

Geometrically similar streamlines are kinematically similar. 
 



Model Theory: dynamic similarity

Ratio between forces in application and model must be constant.

Geometric and kinematic similarity necessary but insufficient conditions 

 



Summary of Lecture I: Uses of dimensional analysis

‣Recognise (self)-similarity -> model theory

‣Reduce the number of variables

‣Variables known, physics unknown (equations, boundary conditions): simple approach to 
tackle complex problems

‣Interpretation of experimental data: from the dimensionless variables identify the relative 
importance of physical phenomena



Summary of Lecture I: common pitfalls

‣Review on units and dimensions: check your equations for consistency 

‣Beware of incomplete set of independent quantities

‣Superfluous independent quantities complicate the result (be pragmatic !)

‣Functional dependence can be more or less difficult to recognise depending on the choice 
of dimensionless variables



II) Fluid Mechanics



Fluid mechanics: review

‣ Basis for transport phenomena

‣ Velocity field specified by

‣ State of the fluid specified by the velocity components u, v, w, pressure p and density ρ.  

‣5 equations (and appropriate initial and boundary conditions) are needed to describe the 
evolution of the fluid

‣In the presence of additional substances, their concentration C(x,y,z,t) has to be added. 
Correspondingly, an additional equation is needed.

V(x, y, z, t) = u(x, y, z, t)ex + v(x, y, z, t)ey + w(x, y, z, t)ez



Fluid mechanics: review

‣ Regardless of the form of the fluid mechanics physical equations, dimensional analysis can be 
applied and relevant dimensionless quantities can be found.

‣Velocity U, viscosity μ, density ρ, characteristic length L, gravitational acceleration g, time t, 
pressure p and diffusion coefficient D (incompressible fluid).

Re =
⇢LU

µ
Fr =

Up
gL

Pe =
UL

D

St =
fL

U
Ne =

p

⇢U2 …

inverse characteristic time e.g. 
vortex shedding frequency



‣Newtonian fluid: shear stress                  , with u velocity component parallel to the direction 
of shear and y displacement in perpendicular direction.  

‣Navier-Stokes equation for incompressible flow of Newtonian fluid reads (momentum 
conservation)

variation convection

divergence of stress

⇢

✓
@v

@t
+ (v ·r)v

◆
= �rp+ µr2v + f

source

inertia

⌧ = µ
du

dy

⇢
Dv

Dt
Left hand side material derivative

With D

Dt
⌘ @

@t
+ v ·r (local+convective term)

Fluid mechanics: review

https://en.wikipedia.org/wiki/Velocity


‣Bernoulli equation along a streamline (curve tangent to velocity field), valid for steady, 
incompressible flow of perfect fluid (no viscosity).

‣Compressible flow p and ρ are linked (state equation energy conservation)

Fluid mechanics: review

D⇢

Dt
=

⇢

✏

Dp

Dt
Ma = U

r
⇢

✏

‣Continuity equation (mass conservation) @⇢

@t
+r · ⇢v = 0

Solenoidal flow (e.g. magnetic field)r · v = 0incompressible flow

Mach number

Usually, this result is written in the following form

Q = c vTLH (5)

with vT =
p
2gH the Torricelli velocity and c = kp

2
⇡ 0.42.

2 ”Ideal” Weir equation

The Bernoulli equation states that along a streamline

1

2
v
2 +

P

⇢
+ gh = Cste. (6)

For the ideal Weir, this leads to

Q =

Z
H

0
dhLv(h) = L

Z
H

0
dh

p
2gh = L

2

3

p
2H3/2

g
1/2 =

2

3
vTHL (7)

We have used the fact that the approach velocity is zero and that both the pressures at origin and
throughout the nappe are atmospheric. A similar dependence (see equation (4)) was found for the
real Weir in the first Problem. The (strong !!) deviation from the actual proportionality constant
(0.42 v.s. 2

3) results from the unrealistic model hypotheses.

2



‣Navier-Stokes equation can be rewritten in dimensionless form

Fluid mechanics: review

f = ⇢gez

L L

U
U p? =

p

⇢U2

 characteristic length

flow velocity

time‣with the scales

‣Stokes regime (Re<<1), Euler regime (Re>>1, inertia dominates)

✓
@v?

@t?
+ (v? ·r)v?

◆
= �rp? +

1

Re
r2v? +

1

Fr2
e?z



Fluid mechanics: example

Exercise set 2 (8.10.2010)

Problem 1

Compute the velocity profile for the laminar motion of two layers (thickness H1,2 = 0.05 m resp.

0.03 m) of incompressible Newtonian fluids (density ⇢1 < ⇢2 and viscosity µ1,2 = 2.28 · 10�3 Ns
m2

resp. 10
�3 Ns

m2 ) between two plates. One plate is at rest while the other one moves at a velocity

V0 = 0.05
m
s .

H1

H2

V=V0

V=0

1 1

2 2

x

y

Problem 2

Consider an incompressible fluid with a velocity field v = (u, v, w) given by

u = 4� x
2
+ y

v = 3 + 2y � z

w = 2z(x� 1)

• compute the total flux through the walls of a cube with the cartesian coordinates of the eight

vertices given by (i, j, k) and i, j, k 2 {0, 1}. The cube has an edge length of one with the

edges parallel to the coordinate axes and one vertex at origin.

• compute the flux of v through each face of the cube

Remark: We define a flux to be positive if it goes out of the volume.

‣Example (exercise set): laminar motion of two layers of Newtonian fluids (stationary process or 
steady flow)

v = u(y)ex

@2u

@y2
= 0

‣Boundary conditions: no-slip condition 
(zero velocity relative to boundary 
and equality of stresses + velocities at 
the boundary)

‣No initial condition (boundary condition in time) due to stationarity

Solution exercise set 2

Problem 1

The Navier-Stokes equation for the incompressible flow of a Newtonian fluid reads

⇢

✓
@v

@t
+ (v ·r)v

◆
= �rp+ µr2v + f (1)

here f represents the gravity force per unit volume. For the stationary flow of the fluid in parallel

layers (laminar flow), we have that v(x, y, z, t) = v(y)ex with ex the unit vector along the flow

direction. The di↵erential equation for the velocity v(y) of the two fluids reduces then to

d
2
v

dy2
= 0. (2)

To obtain (2) we used the fact that r2v is orthogonal to f and rp. Besides (v ·r)v = 0 (checking

this is left as an exercise). Choosing the origin for the y axis at the lower plate, we get the boundary

conditions supplementing equation (2)

u(0) = 0 (3)

u(H1 +H2) = V0 (4)

µ1
du

dy
|y=H2+✏ = µ2

du

dy
|y=H2�✏ for ✏ ! 0 (5)

u(H2 + ✏) = u(H2 � ✏) (6)

the first two conditions are valid in the absence of a sliding boundary at the interface between

the liquid and the plate and the last condition expresses the equality between the stresses at the

boundary between the two fluids. The general solution to equation (2) can be written in the form

v(y) =

⇢
A1y +B1 y > H2

A2y +B2 y < H2

1
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