

Memento

Conversions

- $1\text{kWh} = 1000 \text{ W} \times 1 \text{ h} = 3'600'000 \text{ J}$
- 1 Barrel of oil $\simeq 159$ liters of oil
- 1 BOE $\simeq 6.1 \text{ GJ} \simeq 1.7 \text{ MWh}$
- 1 TOE $\simeq 41.9 \text{ GJ} \simeq 11'630 \text{ kWh}$
- 1 BTU $\simeq 1055 \text{ J} \simeq 0.293 \text{ Wh}$
- Energy of 1 liter of oil \simeq Energy of 1m^3 of natural gas $\simeq 11 \text{ kWh}$.
Energy of 1kg of coal $\simeq 8 \text{ kWh}$
- Burning 1 liter of oil $\rightarrow 2.3 \text{ kg of CO}_2$. Burning 1m^3 of gas $\rightarrow 1.9 \text{ kg CO}_2$. Burning 1kg of coal $\rightarrow 2.6 \text{ kg of CO}_2$.

World Energy consumption (ExaJoules)

Some orders of magnitude:

- Annual solar energy reaching earth's surface: $1'485'000 \text{ PWh} = 5.346 \cdot 10^{24} \text{ J}$
- World population today: 8.2 billion people, including 4.8 billion Asian
- World annual primary energy consumption: 172 PWh or 172'000 TWh, or 619.2 EJ.
- World current yearly CO₂ emission mass: 40 GT (Gigatons), and 57 GT with CO₂equivalent
- Daily world oil demand: 103 million barrels or 167 TWh
- Per capita power consumption (permanent): from 100 Watt (Burundi) to $> 10'000 \text{ W}$ (e.g., USA, UAE)
- Per capita annual CO₂ emission: 5 to 15 tons for industrialized countries
- CO₂ emission for transport, heating and electricity generation: 70% of total CO₂ emission
- Swiss Per capita annual CO₂ emission: 4.5 tons (Production based), 14 tons (consumption based)
- Swiss annual electricity consumption: 60 TWh, $\sim 25\%$ of the final consumption (rest mostly fossil)
- Efficiency of nuclear, coal, oil power plants: Typical $\sim 30\text{-}33\%$, supercritical coal 40-45% (rare)
- Gas power plant efficiency: $\sim 40\text{-}45\%$ up to 60% for CC power plant (rare)
- Other emissions "equivalent CO₂": $\sim 11\text{-}15 \text{ GT}$ (Methane + Nitrous oxides + other gases)
- Price of oil in 2024: $\simeq 60\text{-}80 \text{ \$ / barrel}$
- Typical EU market gas price 2024: 30-40 \\$/MWh
- Typical coal price 2024: 90-120 \\$/ton
- Typical marginal kWh cost of burning coal: 3-4 cts/kWh without CO₂ tax
- LCOE of large solar or wind parks: 2-5 cts/kWh (n.b. offshore wind costs more)
- LCOE of electricity from new fossil plants: 5-10 cts/kWh (estimates) without CO₂ taxes
- Car Battery pack cost in 2025: $\sim 100 \text{ \$/kWh}$
- New Renewable electricity (outside hydro) produced in 2023: 4'700 TWh (2'304 wind, 1'629 solar, 767 other), around 10% of total electricity production (0 TWh in 1995). (Data from chart [Electricity production by source, World \(ourworldindata.org\)](#))
- Typical good CO₂ emission per capacity: 200gCO₂/W for wind turbines, 300g CO₂/W for solar panels

Definitions

- LCOE: The average net present cost of energy (electricity) generation for a generating plant over its lifetime (including construction, maintenance, operation, interest etc.). Calculated in \$Price\$/Energy.
- In BP reports, the electricity production from renewables translates into primary energy consumption multiplied by a factor of 1/0.41 (substitution method). This results in primary energy consumption showing over 80% fossil fuels share, including 27% coal.
- The Swiss energy statistics based on IEA or on the Swiss Federal office for energy apply a factor of 1/0.33 for Primary Nuclear energy and of 1 for non-thermal renewable sources (e.g., Hydro, wind, solar).
- The temperature around the globe since civilization development varied of $\pm 0.5^\circ\text{C}$ until 1900. Nowadays, business as usual scenarios lead to a rise of $+3.5$ to $+7^\circ\text{C}$ in temperature by the end of the century. With current emission rate, we have roughly 4 years left for the 1.5°C scenarios, and 21 years for the 2° scenarios.