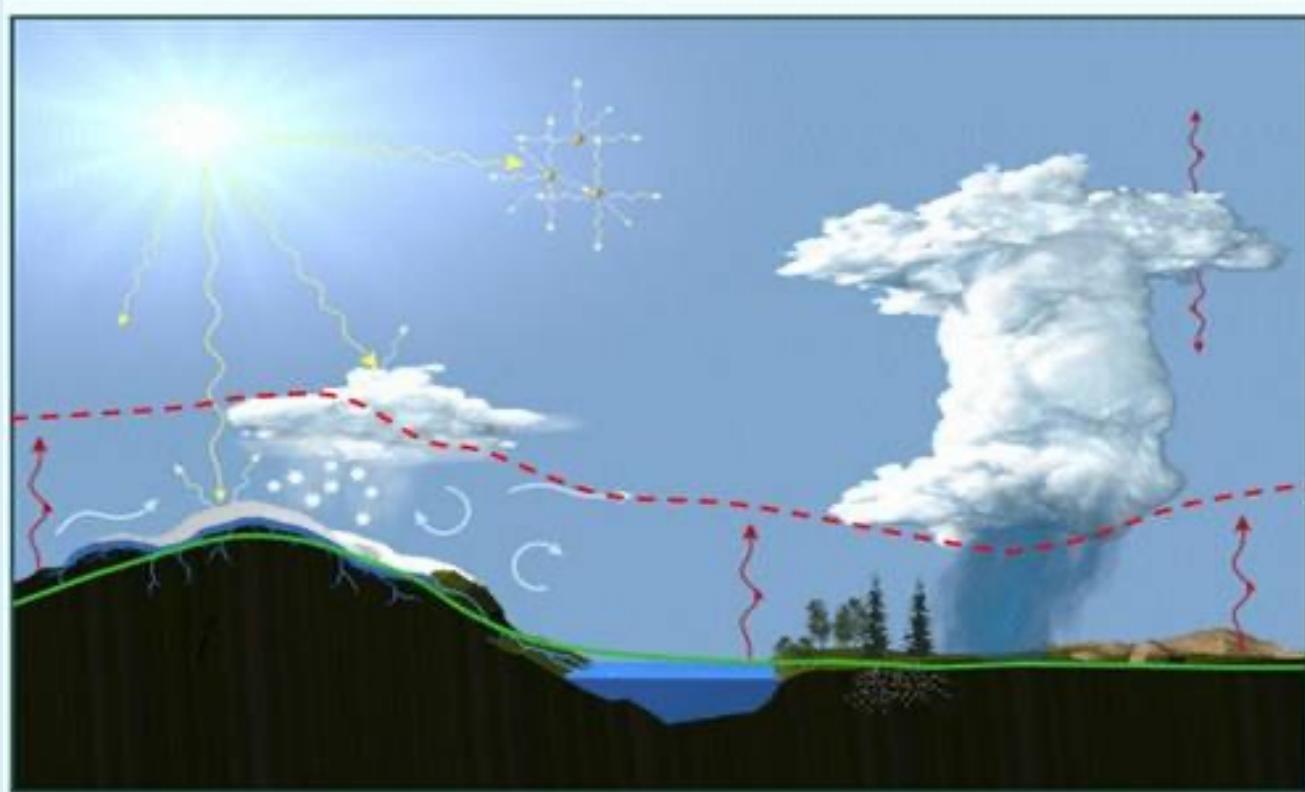


Environmental Transport Phenomena

The Atmospheric Boundary Layer

Fernando Porté-Agel

Wind engineering and
renewable energy laboratory
WiRE

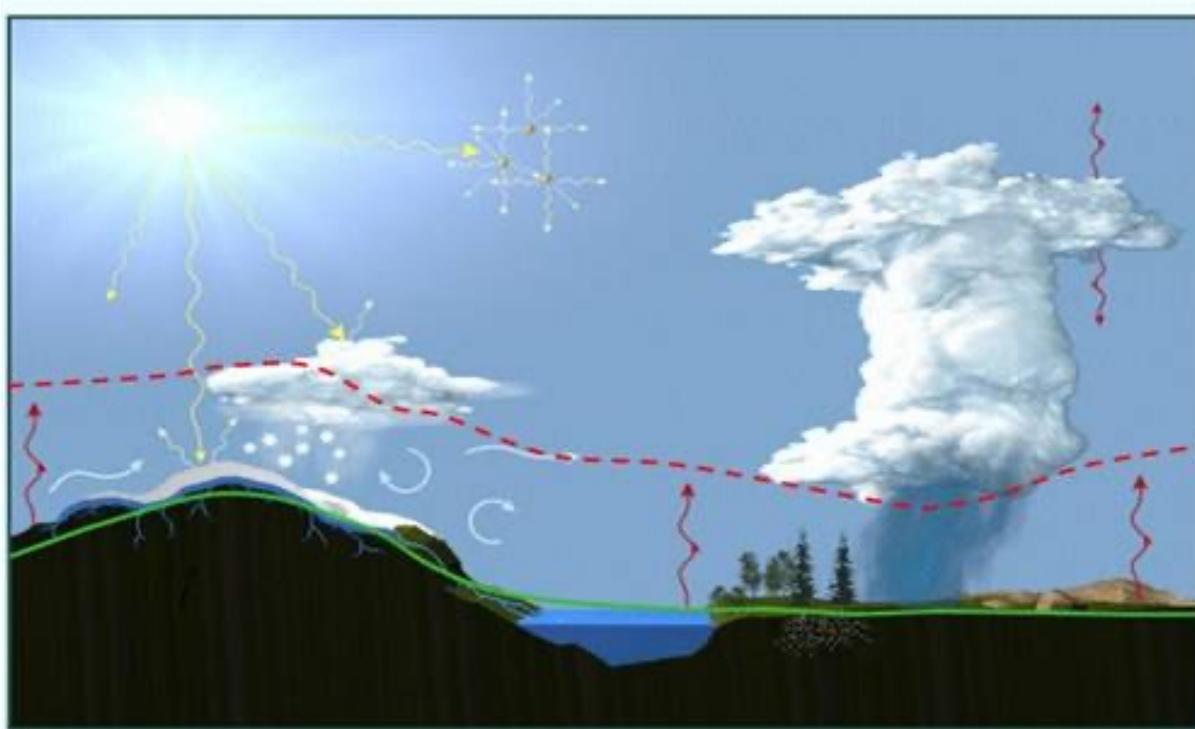


Atmospheric Boundary Layer Turbulence

- I. The atmospheric boundary layer
- II. Structure of the atmospheric boundary layer
- III. Effects of buoyancy
- IV. Turbulent mixing in three dimensions

Reference: Book, Chapter 6

The Atmospheric Boundary Layer



ABL ~ 1 km
($Re \sim 10^8-10^9$)

Source: NOAA ESRL - <http://www.esrl.noaa.gov>

- **Highly turbulent boundary layer flow**
- **Strongly affected by:**
 - Thermal effects
 - Surface heterogeneity
 - Topography

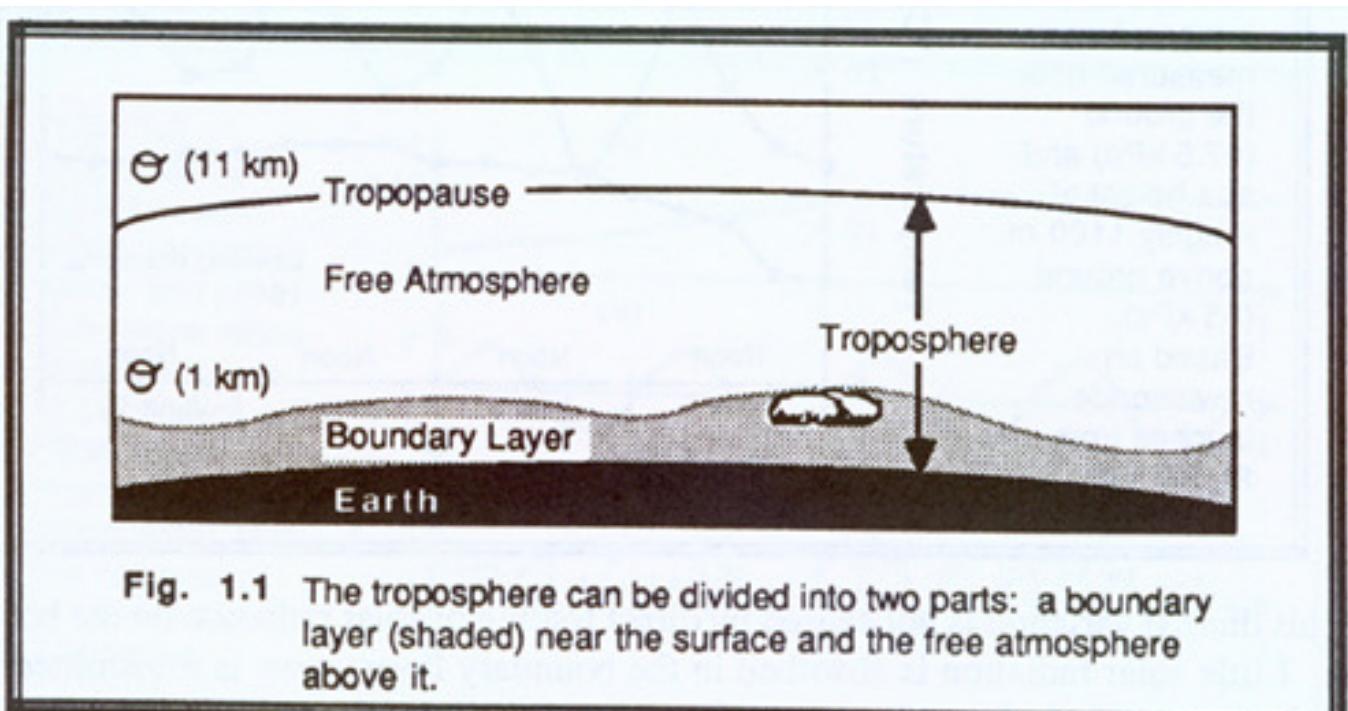
The Atmospheric Boundary Layer

Definition:

- The lowest part of the atmosphere that is in direct interaction with the Earth's surface and responds to surface forcings with a time scale of about an hour or less. It is highly turbulent.

Scale:

- Boundary layer depth is variable, typically between 100-3000 m
- Ratio of boundary layer depth to radius of earth: 1 km/6400 km



The turbulent eddy scales

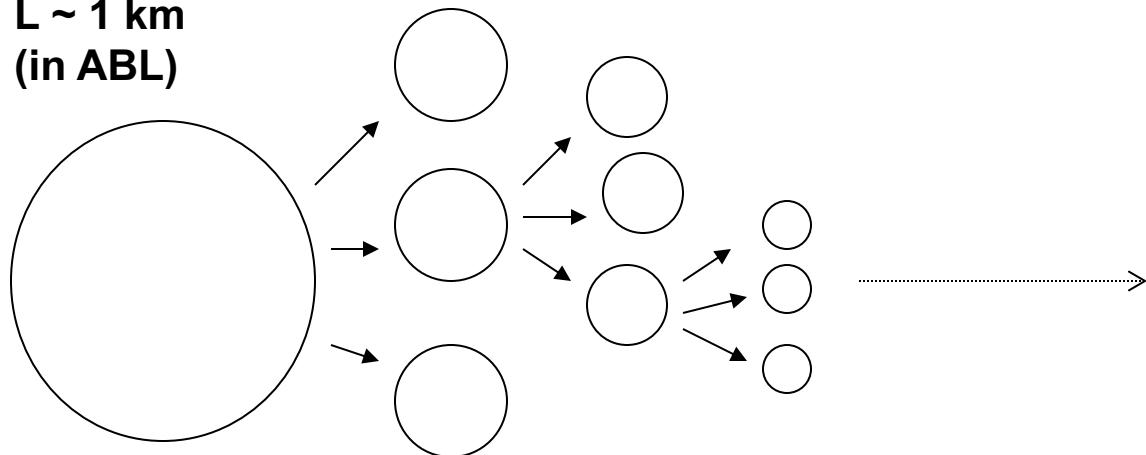
*Integral
scale*

$L \sim 1 \text{ km}$
(in ABL)

Range of flow scales

*Kolmogorov
scale*

$L_K \sim$
(in ABL)



$$\frac{L_I}{L_K} \sim \text{Re}^{3/4}$$

Energy production

(Inertial effects)

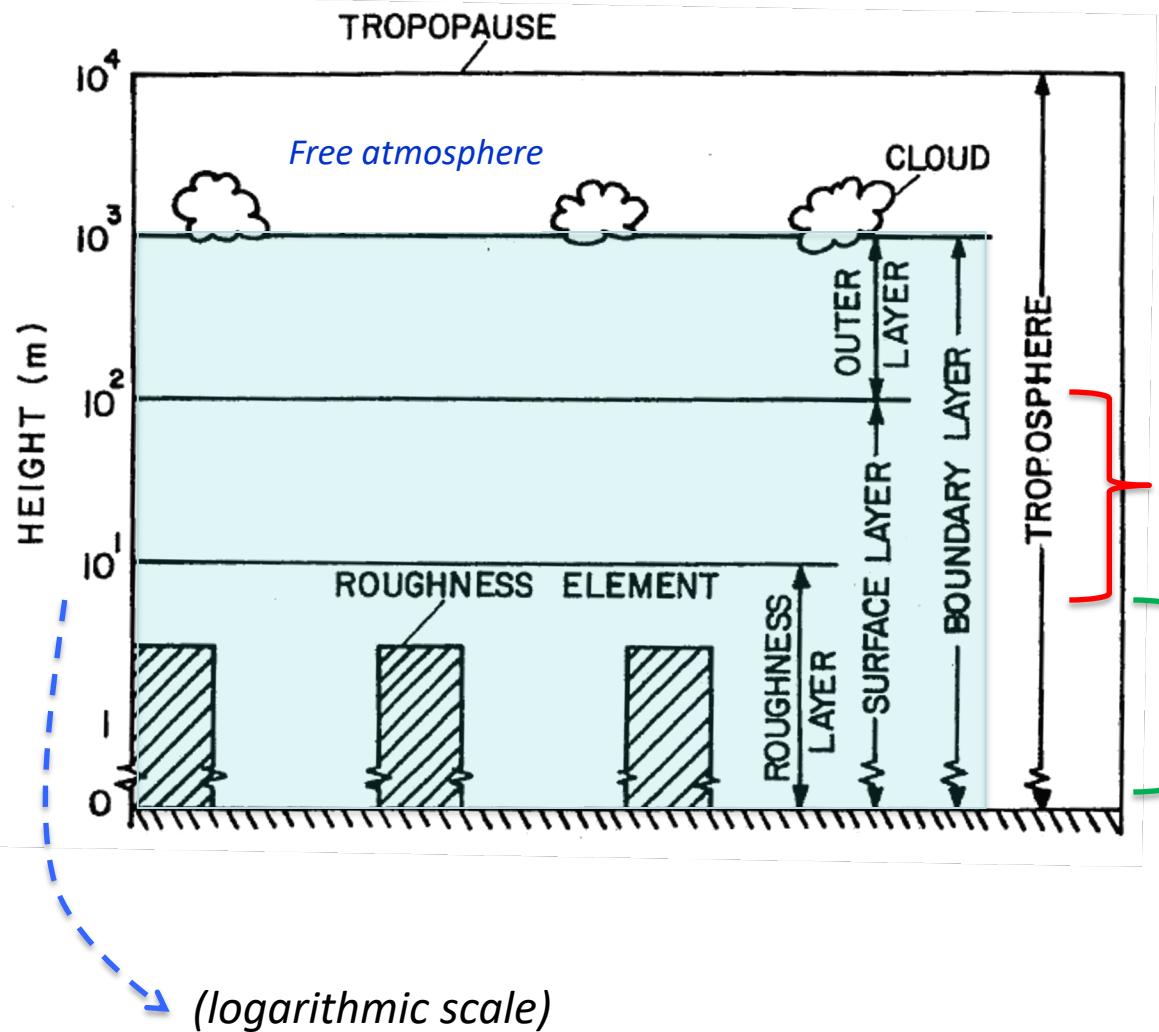
(Energy cascade)

Energy dissipation

(Viscous effects)

- **Question:** What is approximately the size of the Kolmogorov (dissipation) scale?
(=size of the smallest eddies)

Turbulent boundary layer flow over a rough surface

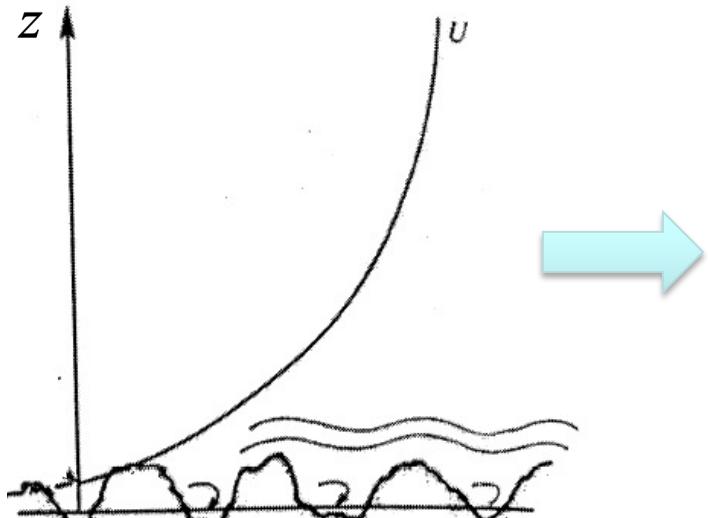


→ **Log layer** occupies the **lowest** 10-20% of BL. Turbulent fluxes change by less than 10%

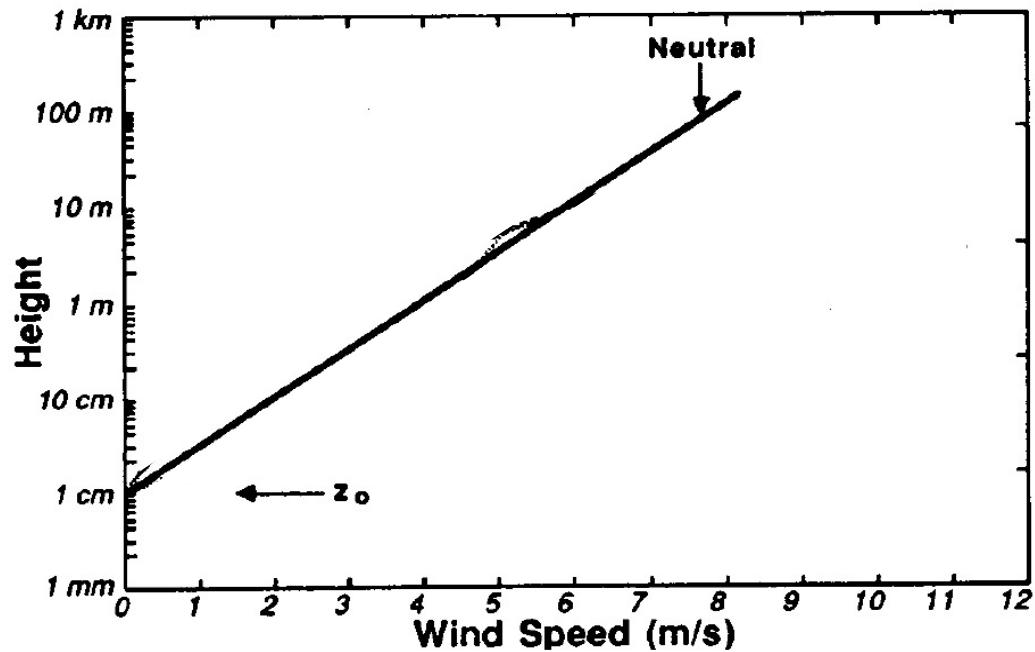
→ **Roughness sublayer (Canopy sublayer)** Lowest portion of the surface layer, in which the influence of individual roughness elements (soil roughness, plants, buildings) can readily be discerned. The flow is **horizontally heterogeneous**. In city centers, it may comprise a significant portion of the urban boundary layer.

Typical velocity profiles in NEUTRAL turbulent boundary layers over 'rough' surfaces

Linear scale



Semi-log scale



The Logarithmic Wind Velocity Profile:
In the **Surface Layer** (approximately
Lowest 10-20% of the boundary layer)

Logarithmic velocity profile: Derivation 1

Using non-dimensional analysis (Pi Theorem):

Important variables:

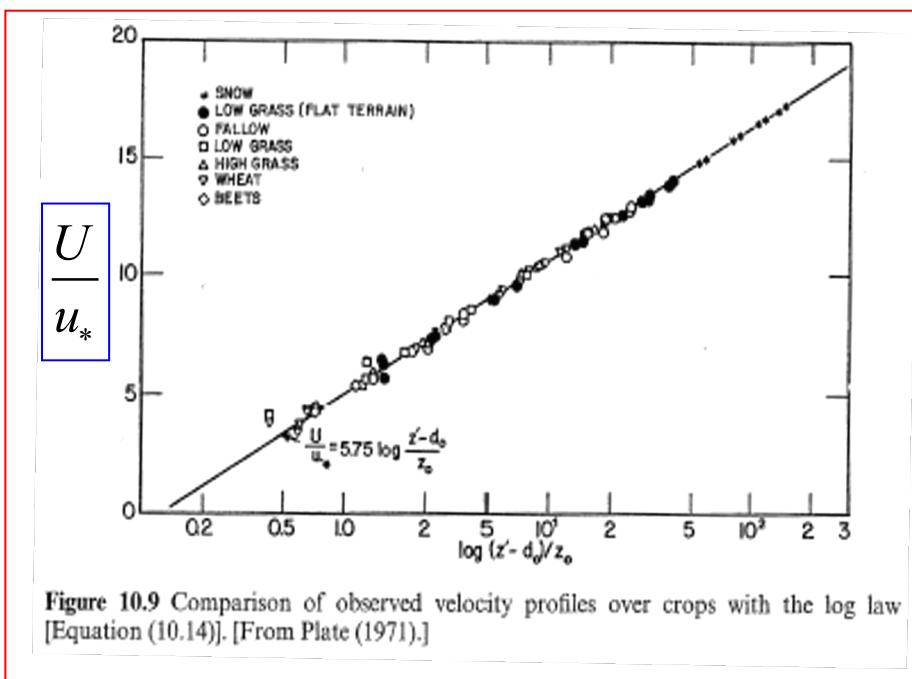
$$u, z, u_*, z_o$$

u_* : friction velocity
 z_o : aerodynamic roughness length

Non-dimensional groups:

$$\frac{u}{u_*}, \frac{z}{z_o}$$

$$\frac{u}{u_*} = f\left(\frac{z}{z_o}\right)$$



Experimental data used to find relation between groups

$$\frac{\bar{U}}{u_*} = \frac{1}{k} \ln\left(\frac{z}{z_o}\right)$$

k : von Karman constant ($k \approx 0.4$)

Logarithmic velocity profile: Derivation 2

Turbulent flux of momentum (kinematic flux):

$$\overline{u'w'}$$

Q: What is the sign in the surface layer and why?

Eddy-viscosity model:

$$\overline{u'w'} = -\nu_T \frac{\partial \bar{U}}{\partial z}$$

ν_T : *Turbulent (Eddy) viscosity*

Using a length scale and a vel. scale:

$$\nu_T \propto l_{scale} \cdot u_{scale}$$

Characteristic velocity scale in surface layer:

$$u_{scale} \approx u_*$$

Characteristic length scale in surface layer:
*(size of eddies limited by the presence
of the earth's surface)*

$$l_{scale} \propto z$$

$$\nu_T = k z u_*$$

k : *von Karman constant ($k \approx 0.4$)*
(empirical)

Logarithmic velocity profile: Derivation (continued)

$$\overline{u'w'} = -k z u_* \frac{\partial \bar{U}}{\partial z}$$

$$\overline{u'w'} = -u_*^2$$

$$\frac{\partial \bar{U}}{\partial z} = \frac{u_*}{kz}$$

$$\phi_M = \frac{kz}{u_*} \frac{\partial \bar{U}}{\partial z} = 1$$

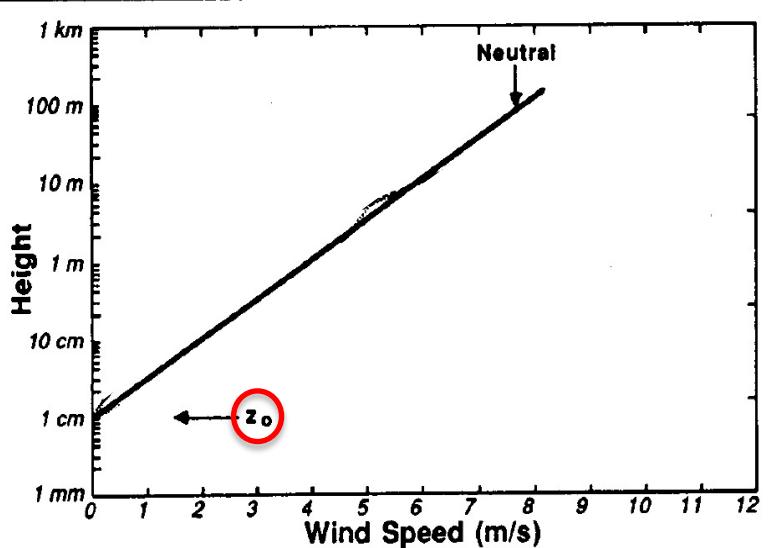
Turbulent stress/flux is nearly constant in the surface layer (and equal in magnitude to the surface shear stress $\tau_{ao} = u_*^2$)

Integrating between any two heights z_1 and z_2 :

$$\int_{\bar{U}_1}^{\bar{U}_2} d\bar{U} = \frac{u_*}{k} \int_{z_1}^{z_2} \frac{dz}{z}$$

$$\bar{U}_2 - \bar{U}_1 = \frac{u_*}{k} \ln \left(\frac{z_2}{z_1} \right)$$

Fig. 9.5
Typical wind speed profiles



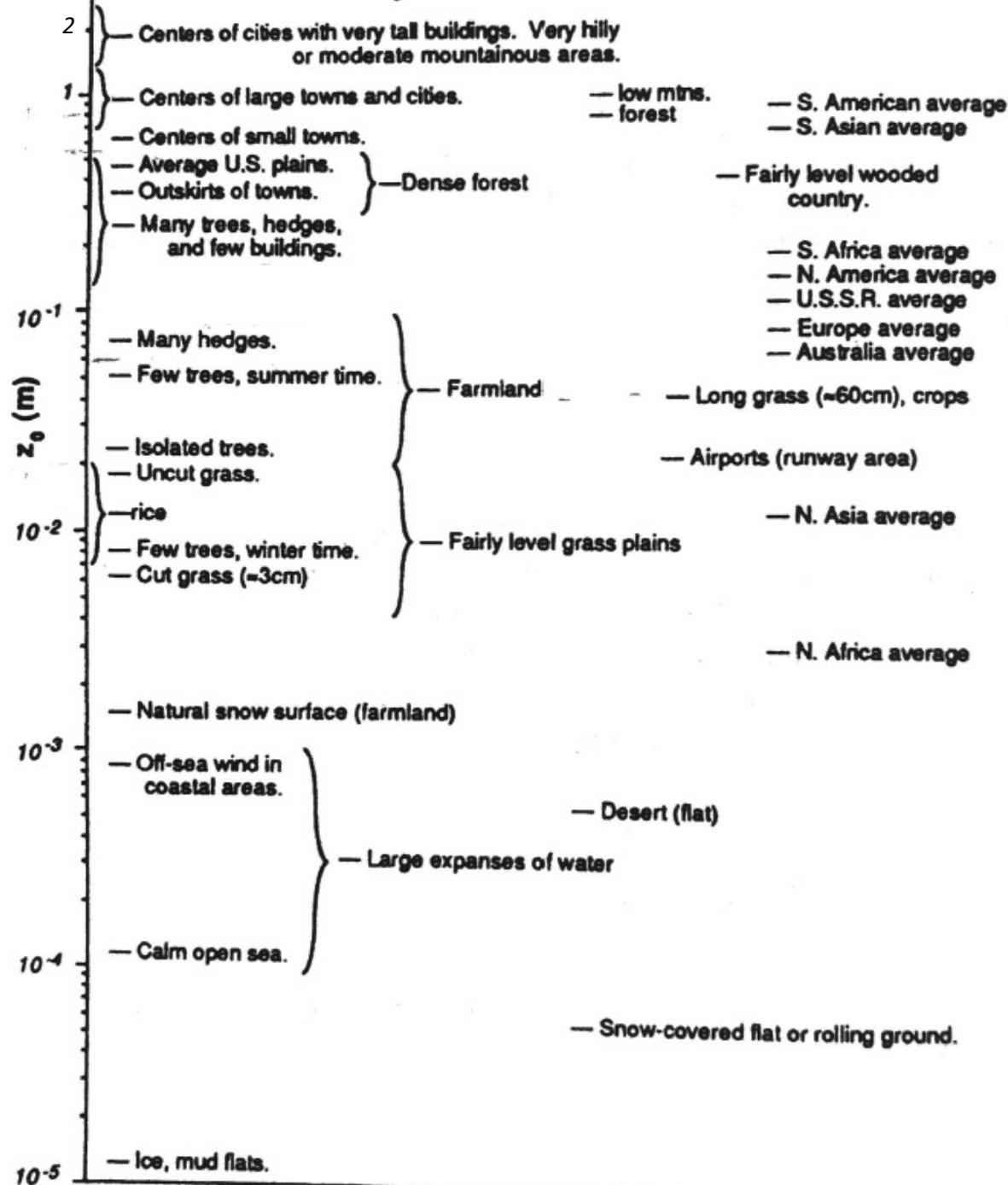
Defining the aerodynamic height z_o as the height where the extrapolation of the log law gives $U=0$

$$\bar{U} = \frac{u_*}{k} \ln \left(\frac{z}{z_o} \right)$$

(over rough surfaces)

Aerodynamic roughness length/height (z_o)

- Defined as the height where wind speed becomes zero (extrapolating the log law)
- It only depends on the SURFACE (**unique for a given surface**)
- ‘Aerodynamic’ because it is **determined from measurements of wind speed at various heights**
- **Graphically:** Extrapolate the straight line (in the semi-log graph of wind velocity vs. height) to the height where $U=0$
- **It is NOT equal to the height of the individual roughness elements**
- Other factors: -density of elements;
-shape of the elements.
- The aerodynamic roughness is **always smaller than the height of individual roughness elements**



From: 'An Introduction to Boundary Layer Meteorology' by R.B. Stull (1988)

Turbulence intensities

Definitions:

$$i_x = \frac{\left(\overline{u'^2}\right)^{1/2}}{U(z)} = \frac{\sigma_u}{U}$$

$$i_y = \frac{\left(\overline{v'^2}\right)^{1/2}}{U(z)} = \frac{\sigma_v}{U}$$

$$i_z = \frac{\left(\overline{w'^2}\right)^{1/2}}{U(z)} = \frac{\sigma_w}{U}$$

In a turbulent boundary layer, T.I. decreases with height (max. at surface)

Measurements of Panofsky (1967) in a **NEUTRAL SURFACE LAYER**:

$$\sigma_u = 2.2u_*$$

$$\sigma_v = 2.2u_*$$

$$\sigma_w = 1.25u_*$$

Combining these relationships with logarithmic velocity profile yields
(to do as exercise):

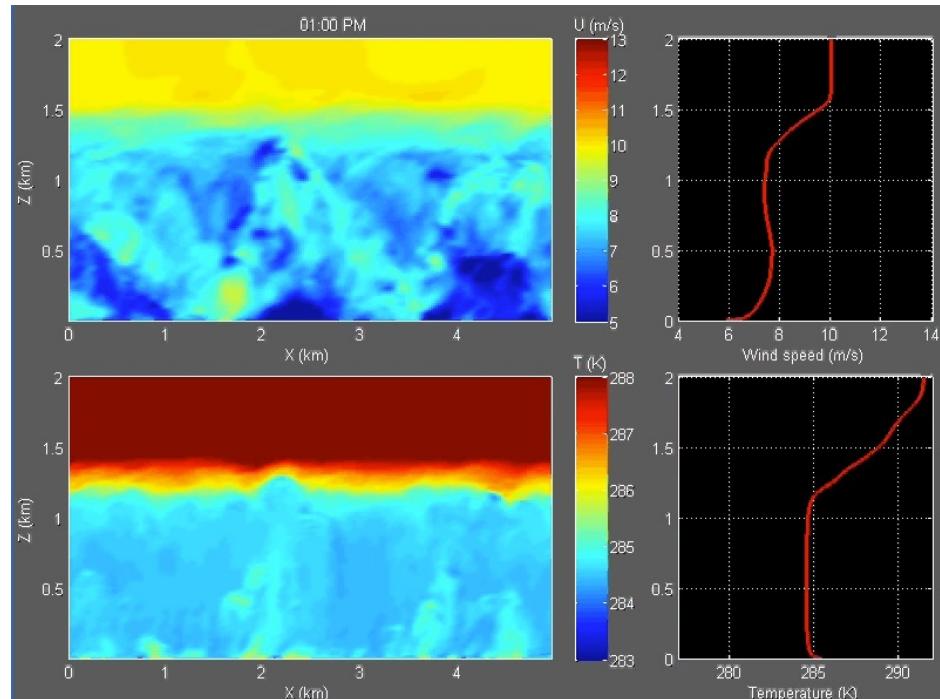
$$i_x = i_y = \frac{0.88}{\ln(z/z_0)}$$

$$i_z = \frac{0.50}{\ln(z/z_0)}$$

Diurnal evolution of the ABL: Buoyancy effects

Day time Unstable (convective) boundary layer

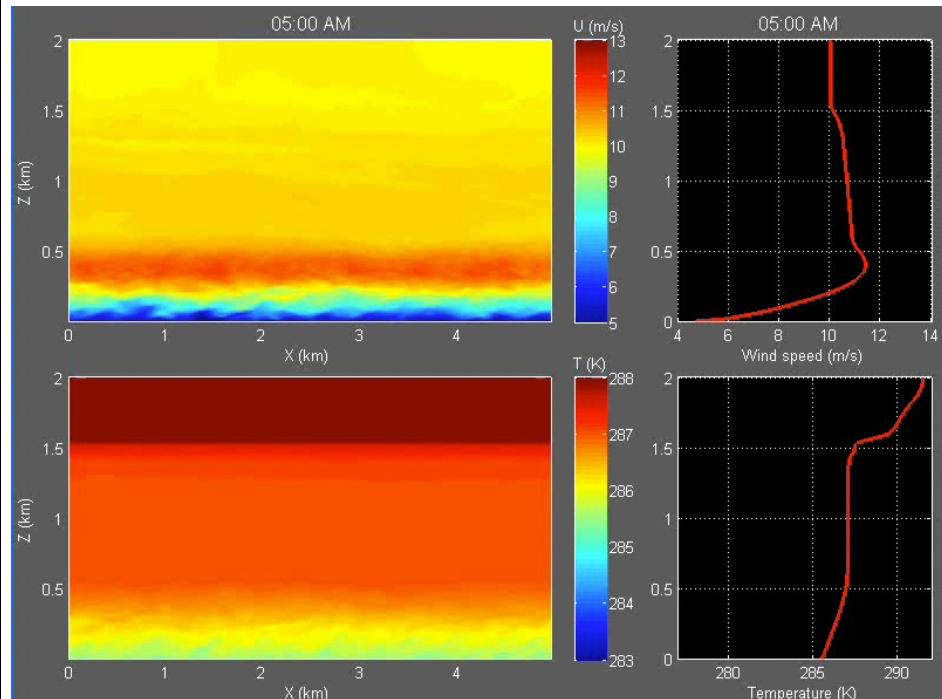
1:00 PM



Velocity (Top)
Potential Temperature (Bottom)

Nocturnal Stable (stratified) boundary layer

5:00 AM



Velocity (Top)
Potential Temperature (Bottom)

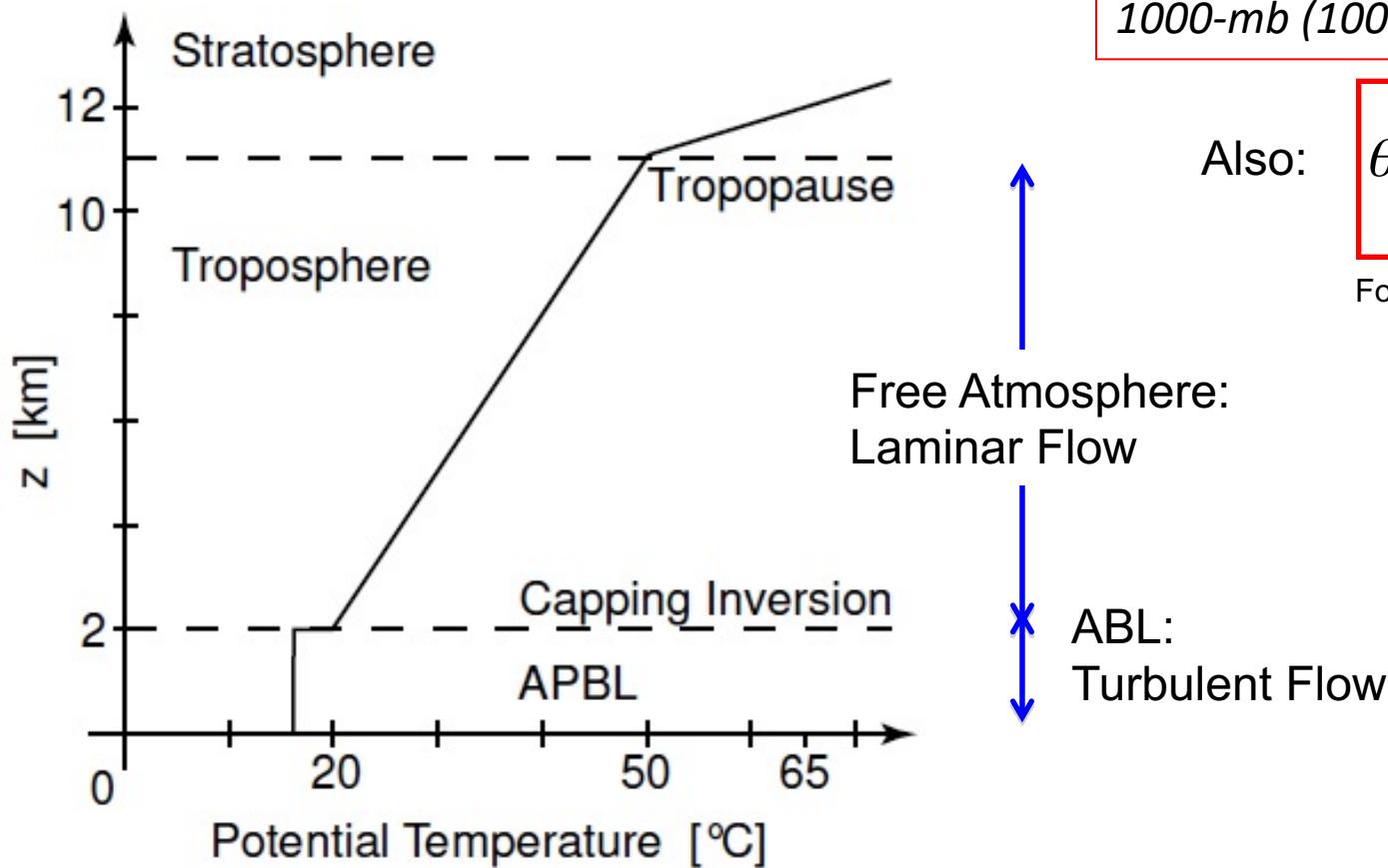
Buoyancy effects in the ABL

The **density of the air (and its buoyancy)** depends on the temperature and the pressure. We can define a '**potential temperature**' that accounts for the 2 effects.

Potential Temperature:

$$\theta = T \left(\frac{P_o}{P} \right)^{\frac{R_{air}}{C_p}} = T \left(\frac{P_o}{P} \right)^{0.286}$$

Temperature that an air parcel with absolute temperature T and pressure P would have if brought adiabatically to the pressure P_o of 1000-mb (100 KPa)



Also:

$$\theta = T + \frac{g}{C_p} z$$

For dry air: $C_p = 1005 \text{ J K}^{-1}$

Potential temperature (θ): Derivation

- Hydrostatic Equation:

$$\frac{\partial P}{\partial z} = -\rho g \quad [1]$$

- First Law of Thermodynamics:

$$dU = dH + dW$$

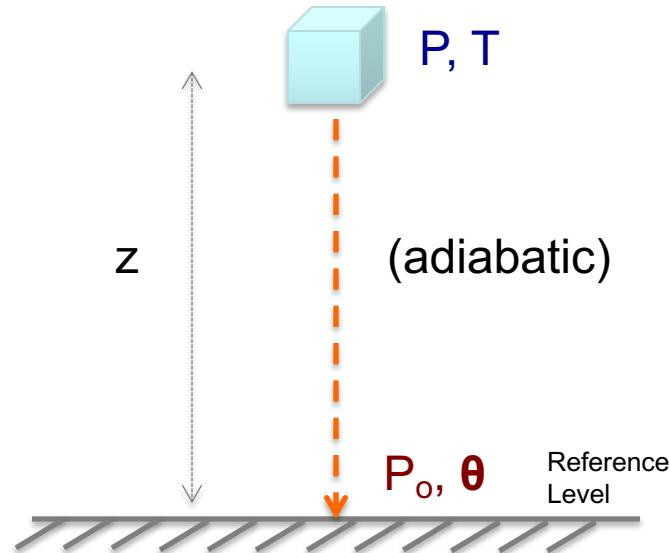
Change in internal energy

Heat exchange

Work on the volume

$$dU = \rho C_p dT$$

$$dW = dP$$



Assuming adiabatic conditions (i.e., no exchange of heat with surroundings, i.e., $dH=0$)

$$\rho C_p dT = dP \quad [2]$$

Combining equations [1] and [2]:

$$\Gamma_{ad} = \left(\frac{\partial T}{\partial z} \right)_{ad} = -\frac{g}{C_p} = -9.8 \text{ K km}^{-1}$$

(dry adiabatic lapse rate)

Integrating from height z to the reference height ($z=0$)

$$\int_T^\theta dT = -\frac{g}{C_p} \int_z^0 dz$$

$$\theta = T + \frac{g}{C_p} z$$

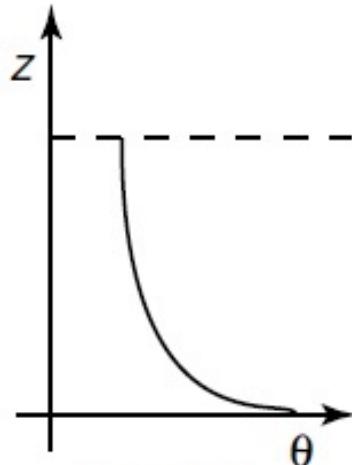
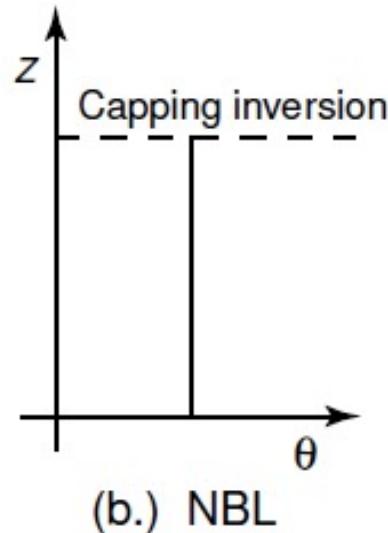
Note that for **neutral (adiabatic) conditions**:

$$\frac{\partial \theta}{\partial z} = 0$$

Buoyancy (thermal) effects

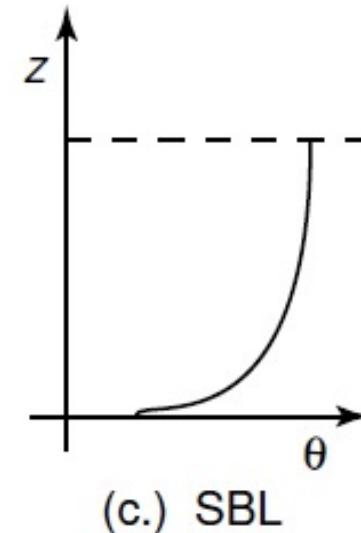
Day time Unstable (convective) boundary layer (CBL)

Ground is hotter than air



Stable boundary layer (SBL)

Ground is colder than air (typically at night)



Atmospheric stability:

- NEUTRAL \rightarrow

$$\left(\frac{\partial \theta}{\partial z} = 0 \right)$$

- UNSTABLE \rightarrow

$$\left(\frac{\partial \theta}{\partial z} < 0 \right)$$

Turbulence enhancement

- STABLE \rightarrow

$$\left(\frac{\partial \theta}{\partial z} > 0 \right)$$

Turbulence reduction

FLUX: Transfer rate of a quantity per unit area per unit time

<u>Quantity</u>	<u>Flux</u>	<u>Kinematic Flux</u>	
Heat	Q^*	$Q = \frac{Q^*}{\rho_{fluid} C_p}$	$\left[K \frac{m}{s} \right]$
Pollutant	$q_{pollut.}^*$	$q_{pollut} = \frac{q_{pollut}^*}{\rho_{air}}$	$\left[\frac{kg_{pollut}}{kg_{fluid}} \frac{m}{s} \right]$
Momentum	F^*	$F = \frac{F^*}{\rho_{fluid}}$	$\left[\frac{m}{s} \frac{m}{s} \right]$

Mean Fluxes

$$\overline{W} \cdot \overline{\theta}$$

$$\overline{W} \cdot \overline{q}$$

$$\overline{W} \cdot \overline{U}$$

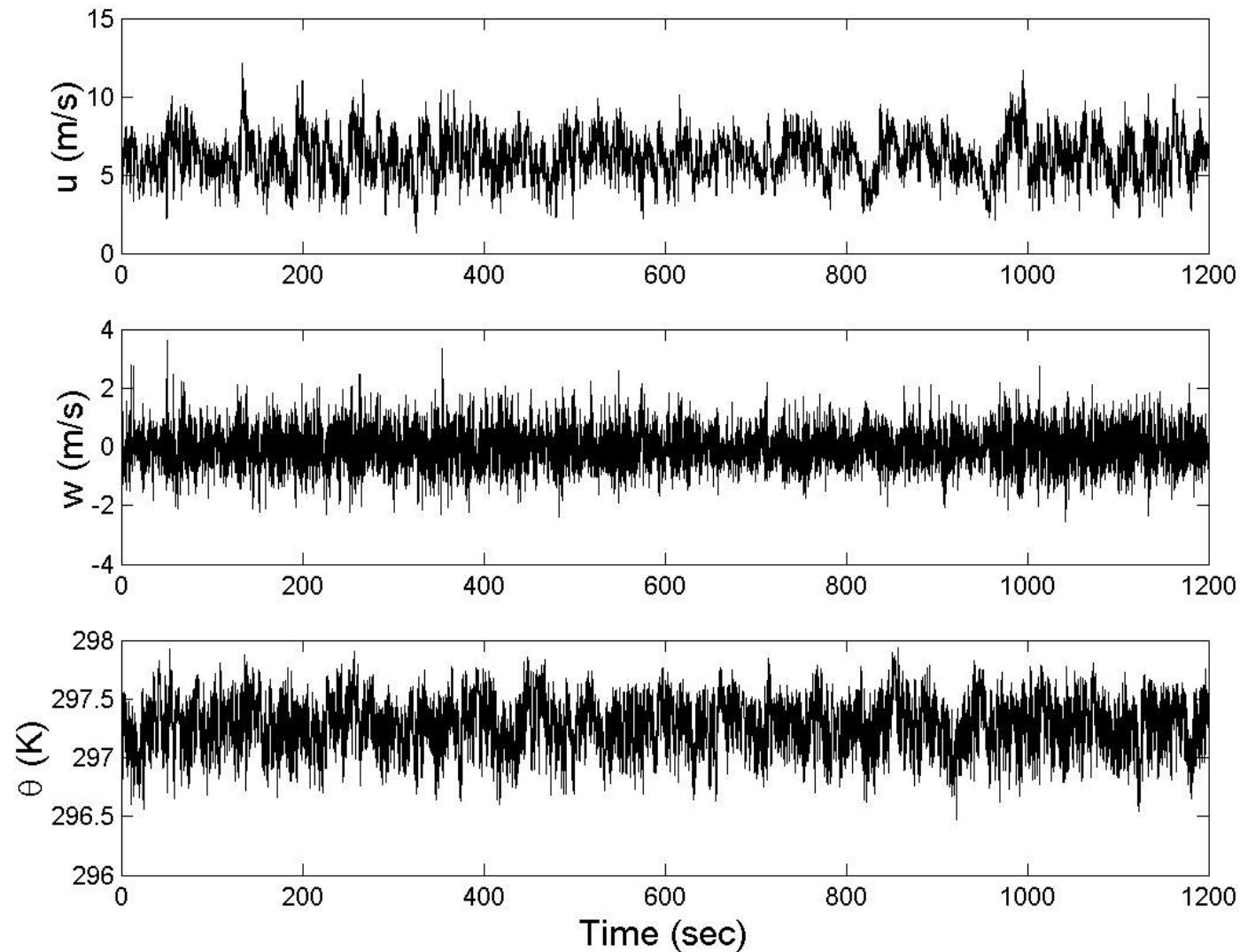
Turbulent (Reynolds) Fluxes

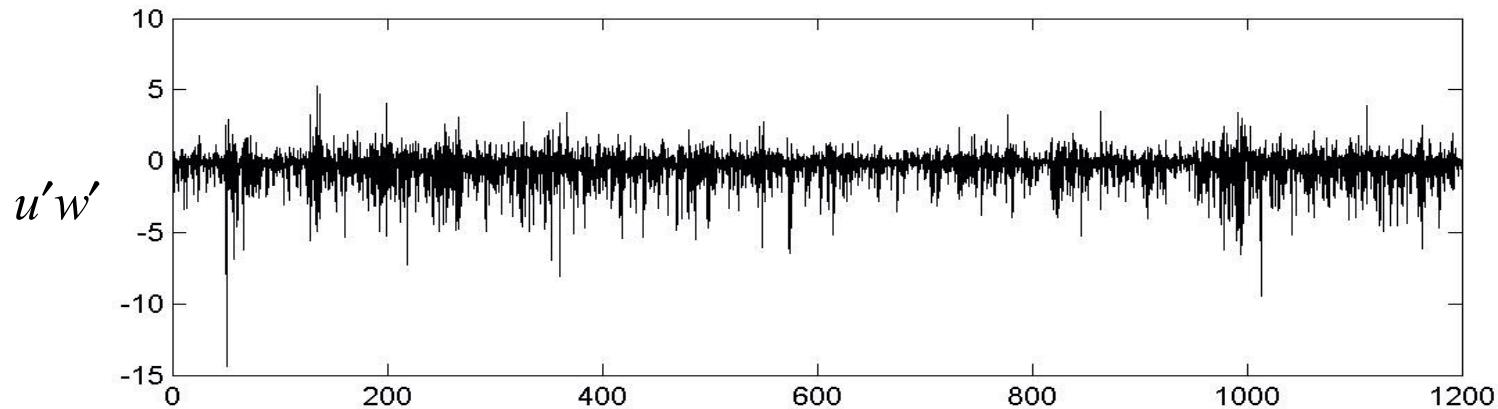
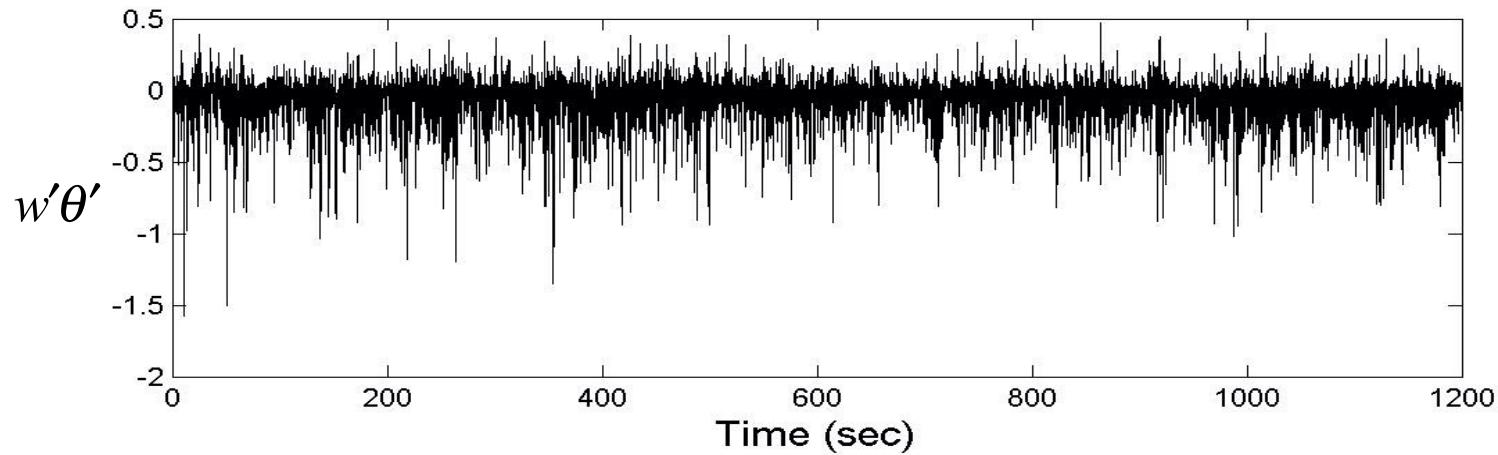
$$\overline{w' \theta'}$$

$$\overline{w' q'}$$

$$\overline{w' u'}$$

Time series of velocity and temperature collected with a sonic anemometer at 20 Hz.





Turbulent (kinematic) momentum flux:

$$\overline{u'w'} < 0$$

Turbulent (kinematic) heat flux:

Stable boundary layers:

$$\overline{w'\theta'} < 0$$

Unstable boundary layers:

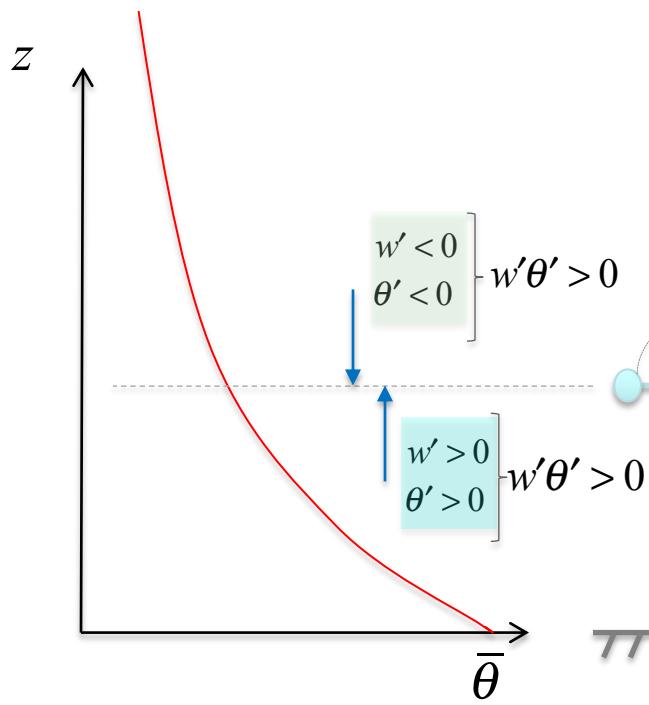
$$\overline{w'\theta'} > 0$$

Physical explanation for turbulent flux and its sign

- Based on mean temperature profile and the sign of the w' and θ' fluctuations, we can demonstrate what is the sign of the **vertical turbulent heat flux** ($\overline{w'\theta'}$) for convective and stable conditions.

CASE: Unstable (convective) boundary layer

Under unstable conditions, turbulent eddies bring towards the sensor relatively cooler air from above (when there is a downward motion: $w'<0$), and they also bring relatively warmer air from below (when there is an upward motion: $w'>0$)



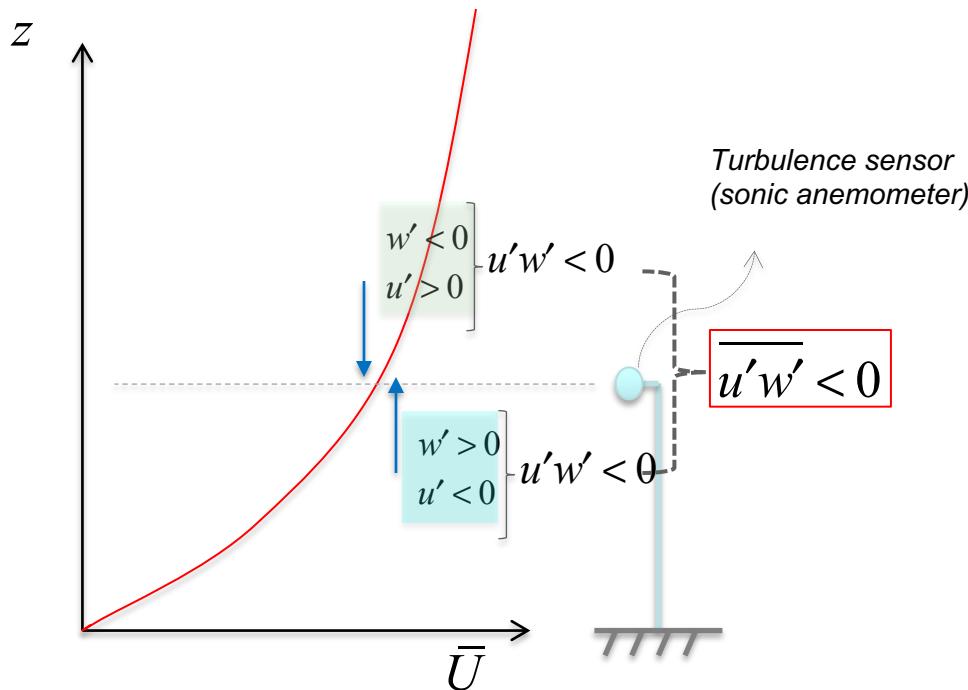
- Note: this is consistent with the eddy-diffusion model:

$$\overline{w'\theta'} = -D_\theta \frac{d\bar{\theta}}{dz}$$

(positive) (negative)

Physical explanation for turbulent flux and its sign

- Based on the mean velocity profile in the surface layer, we can also demonstrate what is the sign of the **vertical turbulent flux of streamwise momentum** ($\overline{u'w'}$).



- Note: again, this is consistent with the eddy-viscosity model:

$$\overline{u'w'} = -D_{t,mom} \frac{d\bar{U}}{dz}$$

(negative) (positive)

- Note that the sign of the momentum flux is always negative because of the shape of the velocity profile.
- Physical meaning: Mean streamwise velocity (and thus streamwise momentum) decreases as one gets closer to the surface; therefore there has to be a downward flux of streamwise momentum. It is also said that the surface is a 'sink' of momentum (since the velocity goes to zero there).

Buoyancy (thermal) effects

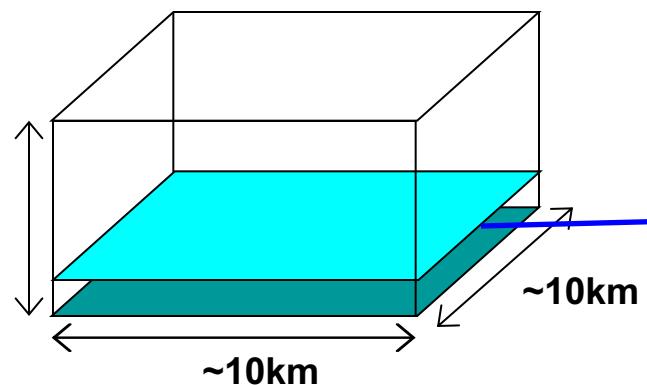
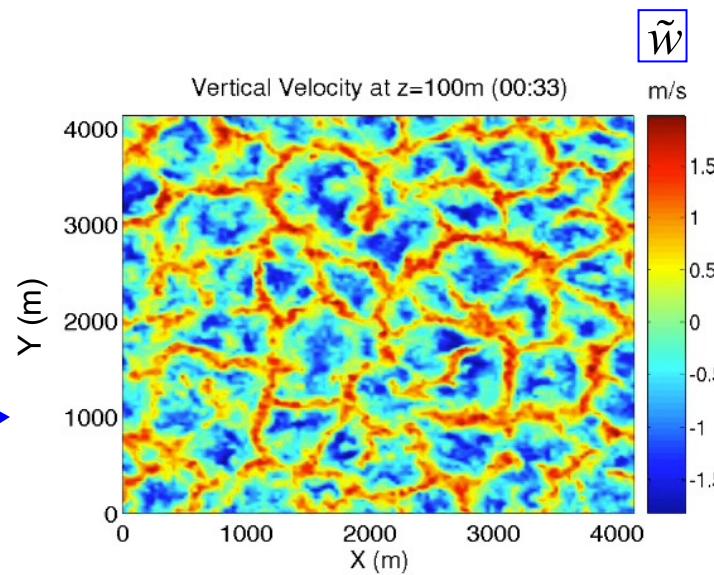
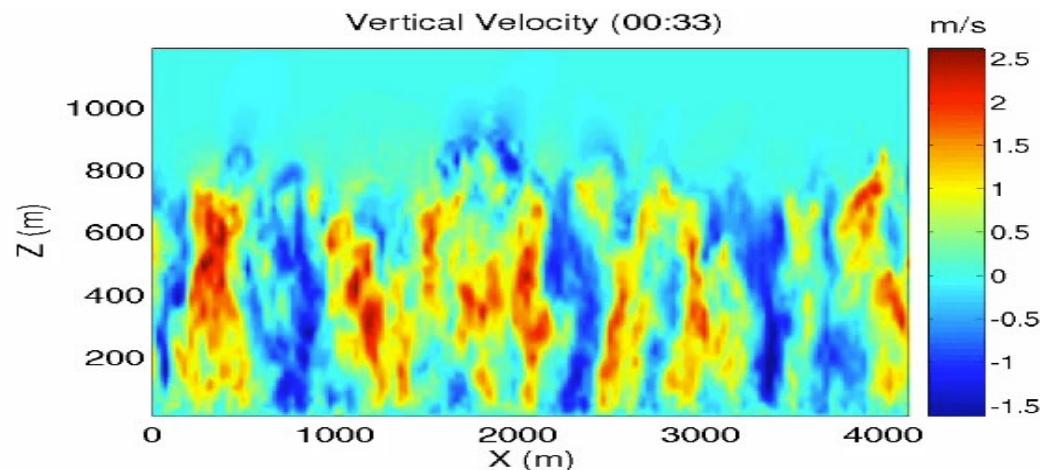
Pasquill stability categories:

Table 6.1. Pasquill stability categories taken from Csanady (1973).

Surface wind speed in [m/s]	Solar insolation			Night conditions	
	Strong	Moderate	Slight	mainly overcast or ≥ 4/8 low cloud	≤ 3/8 Low cloud
2	A	A–B	B	–	–
2–3	A–B	B	C	E	F
3–5	B	B–C	C	D	E
5–6	C	C–D	D	D	D
6	C	D	D	D	D

A - Extremely unstable, B - Moderately unstable, C - Slightly unstable, D - Neutral, E - Slightly stable, F - Moderately stable.

Free convection (Extremely unstable - very calm summer day conditions)



Buoyancy (thermal) effects

Effect of buoyancy on Turbulence Intensities:

Table 6.2. Typical turbulence intensities near the ground level

Thermal stratification	i_y	i_z
Extremely unstable	0.40–0.55	0.15–0.55
Moderately unstable	0.25–0.40	0.10–0.15
Near neutral	0.10–0.25	0.05–0.08
Moderately stable	0.08–0.25	0.03–0.07
Extremely stable	0.03–0.25	0.00–0.03

- **Under unstable (convective) conditions, turbulence is generated** by both shear (due to friction with the surface) and **buoyancy**.
- **Under stable conditions, turbulence is generated** by shear (friction), but it is **damped by negative buoyancy (thermal stratification)**.

Turbulent mixing in 3 dimensions: Pollutant plume

Turbulent mixing in 3 dimensions: Pollutant plume

<http://www.24heures.ch/vaud-regions/usine-thevenazleduc-flammes/story/30833723>

Turbulent mixing in 3 dimensions

- Recall: In Chapter 3 we derived turbulent advection-diffusion equations for turbulent flows
- Transport equation for MEAN CONCENTRATION field C :

$$\frac{\partial \bar{C}}{\partial t} + \frac{\partial \bar{u}_i \bar{C}}{\partial x_i} = D_{x,t} \frac{\partial^2 \bar{C}}{\partial x^2} + D_{y,t} \frac{\partial^2 \bar{C}}{\partial y^2} + D_{z,t} \frac{\partial^2 \bar{C}}{\partial z^2}$$

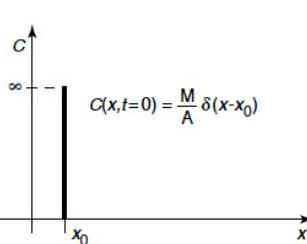
which is equivalent to:

$$\frac{\partial \bar{C}}{\partial t} + \frac{\partial \bar{u} \bar{C}}{\partial x} + \frac{\partial \bar{v} \bar{C}}{\partial y} + \frac{\partial \bar{w} \bar{C}}{\partial z} = D_{x,t} \frac{\partial^2 \bar{C}}{\partial x^2} + D_{y,t} \frac{\partial^2 \bar{C}}{\partial y^2} + D_{z,t} \frac{\partial^2 \bar{C}}{\partial z^2}$$

Table 2.1: Table of solutions to the diffusion equation

Schematic and Solution

Instantaneous point source, infinite domain



$$C(x, t) = \frac{M}{A\sqrt{4\pi Dt}} \exp\left[-\frac{(x - x_0)^2}{4Dt}\right]$$

$$C_{max}(t) = \frac{M}{A\sqrt{4\pi Dt}}$$

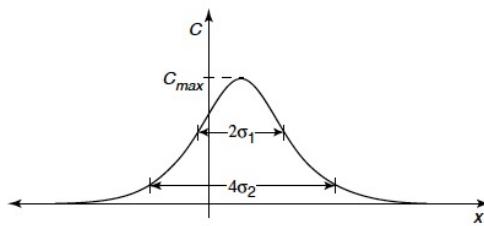
$$q_x(x, t) = \frac{M(x - x_0)}{2At\sqrt{4\pi Dt}} \exp\left[-\frac{(x - x_0)^2}{4Dt}\right]$$

Let $\sigma = \sqrt{2Dt}$ and
 $(2\sigma)^2 = 8Dt$.
For $x_0 = 0$:

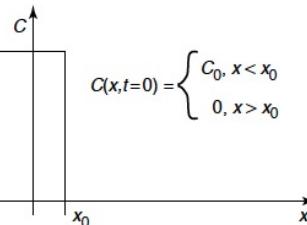
$$C(\pm\sigma, t) = 0.61C_{max}(t)$$

Let $\sigma = \sqrt{2Dt}$ and
 $(4\sigma)^2 = 32Dt$.
For $x_0 = 0$:

$$C(\pm 2\sigma, t) = 0.14C_{max}(t)$$



Instantaneous distributed source, infinite domain



$$C(x, t) = \frac{C_0}{2} \left[1 - \operatorname{erf} \left[\frac{(x - x_0)}{\sqrt{4Dt}} \right] \right]$$

$$C_{max}(t) = C_0$$

$$q_x(x, t) = \frac{C_0\sqrt{D}}{\sqrt{4\pi t}} \exp\left[-\frac{(x - x_0)^2}{4Dt}\right]$$

Let $\sigma = \sqrt{2Dt}$ and
 $(2\sigma)^2 = 8Dt$.
For $x_0 = 0$:

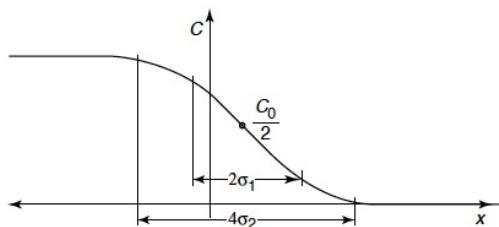
$$C(+\sigma, t) = 0.16C_0$$

$$C(-\sigma, t) = 0.84C_0$$

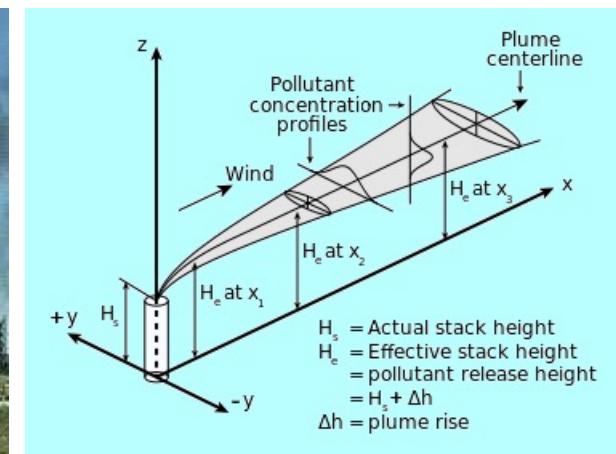
Let $\sigma = \sqrt{2Dt}$ and
 $(4\sigma)^2 = 32Dt$.
For $x_0 = 0$:

$$C(+2\sigma, t) = 0.02C_0$$

$$C(-2\sigma, t) = 0.98C_0$$



Turbulent mixing in 3 dimensions: Pollutant plume



Limiting solutions for D :

Near-field: $(x \rightarrow 0)$ (Linear)

$$D_{x,t} \approx \frac{\sigma_x^2}{2 \cdot t} = \frac{\sigma_x^2 \bar{u}}{2 \cdot x}$$

(Linear)

$$D_{y,t} \approx \frac{\sigma_y^2}{2 \cdot t} = \frac{\sigma_y^2 \bar{u}}{2 \cdot x}$$

(Linear)

$$D_{z,t} \approx \frac{\sigma_z^2}{2 \cdot t} = \frac{\sigma_z^2 \bar{u}}{2 \cdot x}$$

Example: Continuous point release – Gaussian plume model

Source strength: $\dot{m} \left[\frac{M}{T} \right]$

Source height: $h \left[L \right]$
(smokestack height)

To enforce **solid boundary condition at $z=0$** , we use an **image source**.

Solution for the **slender plume assumption** (*streamwise turbulent diffusion is negligible compared with advection*) is given by Csanady (1973):

$$C(x, y, z) = \frac{\dot{m}}{2\pi\bar{u}\sigma_y\sigma_z} \left[\exp\left\{-\frac{y^2}{2\sigma_y^2} - \frac{(z-h)^2}{2\sigma_z^2}\right\} + \exp\left\{-\frac{y^2}{2\sigma_y^2} - \frac{(z+h)^2}{2\sigma_z^2}\right\} \right]$$

➤ Question: How to get σ_y, σ_z ?

Gaussian Plume Model: Near-field solution

Taylor's theorem (Taylor, 1921), based on the fact that lateral/vertical mixing is driven by the spanwise/vertical turbulence velocity fluctuations:

$$\sigma_y \approx \sigma_v \cdot t = i_y \cdot x$$

$$\sigma_z \approx \sigma_w \cdot t = i_z \cdot x$$

$$\sigma_y = i_y \cdot x$$

$$\sigma_z = i_z \cdot x$$

$$\sigma_w \cdot t = \sigma_w \frac{x}{\bar{u}} = i_z \cdot x$$

Note: at a distance x , the plume has been spreading for a time:

$$t = \frac{x}{\bar{u}}$$

Where turbulence intensities i_y and i_z can be obtained from **Table 6.2** (book & previous slides).

NOTE: This solution is valid for a considerable range, often up to the distance where the plume grows so large that touches the ground (where maximum ground concentration is observed)

Buoyancy (thermal) effects

Effect of buoyancy on Turbulence Intensities:

Table 6.2. Typical turbulence intensities near the ground level

Thermal stratification	i_y	i_z
Extremely unstable	0.40–0.55	0.15–0.55
Moderately unstable	0.25–0.40	0.10–0.15
Near neutral	0.10–0.25	0.05–0.08
Moderately stable	0.08–0.25	0.03–0.07
Extremely stable	0.03–0.25	0.00–0.03

Example: Continuous point release

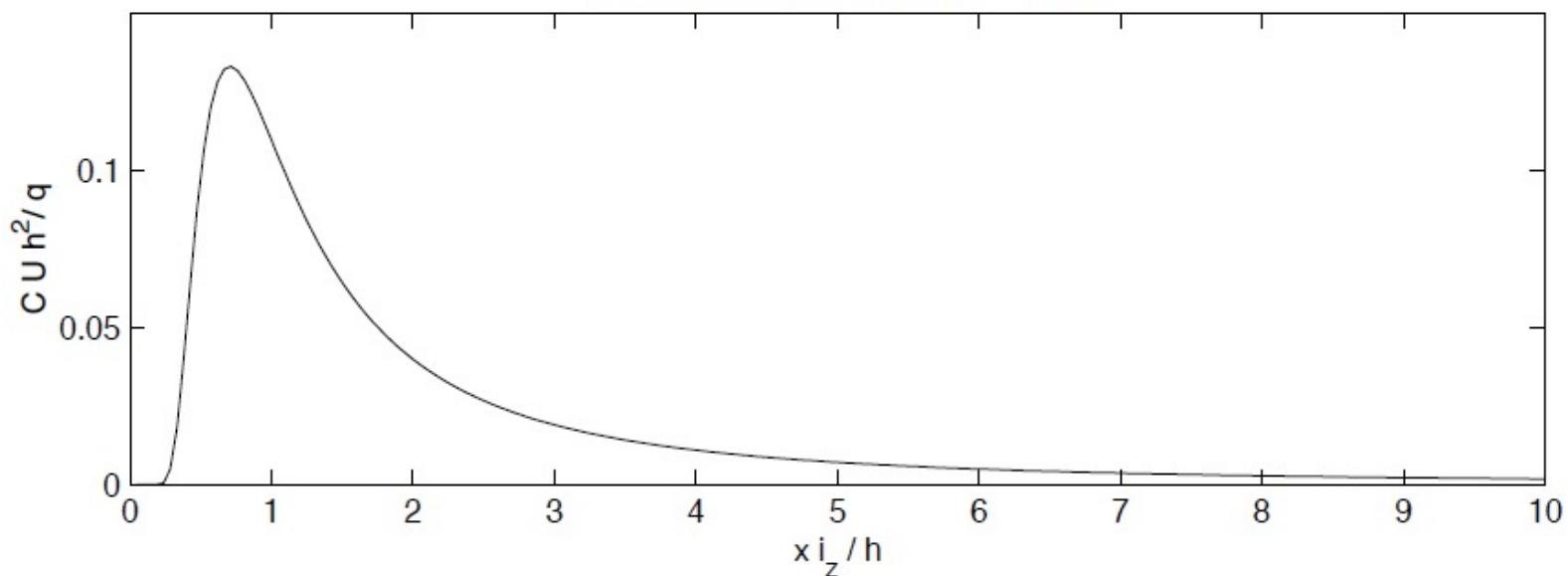
Solution for concentration at ground level *setting z=0*

$$C(x, y, 0) = \frac{\dot{m}}{\pi \bar{u} \sigma_y \sigma_z} \exp \left[-\frac{y^2}{2\sigma_y^2} - \frac{h^2}{2\sigma_z^2} \right]$$

Solution centerline of plume at ground level *setting y=z=0*

$$C(x, 0, 0) = \frac{\dot{m}}{\pi \bar{u} \sigma_y \sigma_z} \exp \left[-\frac{h^2}{2\sigma_z^2} \right]$$

Centerline concentration at $z = y = 0$



Concentration distribution at $z = 0$

