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Prévisions polliniques
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Summary

“The course aims at introducing basic physical aspects of molecular and turbulent
diffusion, as well as of dispersion processes, their mathematical modeling, solutions and
related environmental applications”
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Lecture goals

Describe and interpret the physical processes

Solve and elaborate simple physical models

Apply computational fluid dynamics (CFD) models

Develop numerical transport models with FLUENT: problem formulation,
modeling, and interpretation of the results



Course organisation

) Part |: 6 weeks teacher Benoit Crouzy (benort.crouzy@meteoswiss.ch)
) Part Il: 4 weeks teacher Fernando Porte-Agel (fernando.porte-agel@epfl.ch)
1) Fluent project: 4 weeks

Slides + Lecture notes + Reference (book)

Course grade: written exam /0% + project grade 30%
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* Turbulent dispersion

* Mixing In rivers, lakes and In
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Fluent project introduction

* Introductory session today (over exercise session)

* Tutorial at your own pace (Q&A after exercise week 3-4)

* Mini-project (Q&A after exercise week /-3)



Outline (Part | of the lecture)

) Dimensional analysis
I) Fluid dynamics (summary of concepts needed)

1) Molecular diffusion

p Diffusion equation, Fick's laws
p Solutions for various initial and boundary conditions
p Introduction to partial differential equations (methods and classification)

» Advection-Diffusion-Reaction equation



) Dimensional analysis |
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Dimensional analysis

» Review on units and dimensions
» Simple approach to tackle complex problems
» Physical modeling (scaled models)

» Interpretation of experimental data (relative importance of physical phenomena)



Metrology and environmental sciences

Standardisation of measurement / units assured by

metrology institutes trad
sciences and engineering.

2

onally domain of physical
oWeVver,

» need for traceability / reproducibility in

environmental sciences (e.g. climate change

studies)

» need to combine various sources of

measurement for global environmental studies

Calibration of optical particle
counters at the Swiss institute
for Metrology



Metrology and environmental

National trends for the pollen season: Swutzerland 1990-2020
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Dimension and units

Dimension: type of physical guantity, numerical value assigned by unit (S| units)

» fundamental dimensions (eg. mass, length, time, electric current, temperature,
amount of substance and luminous intensity) and units (kg, m, s, A, K, mol, cd)

» derived dimensions

PR 2R it Always monomial
;] = LI MIT! bower law |

Dimensional homogeneity: all additive terms in physical equations
must have equal dimensions (check your equations !)




Dimensional independence

Condition for independence of (1,2 and (3

[Qz] — [ i NP

E R @0 113042
det | b1 P2 P3| #0
N2t N3

Counter-example: object in a fluid, obstacle dimension D, flow velocity V, dynamic

viscosity M and fluid density p can be combined into a dimensionless number.

DV p
1

Re =




Buckingham TT-theorem

Systematic method for computing dimensionless parameters from physical variables

» Any physical equation can be written in the form (n physical variables, written in terms
of k Independent units)

LG YRR TR B

» [t can be rewritten In the form (p=n-k)
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form of F a-priori unknown (use
experimental data), exception for p=|
then F=cste




Buckingham TT-theorem

How to proceed to build dimensionless variables:
» List the relevant physical quantities
[Qz] bil LOéiMBiT%;
» List the involved fundamental dimensions

» Write down the dimensional matrix

@7y 1A @0 1@ Y.
61 62 63
B A FRAAT 1 F <

» Find a basis of the kernel of this matrix (see basic linear algebra, Gauss-Jordan elimination)



Buckingham TT-theorem (Example |)

0.006 SEC

Estimation of Trinity atomic test released energy from pictures
(blackboard derivation)




Buckingham TT-theorem

Remaks on the technique

» Dimensional analysis simply states that there Is a relationship between quantities. It

doesn't (except In the case of a single TT, which must, therefore, be constant) states
what the relationship is. For the specific relationship one must appeal to theory or, more

commonly, to experimental data.

» [ he choice of the kernel basis Is not unique, inturtion or trial/error I1s needed to obtain
meaningful results (see examples).



Buckingham TT-theorem (Example 2)
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for Re>1000 (viscous forces
negligible compared to
inertial forces)
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Buckingham TT-theorem (Example 2)
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Buckingham TT-theorem (Example 3)
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Buckingham TT-theorem (Example 3)
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Complete self similarity

Complete similarity occurs If the following condition Is satisfied.

Jine LG o L U Ll s O 5
Tn—1—0,00

Then TTh-| can be removed from the functional link the problem can be simplified.

In example 2 this is the case In the limit of large Reynolds number.

(i eI
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Re
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Incomplete self-similarity

In lImrts where

fatm v e s i g ) e 00100
7Tn_1—>O,OO

TTh-| cannot removed from the functional link but the problem may still be simplified for

Th-| >>1| or for Ttn-| ~ O where the following approximations can be made
N\ a C
VI PR T s B A T o T PO R D)

Addritional insight (theory, experiment) Is needed to obtain the coefficient &. See following

example Koch snowflake.



Incomplete self-similarity (example: Koch flake)
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infinite perimeter (dimension
between | and 2, fractal).
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Fractals: real-world relevance

What Is the length of the
coastline of Britain ?

1 — —

Massstab 200 km Massstab 100 km Massstab 50 km
-> 2400 km -> 2800 km -> 3450 km

Alaska-Canada boundary dispute:

“the limit... shall be formed by a line parallel to the winding of the coast, and which shall never
exceed the distance of ten marine leagues therefrom”

https://www.google.ch/maps/@57.2685656,-135.2953876,482068m /data=!3m1!1e3



SrEe

Fractals: identification
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Model Theory (environmental fluid mechanics)

» How to make a model (e.g. laboratory) of a real-world system ?
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Model Theory (environmental fluid mechanics)

» Good model has comparable behavior to original

» Physical behavior governed by physical equations
» TT theorem states that physical equations can be rewritten in dimensionless form.

» Model and original are similar If they have the same dimensionless numbers.
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Model Theory (environmental fluid mechanics)

In environmental fluid mechanics we distinguish between
» complete similarity

»incomplete similarity: geometric (identical shapes), kinematic (ratio between lengths

and times are identical), dynamic (ratio of all forces identical, e.g. Reynolds -> inertial vs.

viscous or Froude -> Inertial vs. gravitational, numbers are the same)
Reynolds similarity often difficult to achieve: If the velocity Is fixed by the Froude similarity
then viscosity has to be adjusted.

»as long as the flow is fully turbulent (viscosity forces negligible) this similarity is often not
necessary



Model Theory: geometric similarity

/\ Prototype 1:2 downscaled
model

Q ) |

Ratios between corresponding lengths in model and application (or prototype) are the same.



Model Theory: kinematic similarity

lower

Flow field in prototype and model have the same shape and the ratios of corresponding
velocrties and accelerations are the same.

Geometrically similar streamlines are kinematically similar.



Model Theory: dynamic similarity

Geometric Similitude:

Model is scaled.
Kinematic Similitude: Lift
Fluid stream lines are scaled. ) __--::_‘_',.”'tj_‘----ﬁﬁg

Dynamic Similitude:

Lift (a) | _ [Drag (a)| - I
Lift (m) Drag (m)]

Ratio between forces in application and model must be constant.

Geometric and kinematic similarity necessary but insufficient conditions



Summary of Lecture I: Uses of dimensional analysis

» Recognise (self)-similarity -> model theory

» Reduce the number of variables

» Variables known, physics unknown (equations, boundary conditions): simple approach to

tackle complex problems

» Interpretation of ex
importance of phys

berimental data: from the dimensionless variables identify the relative

ical phenomena



Summary of Lecture |: common pitfalls

» Review on units and dimensions; check your equations for consistency
» Beware of incomplete set of independent quantities
» Superfluous independent quantities complicate the result (be pragmatic )

» Functional dependence can be more or less difficult to recognise depending on the choice
of dimensionless variables



1) Fluid Mechanics |
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Fluid mechanics: review

» Basis for transport phenomena
» Velocity field specified by
V(z,y,2,t) =ulx,y, 2, t)e, +v(x,y, 2,t)e, + w(z,y, 2,t)e,
» State of the fluid specified by the velocity components u, v, w, pressure p and density p.

»5 equations (and appropriate initial and boundary conditions) are needed to describe the
evolution of the fluid

» In the presence of additional substances, their concentration C(x,y,zt) has to be added.
Correspondingly, an additional equation Is needed.



Fluid mechanics: review

» Regardless of the form of the fluid mechanics physical equations, dimensional analysis can be

applied and relevant dimensionless quantities can be found.

»Velocity U, viscosity M, density p, characteristic length L, gravitational acceleration g, time t,

pressure p and diffusion coefficient D (iIncompressible fluid).

LU []
R@ raw p FT A1 Pe ¢l UL
b v 9L D
inverse characteristic time e.g.
i " Vortex shedding frequency
Ne — p St _— —




Fluid mechanics: review
du

» Newtonian fluid: shear stress 7 = ,ud— ,with u velocity component parallel to the direction
Y
of shear and y displacement in perpendicular direction.

» Navier-Stokes equation for incompressible flow of Newtonian fluid reads (momentum
conservation)

nertia divergence of stress
ov 5
P (v-V)v] ==-Vp+uVv+f{
ot
variation convection source
D
Left hand side material derivative  p D:ff
. D 0 .
With = Fv -V (local+convective term)

Dt Ot


https://en.wikipedia.org/wiki/Velocity

Fluid mechanics: review
dp
Ot

» Continuity equation (mass conservation)

FV-pv=0

incompressible flow V.-v=20 Solenoidal flow (e.g. magnetic field)

» Compressible flow p and p are linked (state equation energy conservation)

- Mach number

Dt ¢ Dt €

» Bernoulll equation along a streamline (curve tangent to velocity field), valid for steady,

incompressible flow of perfect fluid (no viscosity).

1 P
Lyl - gh = C'ste.
2 p




Fluid mechanics: review

» Navier-Stokes equation can be rewritten In dimensionless form

ov™ |
ot

» with the scales

I = pge,
(Vv*-V)v* | = —Vp™ A : Visinii ' /e*
" Re FBa
characteristic length L time L
. D U
flow velocity U vk
pU?

» Stokes regime (Re<<),

—uler regime (Re>>|, inertia dominates)



Fluid mechanics: example

» Example (exercise set): laminar motion of two layers of Newtonian fluids (stationary process or

steady flow)
V=V
Ty I v =u(y)es
X
2
IHZ p2 M2 8 it === O
V=0 ayQ
R ANAA AT AL
» Boundary conditions: no-slip condition u(0) = 0
(zero velocity relative to boundary u(Hi + Hy) = W
| 3 du, du
and equality of stresses + velocities at uld—y|y Hy+e = uzd—y\y:HQ_e
the boundary) u(Hy +€) = u(Hy —€)

» No inrtial condrtion (boundary condition in time) due to stationarity



Fluid mechanics: turbulent regime
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