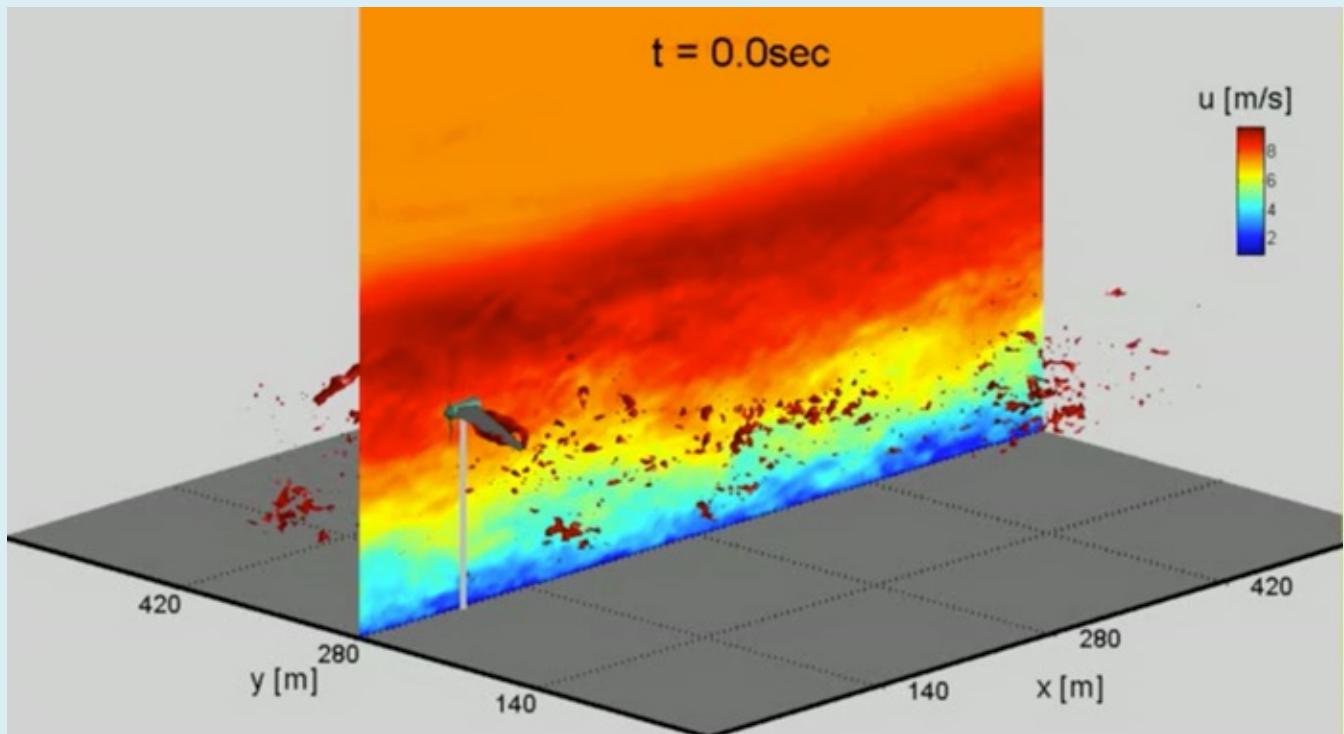


Environmental Transport Phenomena

Computational Fluid Dynamics

Fernando Porté-Agel

Wind engineering and
renewable energy laboratory
WiRE



Computational Fluid Dynamics (CFD)

I. Approaches for simulating turbulent flows

II. Direct Numerical Simulation (DNS)

III. RANS and the closure problem

IV. Large-Eddy Simulation (LES)

Reference: Lecture + Handout (handout optional)

Motivation

- For turbulent flows, we know the transport equations (advection-diffusion equations in 3D), but there is **no analytical solution**
- In computational fluid dynamics (CFD), equations are discretized (in time and space) and **solved numerically (with computers)**
- To resolve all eddy motions (from integral scale to Kolmogorov scale), **one needs a resolution as fine as the Kolmogorov scale in 3-D** [this is called Direct Numerical Simulation].

Question: Is this possible for all turbulent flows?

Governing Transport (Advection-Diffusion) Equations

Incompressible flow

$$\frac{\partial u_i}{\partial x_i} = 0$$

Mass conservation (continuity)

$$\frac{\partial u_i}{\partial t} + \frac{\partial}{\partial x_j} (u_i u_j) = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\nu \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] \right) + F_i$$

Momentum conservation
(Navier-Stokes equations)

$$\frac{\partial C}{\partial t} + \frac{\partial}{\partial x_i} (u_i C) = + \frac{\partial}{\partial x_i} \left(D_m \frac{\partial C}{\partial x_i} \right) + Q$$

Advection-diffusion equation
for conservation of Scalars (e.g.
pollutant, temperature)

Note: F_i is any external forcing;
 Q is any source or sink of scalar.

Steps in CFD:

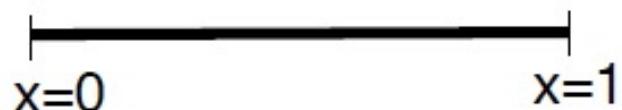
- STEP 1: Meshing
- STEP 2: Discretize equations
- STEP 3: Solve discretized equations

General Strategy in CFD (generally in numerical methods)

The general strategy consists of replacing a **continuous domain** with a **discrete domain** using a grid

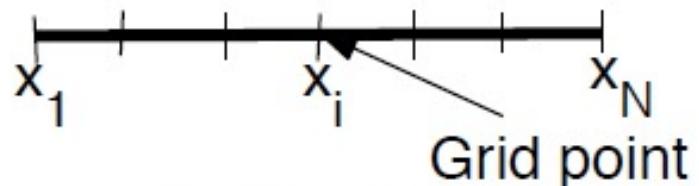
Continuous Domain

$$0 \leq x \leq 1$$



Discrete Domain

$$x = x_1, x_2, \dots, x_N$$



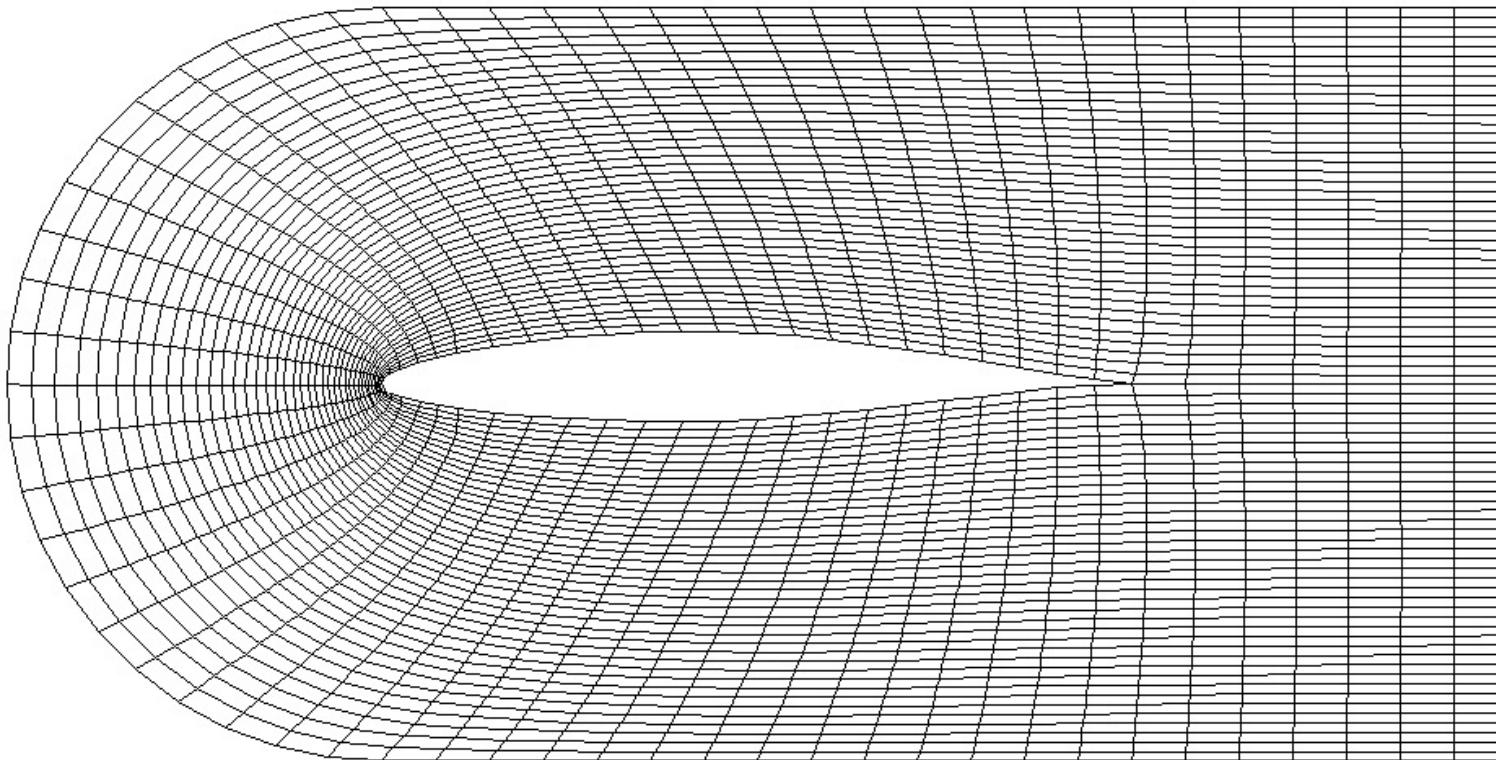
Coupled PDEs + boundary conditions in continuous variables

Coupled algebraic eqs. in discrete variables

Variables are only defined at the grid points

Step 1: Define a mesh (points where equations are solved)

**Example of 2-D computational mesh to simulate flow around an airfoil
(more details in FLUENT project)**

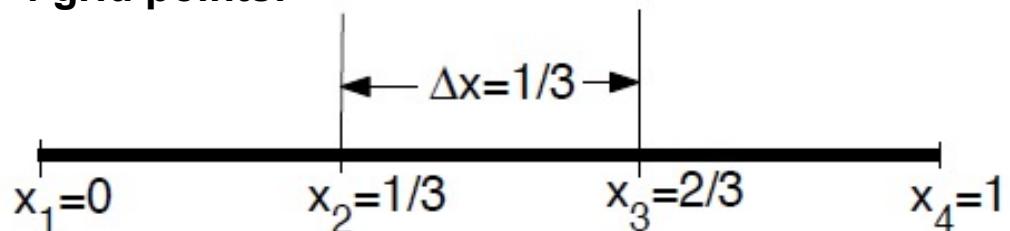


Step 2: Discretize the governing equations

A very simple example: 1-D equation

$$\frac{du}{dx} + u = 0; \quad 0 \leq x \leq 1; \quad u(0) = 1$$

In this case, using a mesh with only 4 grid points:



$$\left(\frac{du}{dx} \right)_i + u_i = 0$$

Discretizing each term of the governing partial differential equation using for example a *finite difference* approximation:

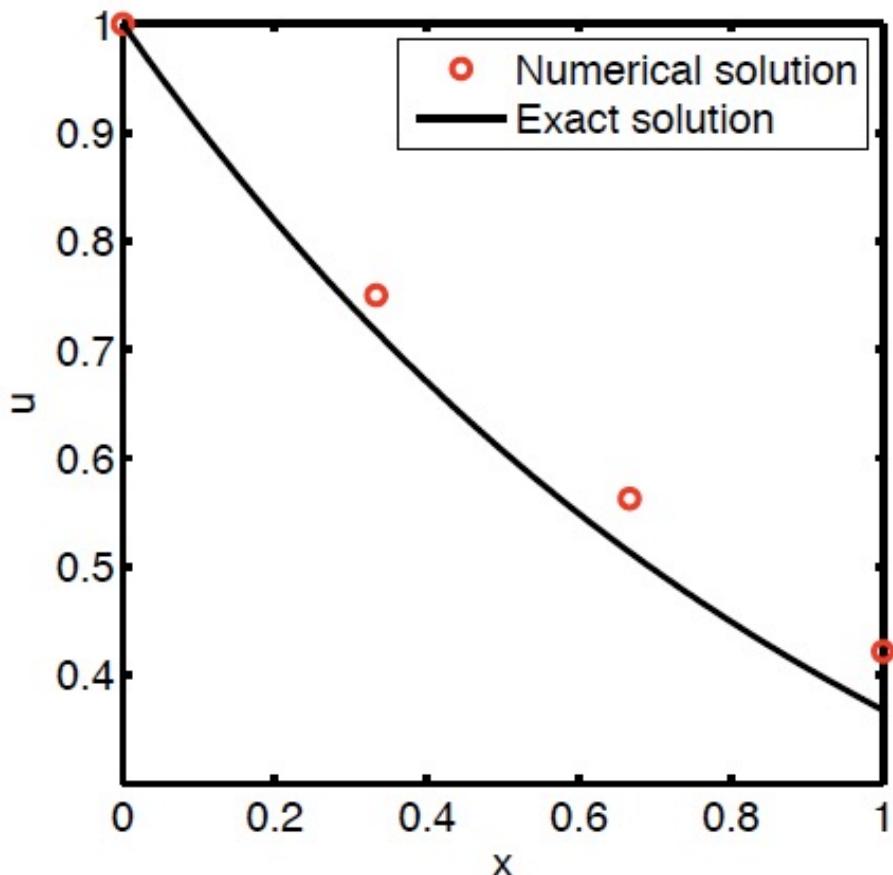
$$\left(\frac{du}{dx} \right)_i = \frac{u_i - u_{i-1}}{\Delta x} + O(\Delta x)$$

Discretization Error

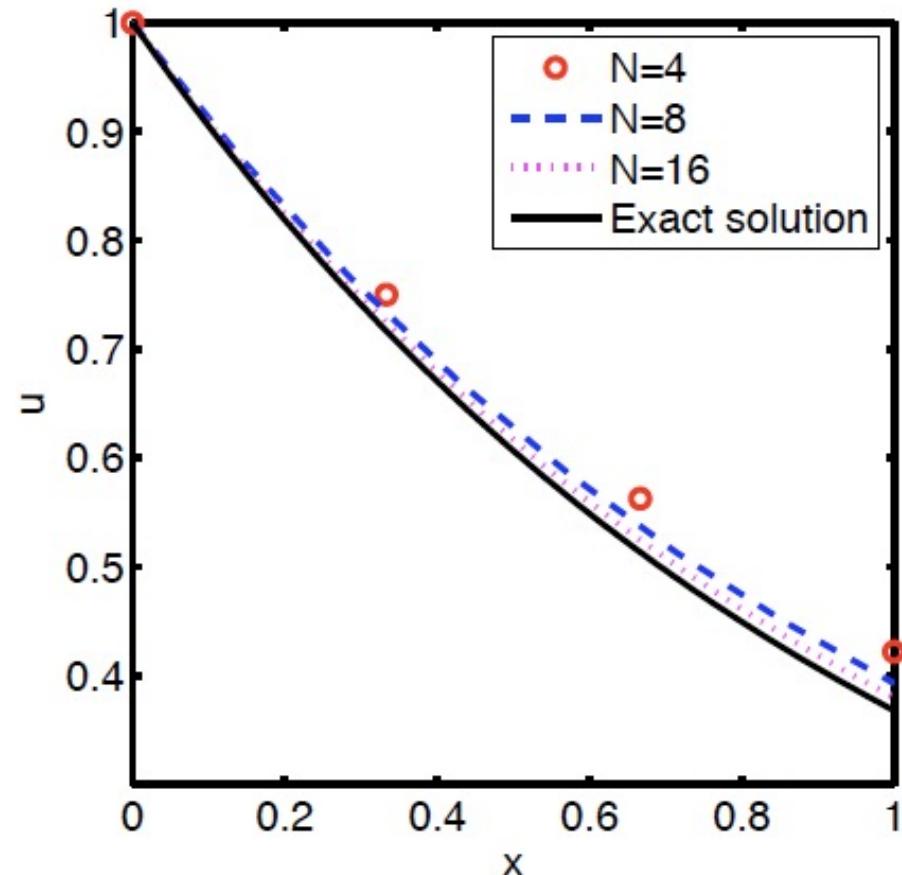
In this case, first order approximation

Spatial and temporal discretization of the equations

NUMERICAL ERROR (due to discretization)



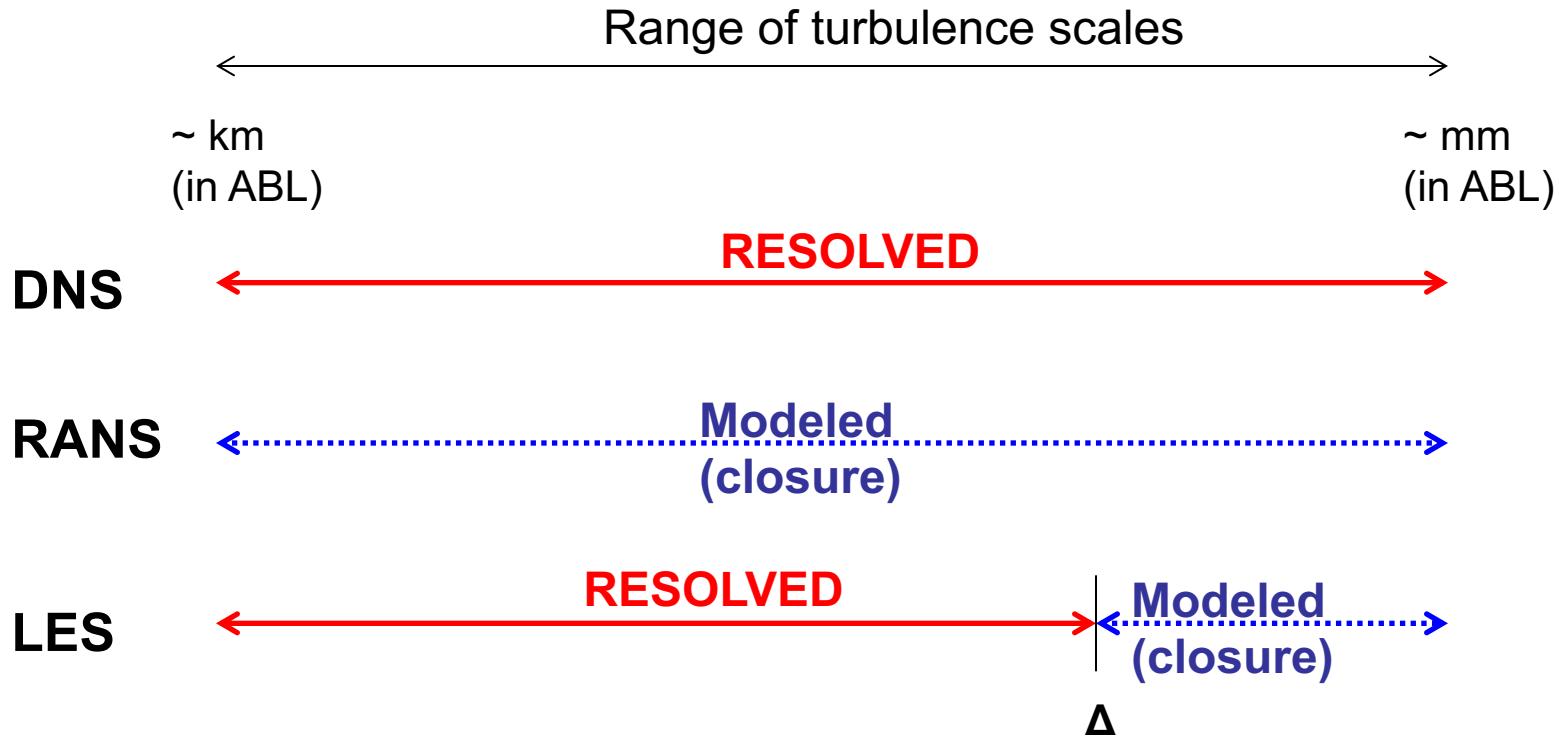
GRID CONVERGENCE



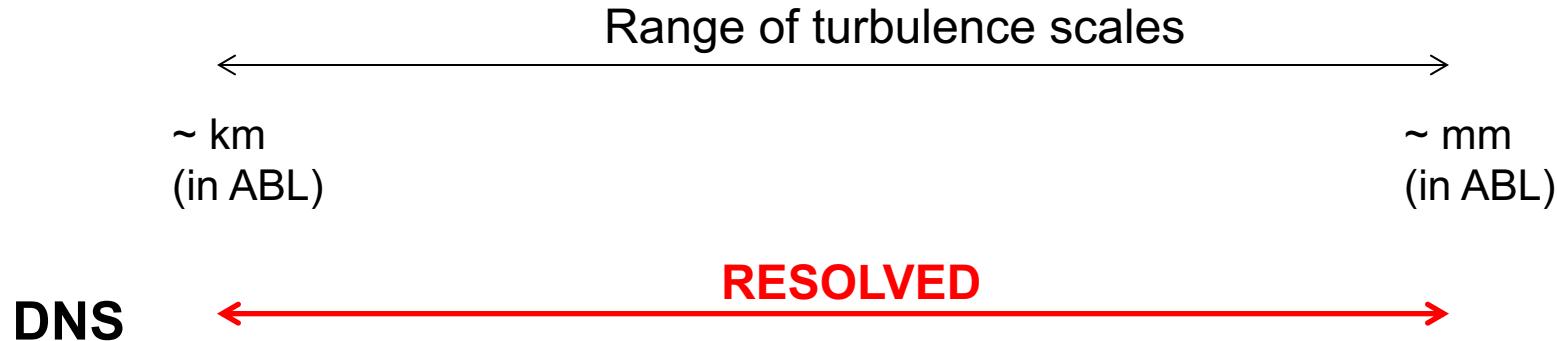
Effect of Grid Refinement (resolution): The finer the grid (smaller Δx), the smaller the discretization (numerical) error.

Approaches for simulation/modeling of turbulent flows

- **DNS** (Direct Numerical Simulation)
- **RANS** (Reynolds-Averaged Navier Stokes)
- **LES** (Large-Eddy Simulation)

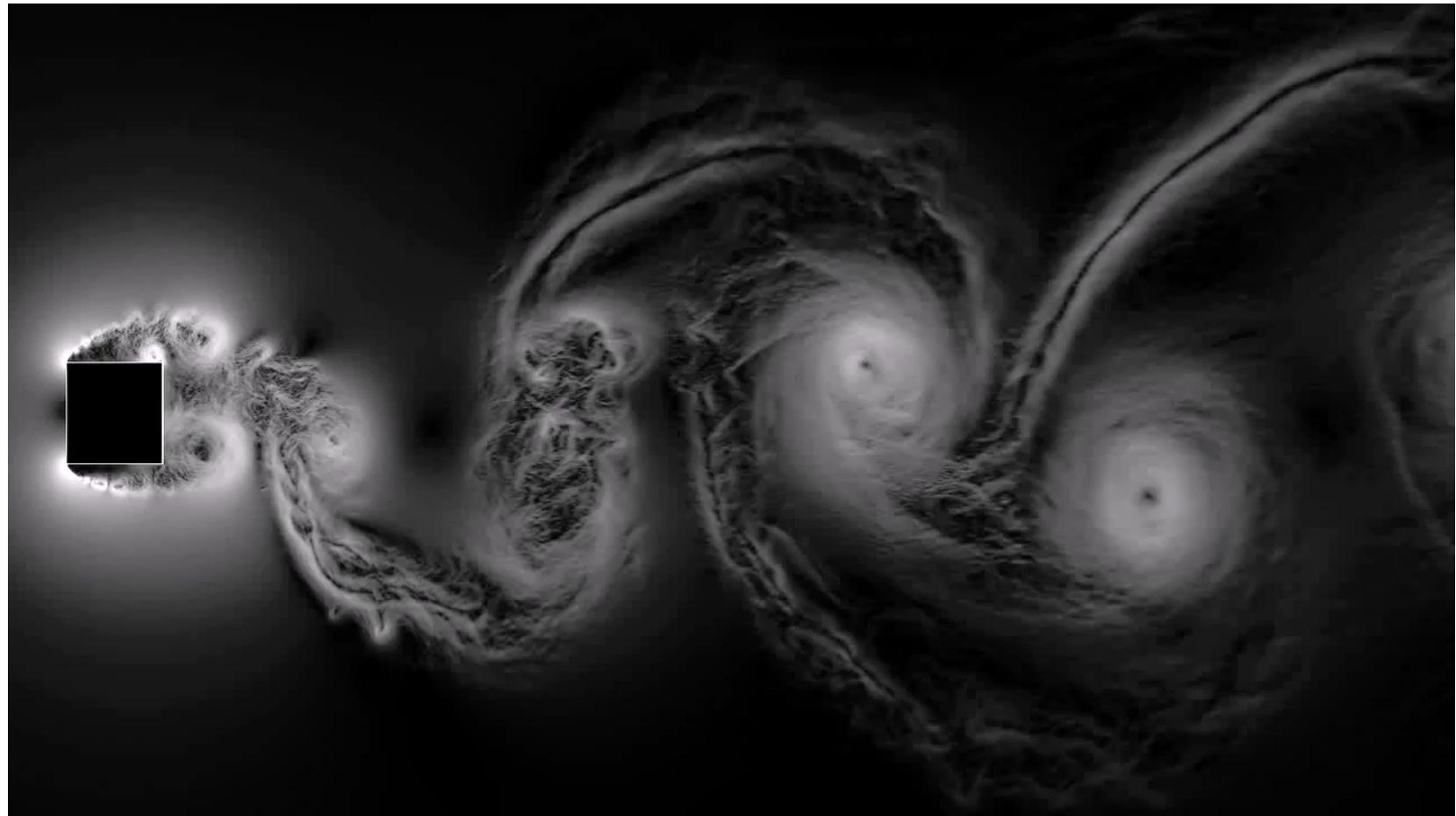


Direct Numerical Simulation (DNS)



- **All the eddy motions are resolved in 3D** (from the integral scale to the Kolmogorov scale). **No need for turbulence model.**
- To achieve that, the governing (advection-diffusion) equations are discretized in space (using resolution Δx , Δy , Δz) and time (using resolution Δt) such that:
 - (a) The total **computational domain is large enough to capture the largest eddies** (need to simulate all the eddy sizes).
 - (b) **Resolution Δ is FINE ENOUGH to capture the smallest eddy motions**

Direct Numerical Simulation (DNS): Example



DNS of the turbulent flow around a square cylinder at $Re=22000$

(Number of grid points: 325×10^6)

<https://www.youtube.com/watch?v=c8zKWaxohng>

Direct Numerical Simulation (DNS): Example

DNS of a turbulent hydraulic jump

<https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/direct-numerical-simulation-of-a-turbulent-hydraulic-jump-turbulence-statistics-and-air-entrainment/84800BF335F44F8A13EE5C648CDC388D#fndtn-supplementary-materials>

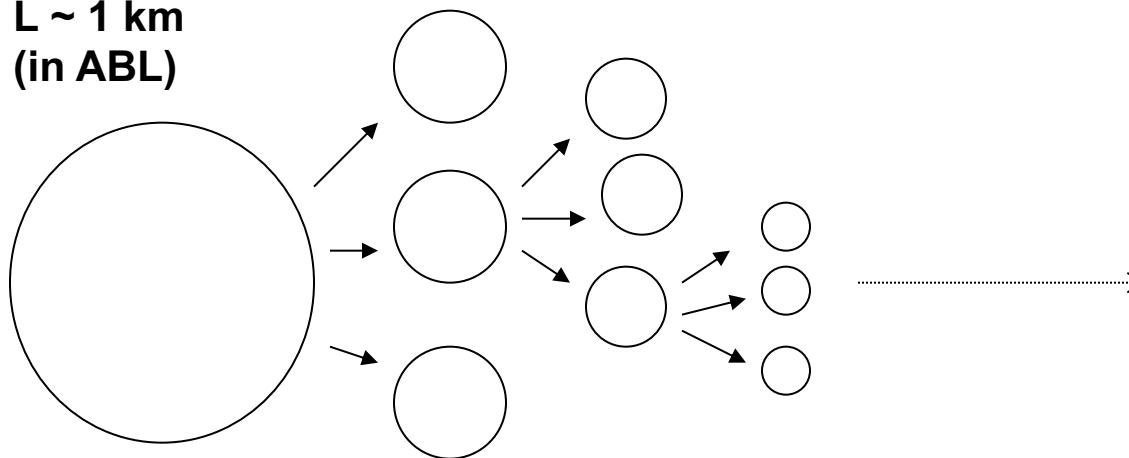
Integral
scale

Range of flow scales

Kolmogorov
scale

$L \sim 1 \text{ km}$
(in ABL)

$L_K \sim 1 \text{ mm}$
(in ABL)



$$\frac{L_I}{L_K} \sim \text{Re}^{3/4}$$

Energy production

(Energy cascade)

Energy dissipation

(Inertial effects)

(Viscous effects)

- Full resolution (Direct Numerical Simulation):

How many grid points
are required for ABL
simulations?

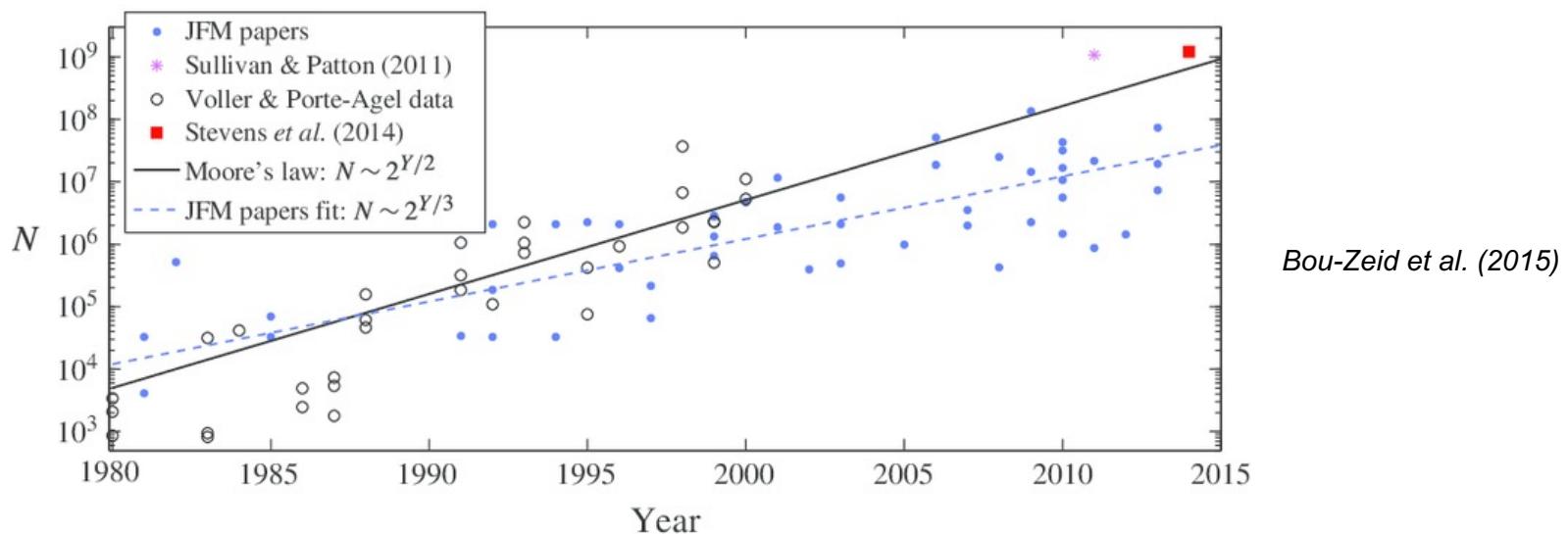
$$\left(\frac{L_I}{L_K} \right)^3 \sim \text{Re}^{9/4} \sim 10^{20}$$

Atmospheric BL: $\text{Re} \sim 10^8 - 10^9$

Computational Resources

- Direct Numerical Simulation is **IMPOSSIBLE** for many high-Re flows
- Example: ABL: (needs $\Delta x \sim 1$ mm ; $\Delta t \sim 1$ ms)
→ It requires $Re^{9/4} \sim 10^{20}$ grid points!!

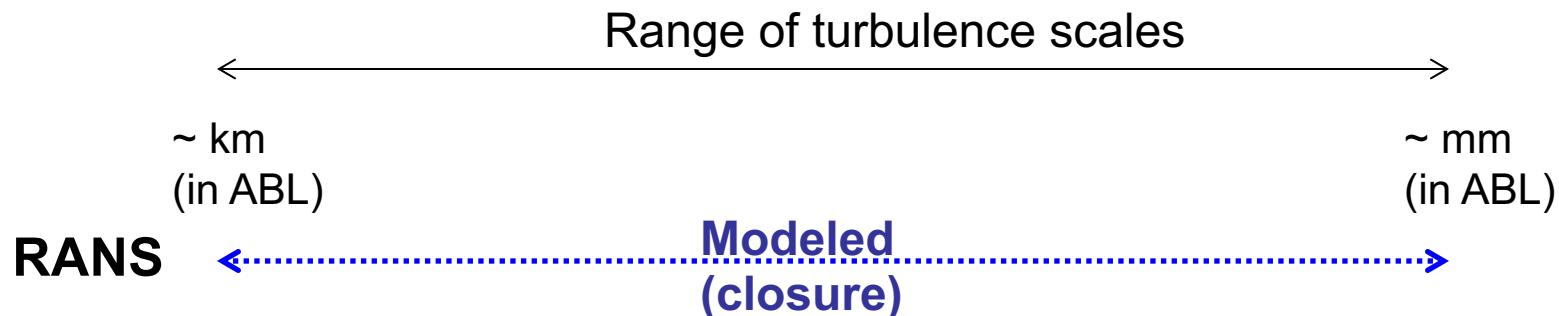
[Using best available supercomputers: maximum number of grid points in DNS $\sim 10^{12}$]



If Moore's law on computer power [doubling every 18 months] holds:

DNS of atmospheric turbulence over a 10 km x 10 km x 1 km domain may be possible in ~ year **2080**.

Reynolds-Averaged Navier Stokes (RANS) Approach



- **RANS**: It solves 'Reynolds-Averaged Navier Stokes' equations.
 - *When the flow is 'steady' ($\partial \bar{C} / \partial t = 0$) → average=time average.*
- **URANS (Unsteady RANS)**: It also solves the RANS equations, but including the time evolution of the averaged quantities (with time derivative).
 - **Question: What type of averaging allows to do that?**

RANS (Reynolds-Averaged Navier Stokes)

Incompressible flow

$$\frac{\partial \bar{u}_i}{\partial x_i} = 0$$

$$\frac{\partial \bar{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\bar{u}_i \bar{u}_j) = -\frac{1}{\rho} \frac{\partial \bar{p}}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\nu \left[\frac{\partial \bar{u}_i}{\partial x_j} + \frac{\partial \bar{u}_j}{\partial x_i} \right] \right) + \bar{F}_i$$

Turbulent (Reynolds) stress

$$\tau_{ij} = \bar{u}'_i \bar{u}'_j$$

$$\frac{\partial \bar{C}}{\partial t} + \frac{\partial}{\partial x_i} (\bar{u}_i \bar{C}) = -\frac{\partial q_i}{\partial x_i} + \frac{\partial}{\partial x_i} \left(D_m \frac{\partial \bar{C}}{\partial x_i} \right) + \bar{Q}$$

Turbulent flux

$$q_i = \bar{u}'_i \bar{C}'$$

Effect of turbulent fluctuations on the average fields

CLOSURE PROBLEM:

Fundamental problem in turbulence
(equations are not closed: more unknowns than equations)

Reynolds-Averaged Navier Stokes (RANS) Approach

Reynolds decomposition:

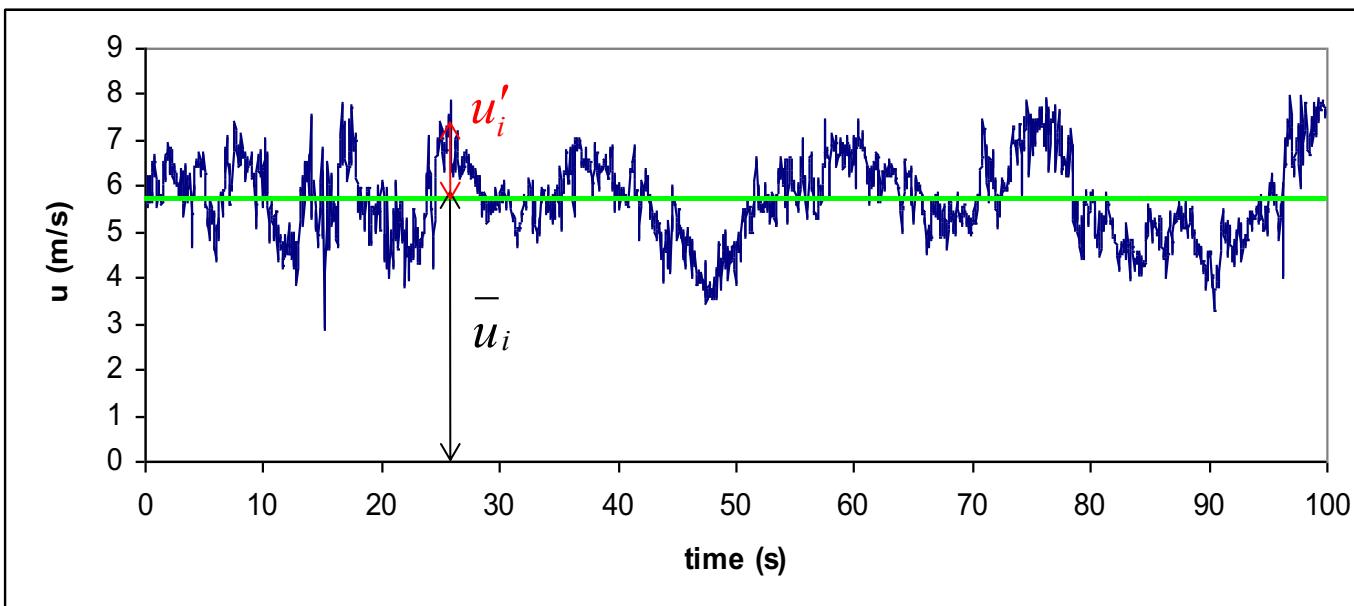
$$\left. \begin{aligned} u_i &= \bar{u}_i + u'_i \\ C &= \bar{C} + C' \end{aligned} \right\}$$

Types of averages:

- **Time Averaging**
- **Ensemble Averaging**
(over different realizations
of the same 'experiment')

Note: for turbulent **stationary** flows,
time averages are equal to ensemble averages

Example of time averaging



Turbulence models: Eddy-viscosity/diffusivity models

NOTE: In laminar flows, energy dissipation and transport of mass, momentum and energy normal to the streamlines is mediated by molecular viscosity/diffusivity

EFFECT of TURBULENCE can be represented as an **INCREASED VISCOSITY/DIFFUSIVITY**

EDDY-VISCOSITY/DIFFUSIVITY MODEL

$$\overline{u'_i \xi'} = -D_{t,\xi} \frac{\partial \bar{\xi}}{\partial x_i}$$

TURBULENT FLUX: sought to mimic the molecular gradient diffusion process

Note: Although the eddy viscosity hypothesis is NOT CORRECT in detail, it is easy to implement and can provide REASONABLY GOOD RESULTS

CHALLENGE: How to specify the eddy viscosity/diffusivity D_t ?

Turbulence models: Eddy-viscosity/diffusivity models

$$\overline{u'_i \xi'} = -D_{t,\xi} \frac{\partial \bar{\xi}}{\partial x_i}$$

D_t has units of m^2/s

$$\overline{u' w'} = -D_{t,mom} \frac{\partial \bar{u}}{\partial z}$$

Eddy-viscosity model (for momentum); Eddy viscosity:

$$D_{t,mom} = \nu_t$$

$$\overline{w' \theta'} = -D_{t,\theta} \frac{\partial \bar{\theta}}{\partial z}$$

Eddy-diffusivity model (for scalars like temperature or pollutants)

Analogy with molecular viscosity/diffusivity

- Reynolds stress modeled like viscous stress
- Turbulence more effective than viscosity at mixing:

$$D_{t,mom} \gg \nu \quad \left| \begin{array}{l} D_{t,mom} \sim 0.1 - 2 \times 10^3 m^2 s^{-1} \\ \nu \sim 1.5 \times 10^{-5} m^2 s^{-1} \end{array} \right.$$

$$D_{t,\theta}$$

Eddy-diffusivity

Reynolds analogy ($Pr_t = 1$)

$$D_{t,\theta} = \frac{D_{t,mom}}{Pr_t} \approx D_{t,mom}$$

Example:

Using a combination of a length scale (l_{scale}) and a velocity scale (u_{scale})

$$D_{t,mom} \propto u_{scale} \cdot l_{scale}$$

CHALLENGE: How to specify the scales l_{scale} and u_{scale} ?

➤ In channel flow: See *previous lecture*

$$l_{scale} \approx k \cdot z$$

➤ In boundary layers:

$$u_{scale} \approx u_*$$

k = von Karman constant ($k \approx 0.4$)

➤ In complex flows: CHALLENGING

Note: More on RANS turbulence models during Fluent Project sessions

A common RANS turbulence model: the k - ϵ model

(Jones and Launder, 1972)

- It requires solving two additional equations:

(1) One p.d.e. for TKE: k Note: $[k] = L^2 T^{-2}$

$$\frac{Dk}{Dt} = \underbrace{\frac{\partial}{\partial x_i} \left[\frac{\mu_{\text{eff}}}{\sigma_k} \frac{\partial k}{\partial x_i} \right]}_{\text{diffusion}} + \underbrace{\left[\mu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) - \frac{2}{3} \rho \delta_{ij} k \right] \frac{\partial U_j}{\partial x_i}}_{\text{production}} - \underbrace{c_D \frac{\rho k^{3/2}}{\ell_m}}_{\text{dissipation}}$$

to obtain velocity scale

(2) One p.d.e. for energy dissipation ϵ Note: $[\epsilon] = L^2 T^{-3}$

$$\frac{D\epsilon}{Dt} = \underbrace{\frac{\partial}{\partial x_i} \left[\frac{\mu_{\text{eff}}}{\sigma_\epsilon} \frac{\partial \epsilon}{\partial x_i} \right]}_{\text{diffusion}} + \underbrace{\left[\mu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) - \frac{2}{3} \rho \delta_{ij} k \right] \frac{\partial U_j}{\partial x_i}}_{\text{production}} - \underbrace{c_{\epsilon,2} \frac{\rho \epsilon^2}{k}}_{\text{dissipation}}$$

to obtain length scale

Also: $\mu_t = C_\mu \frac{k^2}{\epsilon}$ (Note: Momentum diffusivity = kinematic viscosity: $D_{t,m} = \nu_t = \frac{\mu_t}{\rho}$)

$$D_{t,mom} \propto u_{scale} \cdot l_{scale}$$

velocity scale

$$u_{scale} \approx \sqrt{2k}$$

length scale

$$l_{scale} \approx \frac{k^{3/2}}{\epsilon}$$

$$D_{t,m} \propto \frac{k^2}{\epsilon}$$

Model coefficients (obtained by data fitting for several flows):

$$C_\mu = 0.09$$

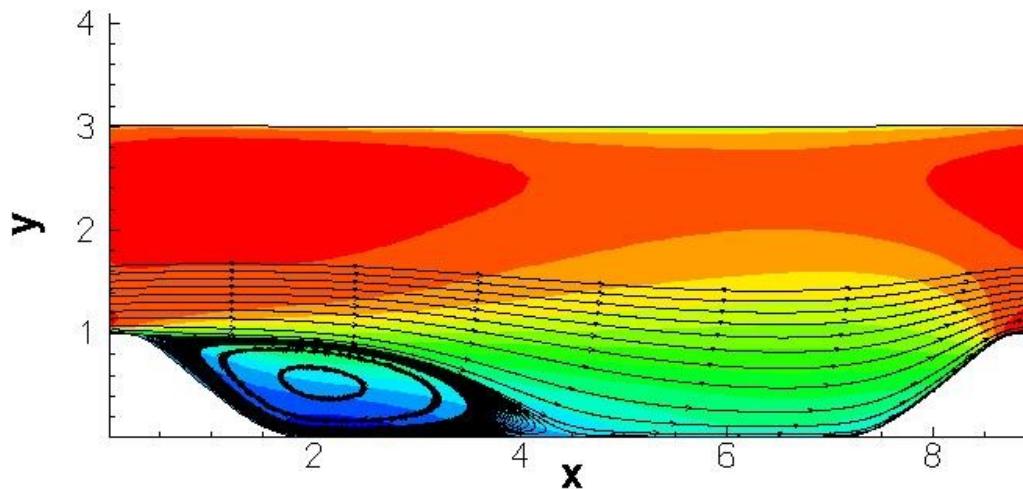
$$\sigma_k = 1.00$$

$$\sigma_\epsilon = 1.30$$

$$C_{1\epsilon} = 1.44$$

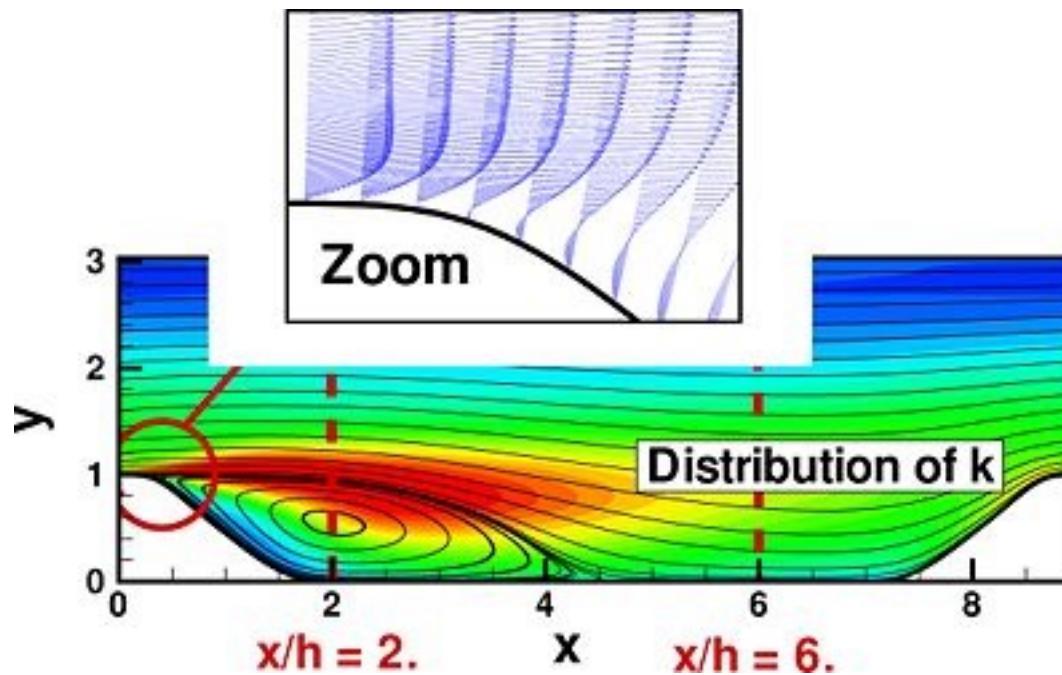
$$C_{2\epsilon} = 1.92$$

RANS example: flow over complex terrain



Mean velocity and streamlines

(Red: high; Blue: low)

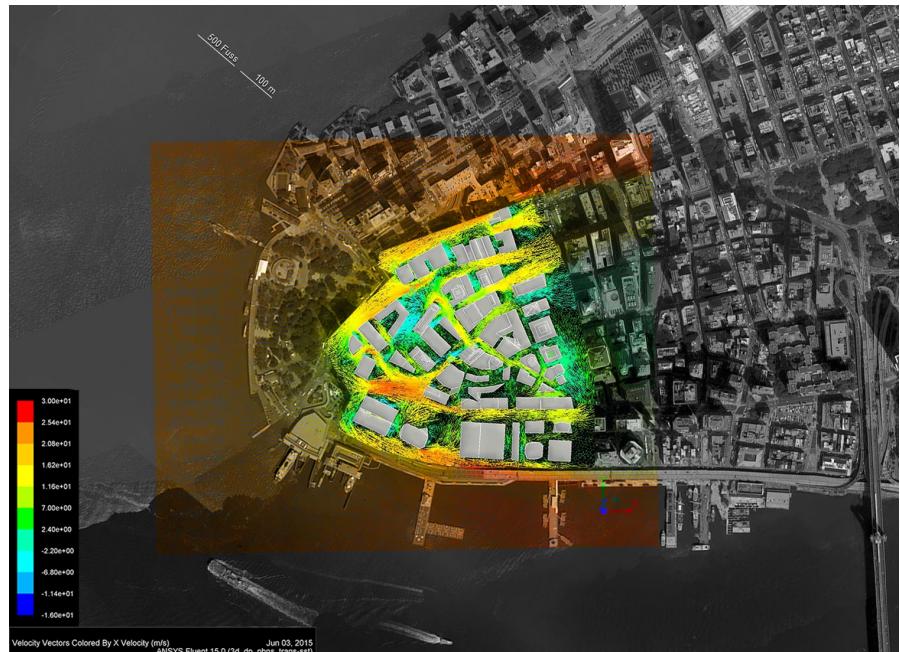


Turbulence Kinetic Energy k (T.K.E.)

(Red: high; Blue: low)

Reynolds-Averaged Navier Stokes (RANS): Example

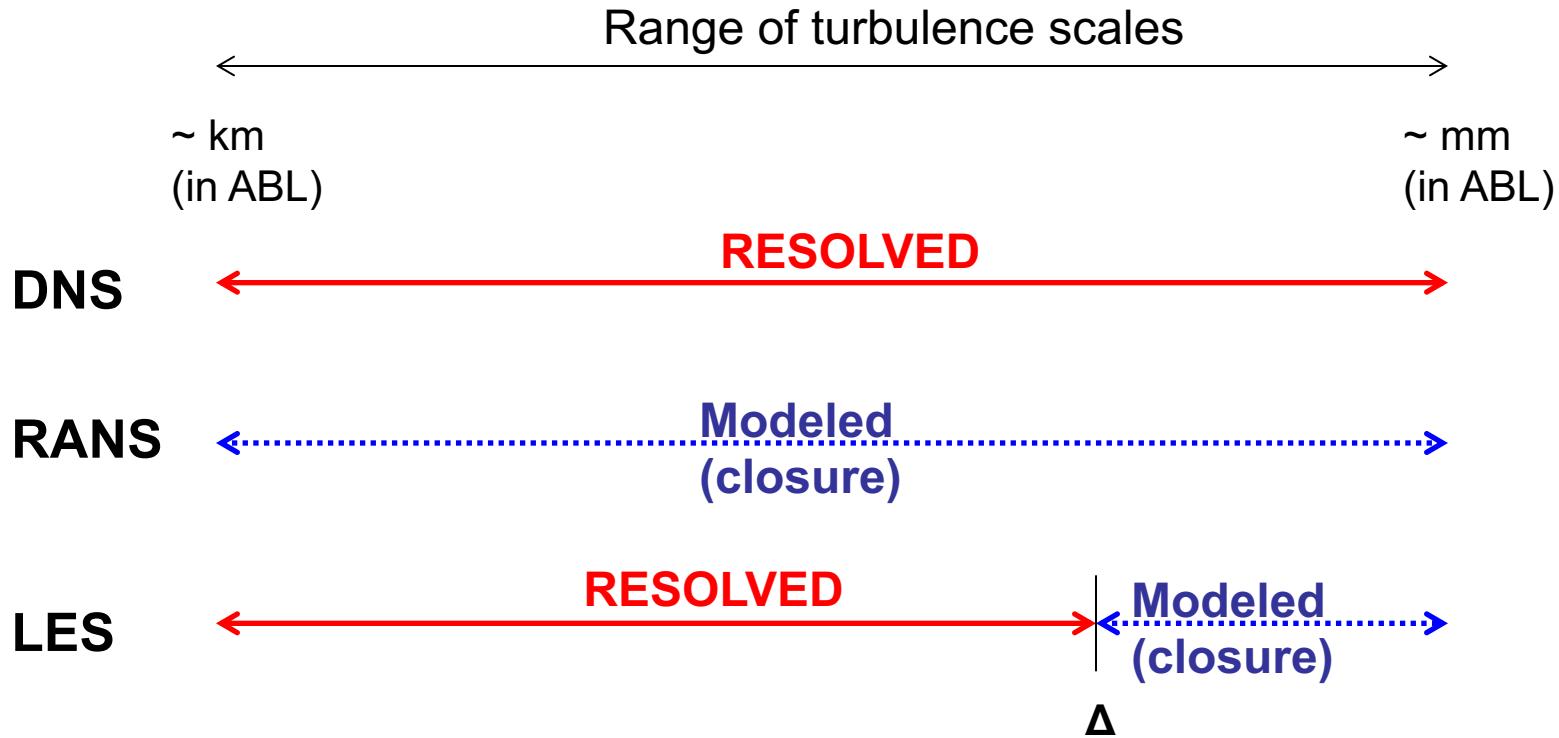
Simulated mean wind velocity vectors (color represents magnitude) in Manhattan (New York)



(Red: high; Blue: low)

Approaches for simulation/modeling of turbulent flows

- **DNS** (Direct Numerical Simulation)
- **RANS** (Reynolds-Averaged Navier Stokes)
- **LES** (Large-Eddy Simulation)



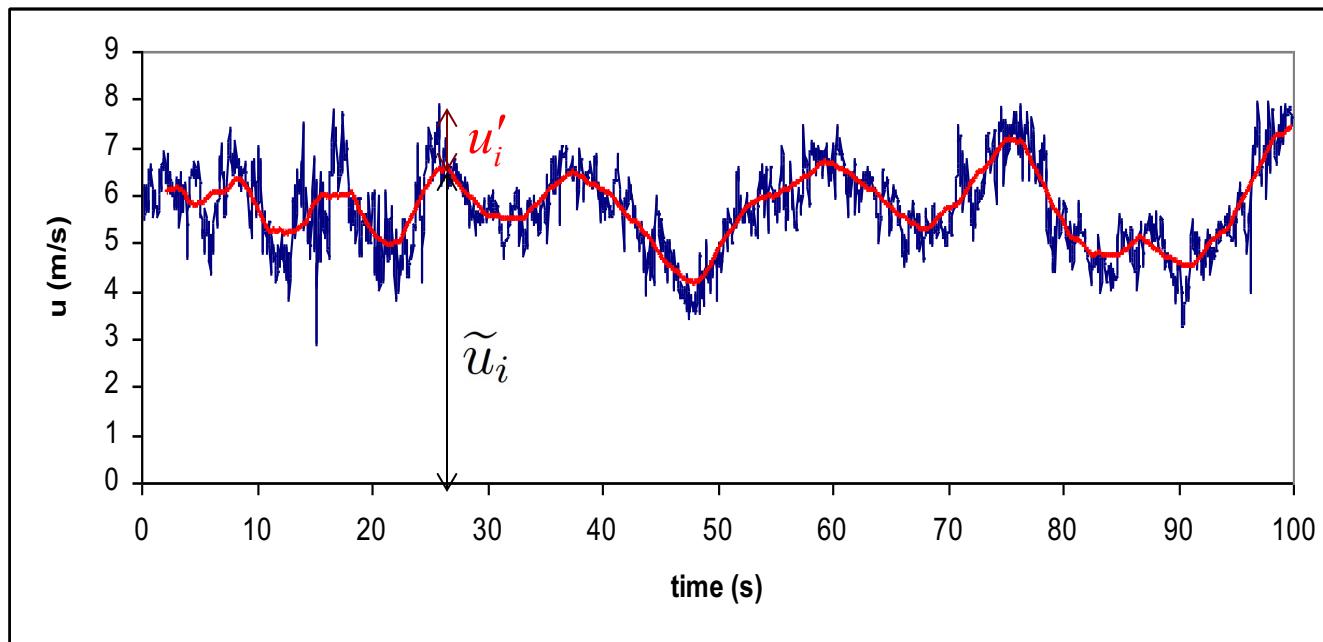
Large-Eddy Simulation (LES)

- DNS (Direct Numerical Simulation)
- LES (Large-Eddy Simulation)

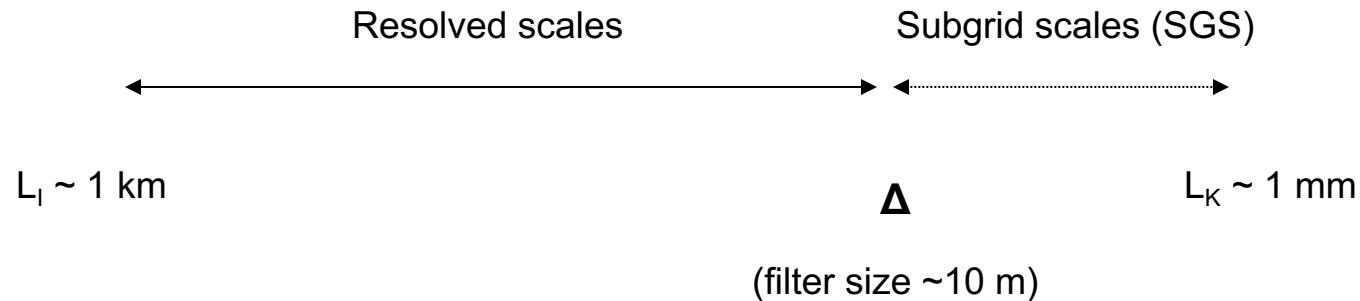
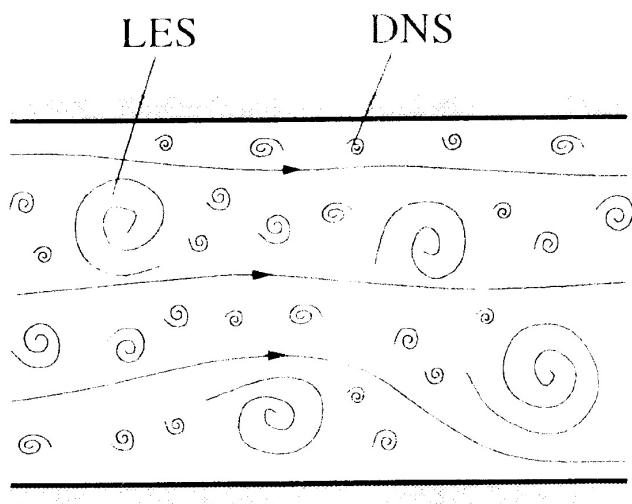
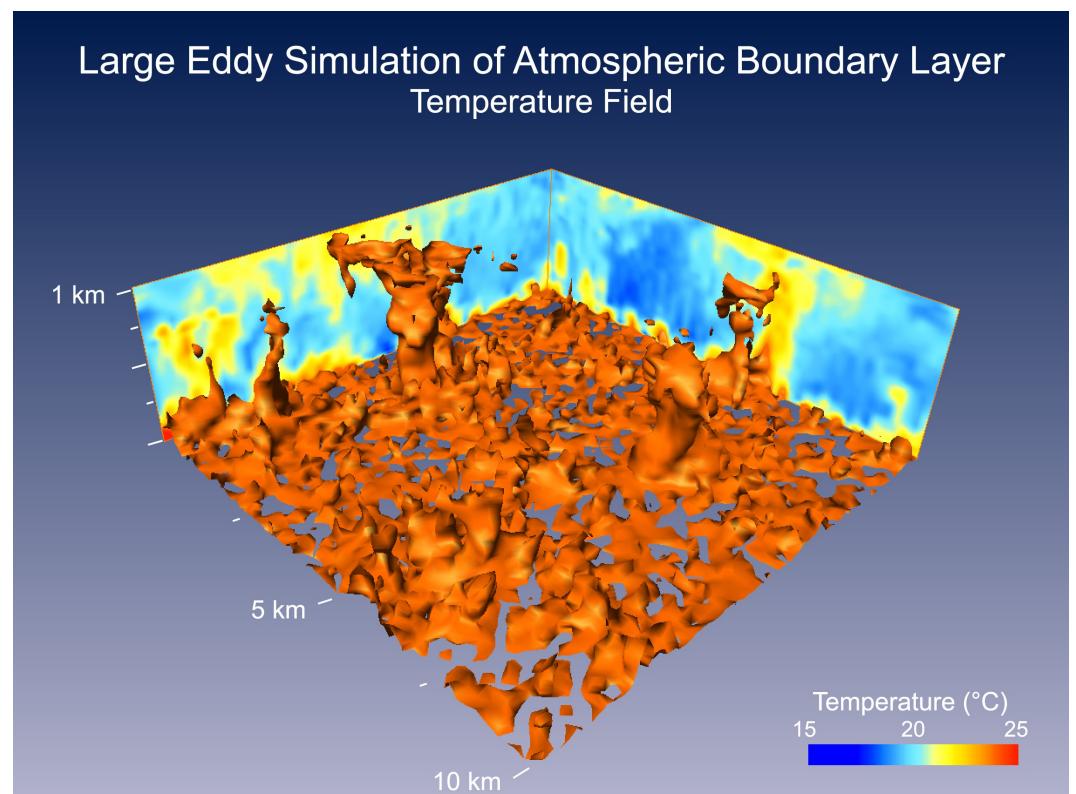
Note: In LES, the ‘tilde’ denotes a filtering operation (a local spatial average in 3D)

$$u_i = \tilde{u}_i + u'_i$$

$$\tilde{u}_i(x) = \int G(x, x') u_i(x') dx'$$



Large-Eddy Simulation (LES)



LES (filtered) transport equations

$$\frac{\partial \tilde{u}_i}{\partial x_i} = 0$$

$$\frac{\partial \tilde{u}_i}{\partial t} + \frac{\partial}{\partial x_j} (\tilde{u}_i \tilde{u}_j) = -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x_i} - \frac{\partial \tau_{ij}}{\partial x_j} + F_i$$

SGS stress

$$\tau_{ij} = \tilde{u}_i u_j - \tilde{u}_i \tilde{u}_j$$

$$\frac{\partial \tilde{C}}{\partial t} + \frac{\partial}{\partial x_i} (\tilde{u}_i \tilde{C}) = -\frac{\partial q_i^{sgs}}{\partial x_i} + \tilde{Q}$$

(Derivation in next slide)

SGS flux

$$q_i^{sgs} = \tilde{u}_i \tilde{C} - \tilde{u}_i \tilde{C}$$

Effect of sub-grid scales on
the resolved (filtered) scales

EXAMPLES of LES: All movies shown of ABL simulations in next lectures.

LES (filtered) scalar transport equation: derivation

Starting with advection-diffusion equation:

$$\frac{\partial C}{\partial t} + \frac{\partial}{\partial x_i} (u_i C) = \frac{\partial}{\partial x_i} \left[D_m \frac{\partial C}{\partial x_i} \right] + Q$$

[Note: Q is a source/sink term]

Applying LES filtering operation (of size Δ):

$$\frac{\partial \tilde{C}}{\partial t} + \frac{\partial}{\partial x_i} (\tilde{u}_i \tilde{C}) = \frac{\partial}{\partial x_i} \left[D_m \frac{\partial \tilde{C}}{\partial x_i} \right] + \tilde{Q}$$

Adding and subtracting the same term:

$$\frac{\partial \tilde{C}}{\partial t} + \frac{\partial}{\partial x_i} (\tilde{u}_i \tilde{C} - \tilde{u}_i \tilde{C} + \tilde{u}_i \tilde{C}) = \frac{\partial}{\partial x_i} \left[D_m \frac{\partial \tilde{C}}{\partial x_i} \right] + \tilde{Q}$$

Rearranging:

$$\frac{\partial \tilde{C}}{\partial t} + \frac{\partial}{\partial x_i} (\tilde{u}_i \tilde{C}) = - \frac{\partial}{\partial x_i} (\tilde{u}_i \tilde{C} - \tilde{u}_i \tilde{C}) + \frac{\partial}{\partial x_i} \left[D_m \frac{\partial \tilde{C}}{\partial x_i} \right] + \tilde{Q}$$

$$q_i^{sgs} = \tilde{u}_i \tilde{C} - \tilde{u}_i \tilde{C}$$

SUBGRID-SCALE (SGS) FLUX

- Represents the effect of subgrid-scales (eddies smaller than Δ)
- Closure Problem
- Need a model (**SGS Model**)
- **Q: What could be a reasonable model?**
- Note:

$$q_i^{sgs} < \overline{u'_i C'}$$

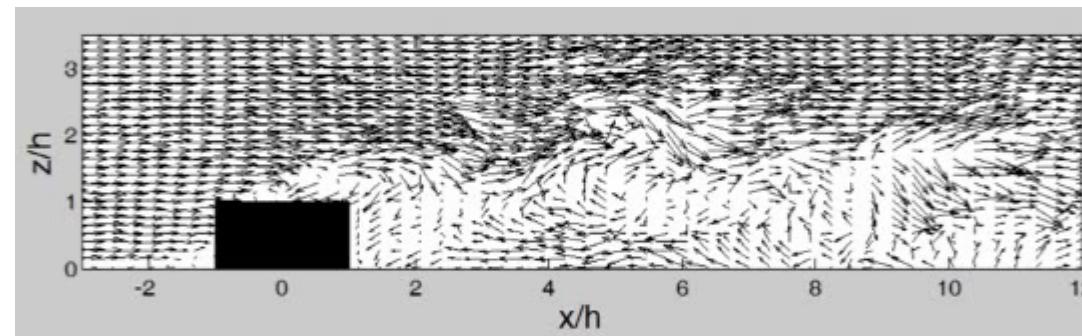
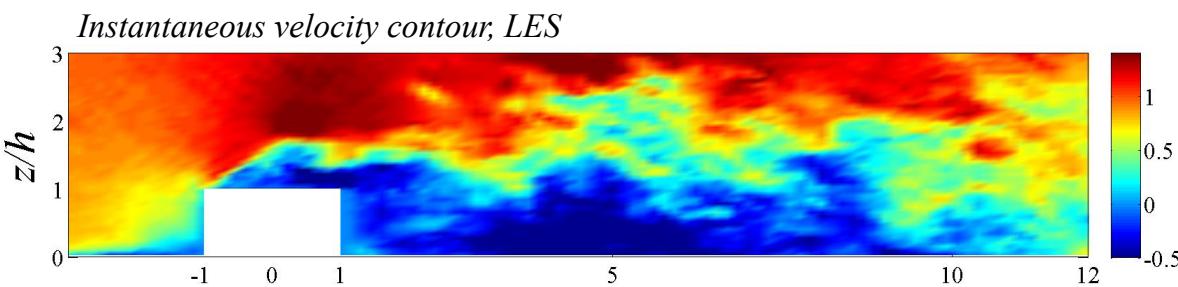
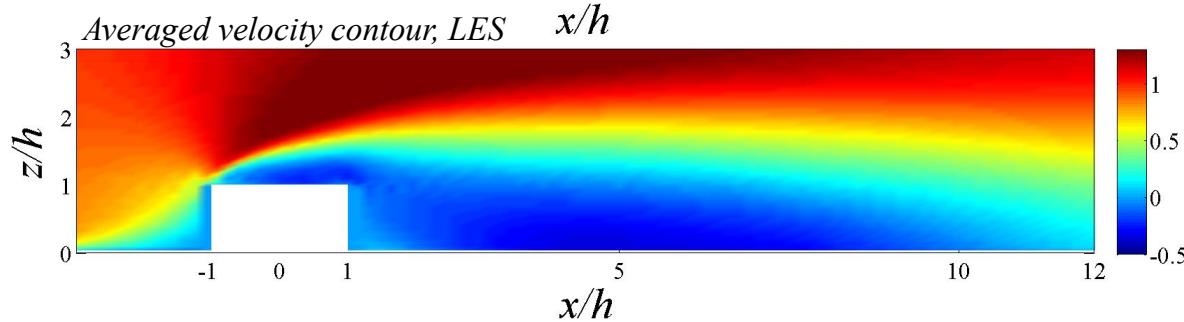
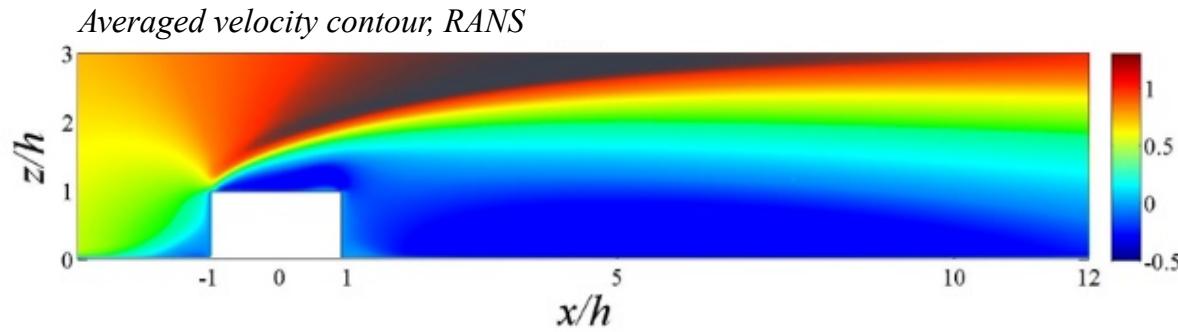
Represents the effect of
only subgrid scale
(SGS) eddies (smaller
than Δ)

* Standard SGS model:
Eddy-diffusion model

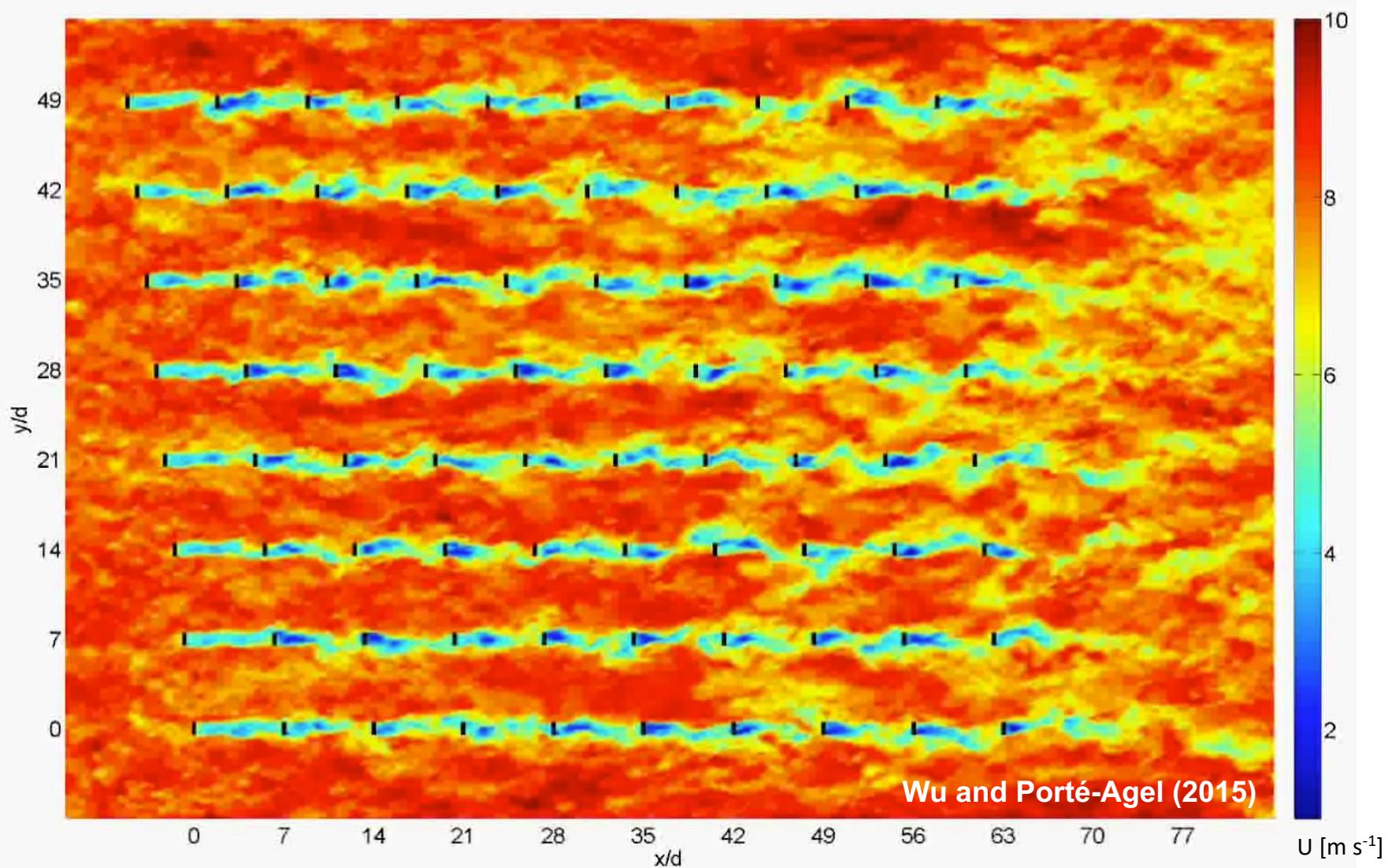
$$q_i^{sgs} = -D_{sgs} \frac{\partial \tilde{C}}{\partial x_i}$$

Represents the effect of
ALL turbulent eddies

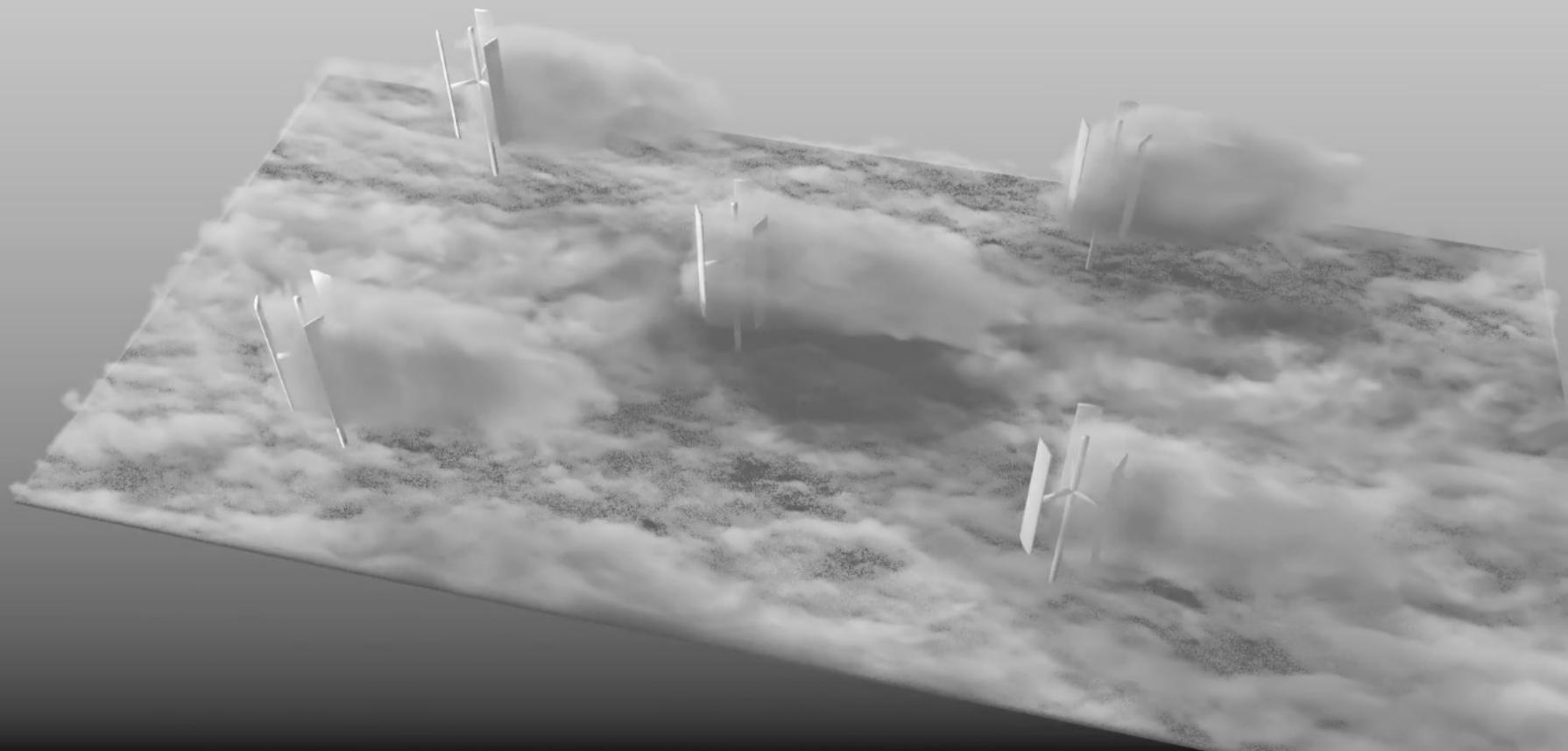
LES example: Flow around a building



LES of flow inside a wind farm



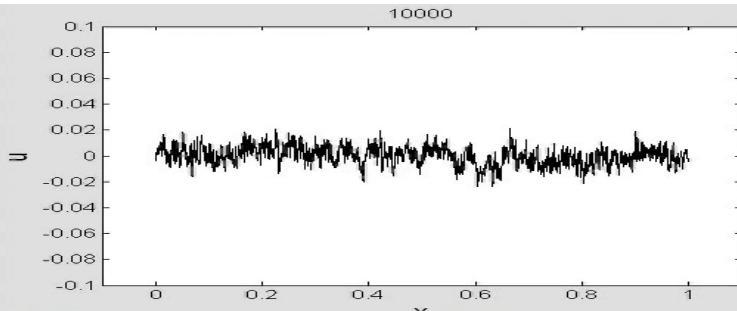
LES example: Flow inside a wind farm or vertical-axis wind turbines



<https://youtu.be/ferySLHLocw>

1-D Burgers Equation (a simple example – similar to turbulence)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} + F$$



Direct Numerical Simulation - 1D Burgers equation

All scales are resolved

$$L_I/L_k = 8192$$

1-D Burgers Equation (a simple example – similar to turbulence)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2} + F$$

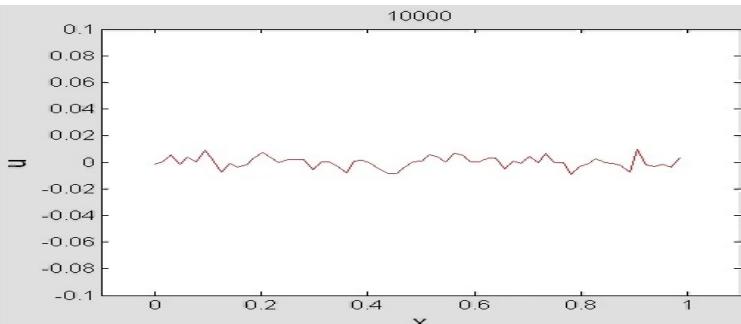


Direct Numerical Simulation - 1D Burgers equation

All scales are resolved

$$L_I/L_k = 8192$$

Coarser resolution without subgrid model: Wrong statistics



Coarse resolution - 1D Burgers equation

NO subgrid model

$$L_I/L_k = 64$$

Question: Why without SGS model there is an unrealistic accumulation of energy?