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Computational Fluid Dynamics (CFD)

I. Approaches for simulating turbulent flows
Il. Direct Numerical Simulation (DNS)
lll. RANS and the closure problem

IV. Large-Eddy Simulation (LES)

Reference: Lecture + Handout (handout optional)



Motivation

» For turbulent flows, we know the transport equations (advection-
diffusion equations in 3D), but there is no analytical solution

* In computational fluid dynamics (CFD), equations are
discretized (in time and space) and solved numerically (with
computers)

» To resolve all eddy motions (from integral scale to Kolmogorov
scale), one needs a resolution as fine as the Kolmogorov
scale in 3-D [this is called Direct Numerical Simulation].

Question: Is this possible for all turbulent flows?




Governing Transport (Advection-Diffusion) Equations

Incompressible flow

i — () Mass conservation (continuity)
OX,
ou, O lop © Ou, Ou, :
L+ (uiu ) =—— + 1% + + F Momentum conservation
ot Ox ; / yo, le. Ox Ox ; axl. (Navier-Stokes equations)
Advection-diffusion equation
aC J (u C) J D a_C Q for conservation of Scalars (e.g.
at 8x 8x ax pollutant, temperature)

Note: F;is any external forcing;
Q is any source or sink of scalar.

 STEP 1: Meshing
Steps in CFD: | « STEP 2: Discretize equations
 STEP 3: Solve discretized equations




General Strategy in CFD (generally in numerical methods)

The general strategy consists of replacing a continuous
domain with a discrete domain using a grid

Continuous Domain Discrete Domain
D e o
D<x<1 X=X, Xy, oo Xy
e
Grid point

O e o dely Coupled algebraic egs. in
conditions in continuous

variables discrete variables

Variables are only defined
at the grid points



Define a mesh (points where equations are solved)

Example of 2-D computational mesh to simulate flow around an airfoil

(more details in FLUENT project)

Step 1




Step 2: Discretize the governing equations

A very simple example: 1-D equation
du
. =0 Osa<l adi=I1

dx

In this case, using a mesh with only 4 grid points:

EAX=1/3ﬂ
(du)
— | +u; =0
dx ]

X1= X2=1 /3 X3=2/3 x4=1
Discretizing each term of the governing partial differential equation using
for example a finite difference approximation:

du W; — U;_ In this case, first order
( ) =% 1 HO(Ax)

dx | . Ar approximation

/4

Discretization Error



Spatial and temporal discretization of the equations

NUMERICAL ERROR (due to discretization) GRID CONVERGENCE
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O Numerical solution © N=4
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Effect of Grid Refinement (resolution): The finer the grid (smaller Ax), the smaller the

discretization (numerical) error. g



Approaches for simulation/modeling of turbulent flows

* DNS (Direct Numerical Simulation)
* RANS (Reynolds-Averaged Navier Stokes)
e LES (Large-Eddy Simulation)

Range of turbulence scales

~ km ~ mm
(in ABL) (in ABL)
RESOLVED
DNS < >
RANS  <memreerrermmeeeessssssmenneeeI@AElEA >
(closure)
RESOLVED Modeled
.............................)
LES < (closure)



Direct Numerical Simulation (DNS)

Range of turbulence scales

~ km ~ mm
(in ABL) (in ABL)
RESOLVED
DNS < >

» All the eddy motions are resolved in 3D (from the integral scale to the
Kolmogorov scale). No need for turbulence model.

« To achieve that, the governing (advection-diffusion) equations are
discretized in space (using resolution Ax, Ay, Az) and time (using resolution
At) such that:

(a) The total computational domain is large enough to capture the
largest eddies (need to simulate all the eddy sizes).

(b) Resolution A is FINE ENOUGH to capture the smallest eddy motions,



Direct Numerical Simulation (DNS): Example

DNS of the turbulent flow around a square cylinder at Re=22000
(Number of grid points: 325x1(09)

https://www.youtube.com/watch?v=c8zKWaxohng




Direct Numerical Simulation (DNS): Example

DNS of a turbulent hydraulic jump

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/direct-numerical-simulation-of-a-turbulent-hydraulic-jump-
turbulence-statistics-and-air-entrainment/84800BF335F44F8A13EE5C648CDC388D#fndtn-supplementary-materials
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Integral
scale

<

Range of flow scales

<«

L~1km
(in ABL)

a Pl
Oz

O

Energy production

—»

(Inertial effects)

»
»

O OO

(Energy cascade)

Kolmogorov
scale

L,~1mm
(in ABL)

* Full resolution (Direct Numerical Simulation):

How many grid points
are required for ABL

simulations?

v

3
(ij - Re9/4
LK

- 1020

T

Energy dissipation

(Viscous effects)

Atmospheric BL: Re~108-10°




Computational Resources

* Direct Numerical Simulation is IMPOSSIBLE for many high-Re flows

* Example: ABL: (needs Ax~1 mm ; At~ 1 ms)

= It requires Re%4 ~ 1020 grid points!!
[Using best available supercomputers: maximum number of grid points in DNS ~ 10!2]

» JFM papers T T T T
Sullivan & Patton (201 1)
© Voller & Porte-Agel data
m Stevens et al. (2014)
— Moore’s law: N ~ 2Y/2

JEM papers fit: N ~ 2Y/3
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If Moore’s law on computer power [doubling every 18 months] holds:

DNS of atmospheric turbulence over a 10 km x 10 km x 1 km domain may be
possible in ~ year 2080.



Reynolds-Averaged Navier Stokes (RANS) Approach

Range of turbulence scales

~ km ~ mm
(in ABL) (in ABL)
RANS  <merreesresmmmeeessssssmmemneI@AElOd >
(closure)

o RANS: It solves ‘Reynolds-Averaged Navier Stokes’ equations.
> When the flow is ‘steady’( 9C/ot=0 ) = average=time average.

o URANS (Unsteady RANS): It also solves the RANS equations,
but including the time evolution of the averaged quantities (with
time derivative).

> Question: What type of averaging allows to do that?
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RANS (Reynolds-Averaged Navier Stokes)

Incompressible flow

du, Turbulent

dx a (Reynolds) stress

oL 0 10p 97, 9 Ju ou, _ ‘ _ 7
L4 (ﬁ.ﬁ.):—— P_ZTiy V| =+ | |+F B by U,

dt  dx ' pox, ox, oOx, dx,  ox,

Turbulent flux
oC 0, -~ dq. o oC | ~ —
—+—(aC)=- %+ %\ p & 140 — |q,=ulC
ot dx ' dx, ox,\ "o,

Effect of turbulent
fluctuations on the average
fields

CLOSURE PROBLEM: Fundamental problem in turbulence

(equations are not closed: more unknowns than equations)



Reynolds-Averaged Navier Stokes (RANS) Approach

Types of averages:

Reynolds
decomposition:

~N

o Time Averaging

o S

Il

A S

+ +
<

C’ o Ensemble Averaging
(over different realizations

of the same ‘experiment’)
Note: for turbulent stationary flows,

time averages are equal to ensemble averages

Example of time averaging
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Turbulence models: Eddy-viscosity/diffusivity models

NOTE: Inlaminar flows, energy dissipation and transport of mass, momentum and
energy normal to the streamlines is mediated by molecular viscosity/diffusivity

EFFECT of TURBULENCE can be represented as an INCREASED VISCOSITY/DIFFUSIVITY

EDDY-VISCOSITY/DIFFUSIVITY MODEL

- OE
u § :_Dt"fa_f

TURBULENT FLUX: sought to mimic the molecular gradient diffusion process

Note: Although the eddy viscosity hypothesis is NOT CORRECT in detail, it is easy
to implement and can provide REASONABLY GOOD RESULTS

CHALLENGE: How to specify the eddy viscosity/diffusivity D; ?



Turbulence models: Eddy-viscosity/diffusivity models

u ’5' ——D ﬁ D; has units of m%s
: > 9x
i
u,w’ =—D % Eddy-viscosity model (for momentum); Eddy viscosity: | D =V
t,mom aZ t,mom t
00
W'Q' = — Dt ) Eddy-diffusivity model (for scalars like temperature or pollutants)
A " Oz
A

Analogy with molecular viscosity/diffusivity

D, ~0.1-2x10°m’s™

t,mo

v~1.5x10"m%s™"

* Reynolds stress modeled like viscous stress
* Turbulence more effective than viscosity at mixing: D >>V

t,mom

Reynolds analogy (Pri=1)

l

D. | Eddy-diffusivity D =" oD
t,0 t,0 Pr t,mom




Example:

Using a combination of a length scale (/,.,.) and a velocity scale (Ug.,)

XU .
t ,mom scale “scale

CHALLENGE: How to specify the scales /., and uUgcze ?

> In channel flow: See previous lecture

P~
scale

»|n boundary layers:

P~

P~
u
scale *

k = von Karman constant (k=0.4)

»In complex flows: CHALLENGING

Note: More on RANS turbulence models during Fluent Project sessions



A common RANS turbulence model: the k-¢ model

(Jones and Launder, 1972)

X U .
t,mom. scale “scale
* It requires solving two additional equations:
(1) One p.d.e. for TKE: k Note:[ k |= LT velocity scale
Dk 9 [pes Ok ou; 8U;\ 2 . .18U;  pk¥2 ~ [ .
Dt 0Oz; lak Bmil F [m (c'htj g 61?1-) T pol]k] ox; _\CD | ) Z/tscale 2k
diff:l;ion prod:ction dissi;):ltion
to obtain velocity scale
length scale
(2) One p.d.e. for energy dissipation & Nore:|e|=LT" 1
~ k —>
De 0 [pes Oe oU;  0U; 2 aU; pe scae
. - bt v A e CR b I g E
Dt Oz [06 613] it [“t (B:L’j o 8:1:i) 3 P % ] or; ol 9p
diff::rsion prod::ction dissipation v
to obtain length scale
k2 . .. . . . . U
Alsoj u, = C, e (Note: Momentum diffusivity = kinematic viscosity: D; ,, = v = ;‘)
Model coefficients (obtained by data fitting for several flows):| C,, = 0.09 or = 1.00 o = 1.30 Cie =144 Cs = 1.92




RANS example: flow over complex terrain

Mean velocity and streamlines
(Red: high; Blue: low)

Turbulence Kinetic
Energy k (T.K.E.)

"'/ (Red: high; Blue: low)




Reynolds-Averaged Navier Stokes (RANS): Example

Simulated mean wind velocity vectors (color represents magnitude) in Manhattan (New York)

(Red: high; Blue: low)



Approaches for simulation/modeling of turbulent flows

* DNS (Direct Numerical Simulation)
* RANS (Reynolds-Averaged Navier Stokes)
e LES (Large-Eddy Simulation)

Range of turbulence scales

~ km ~ mm
(in ABL) (in ABL)
RESOLVED
DNS < >
RANS  <memreerrermmeeeessssssmenneeeI@AElEA >
(closure)
RESOLVED Modeled
.............................)
LES < (closure)
A
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Large-Eddy Simulation (LES)

* DNS (Direct Numerical Simulation)
U, =, +1U,

* LES (Large-Eddy Simulation)

~ \ Y / ! f
Note: In LES, the ‘tilde’ denotes a filtering i"; (-‘ ) = j G ( X, A ) I"; ('\ ) dx
operation (a local spatial average in 3D)
9
8 | ’ / )
7 | M [
b M ! [ bk [ 1] '
. 6“ 1!- il i " T R A ‘i‘ i il ‘H’ ‘F'
®» 5 Lb| |{ !l \ A "ﬁ“t v
£ ' Wel ¥ i
- 4 vy
=]
3 _ ~
2 U
1 -
0 I I V- I I I I I I I
0 10 20 30 40 50 60 70 80 90 100
time (s)




Large-Eddy Simulation (LES)

Resolved scales Subgrid scales (SGS)
L,~1km A L ~1 mm
(filter size ~10 m)
Large Eddy Simulation of Atmospheric Boundary Layer
Temperature Field
LES DNS
[ /
] e b o &

- o i_A \.
= 7 o
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J ~ N
@\ 9) \5) \\A e / f@ ~o N »

Temperature (°C)
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LES (filtered) transport equations

»

ol
OX;
g @ips 1 0p Or,

- (u,uj):——f)—ﬂ L+ F, g
gf ok ox. Ox.

J l J

oC 0 ,_ = g%  ~

+ (“,-C):_ el +0
Jdt  ox, ox,

(Derivation in next slide)

SGS stress

Y

T = Ul ; — Ul

~/

SGS flux

sgs

q;

~——

:uC—QC

1

Effect of sub-grid scales on
the resolved (filtered) scales

EXAMPLES of LES: All movies shown of ABL simulations in next lectures.



LES (filtered) scalar transport equation: derivation

Starting with advection-diffusion equation: a_C + i(u C) — i D a_C + Q
ot axl_ i axi m axi [Note: Q is a source/sink term]
Applying LES filtering operation (of size A): a_C i(/\(/j) _ i D a_C n Q
dt  ox, \ ' dx,| "ox,
C 9 (~= .~ _~ 0 oC | ~
Adding and substracting the same term: — —(ul.C —uC+ uiC) =—|D, —|+0
Jdt  ox, ox, ox,
| oC 0 .~ 0 (—~—~ .=\ 0 oC | =
Rearranging: |+ —(i7,C') = ——(ul.C - ul.C) +=—| D = |+0
Jdt o, ox, ox, ox,
» Represents the effect of subgrid-scales
(eddies smaller than A)
A A~ A > Closure Problem
A — SUBGRID-SCALE (SGS) FLUX
|qi u,C ”icl > Need a model (SGS Model)
> Q: What could be a reasonable model?*
» Note:
g <u'C’
* Standard SGS model: sgs E
Eddy-diffusion model 9; 8 Ix Represents-the effect of Represents the effect of
! only subgrid scale ALL turbulent eddies

(SGS) eddies (smaller
than A)



LES example: Flow around a building
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LES of flow inside a wind farm

" - -
. Wu and Porté-Agel (2015)‘

0 7 14 21 28 35x/d 42 49 56 83 70 [ U[ms?]

Simulation with the highly-parallelized WiRE LES code using 1000 CPU-hours (100 processors, 10 hours)



LES example: Flow inside a wind farm or vertical-axis wind turbines

https://youtu.be/ferySLHLocw



1-D Burgers Equation (a simple example — similar to turbulence)

ou

ou

Ot

+u

Oox

2
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Direct Numerical Simulation - 1D Burgers equation

All scales are resolved

LI/Lk=8192




1-D Burgers Equation (a simple example — similar to turbulence)

2
ou ou ou
tu—=v—_—+F
Ot Oox ox
s ] Direct Numerical Simulation - 1D Burgers equation
- WWWMWMWM ] All scales are resolved
oonl ] L./L,=8192

Coarser resolution without subgrid model: Wrong statistics

10000
O.1

0.08 m
oos| . Coarse resolution - 1D Burgers equation
0.04 - T
0.0Z2 Al X
B AN NO subgrid model
-0.02 | iy
-0.04 |

-0.086 - E LI/Lk=64

-0.08 -

-0.1

Question: Why without SGS model there is an unrealistic accumulation of energy?



