
Tracking Odor Plumes in a Laminar Wind Field with Bio-inspired Algorithms

Thomas Lochmatter and Alcherio Martinoli

Distributed Intelligent Systems and Algorithms Laboratory (DISAL)
École Polytechnique Fédérale de Lausanne (EPFL)
thomas.lochmatter@epfl.ch, alcherio.martinoli@epfl.ch

Summary. We introduce a novel bio-inspired odor source localization algorithm (*surge-cast*) for environments with a main wind flow and compare it to two well-known algorithms. With all three algorithms, systematic experiments with real robots are carried out in a wind tunnel under laminar flow conditions. The algorithms are compared in terms of distance overhead when tracking the plume up to the source, but a variety of other experimentally measured results are provided as well. We conclude that the *surge-cast* algorithm yields significantly better performance than the *casting* algorithm, and slightly better performance than the *surge-spiral* algorithm.

1 Introduction

With the advances in robotics and chemicals sensor research in the last decade, odor sniffing robots have become an active research area. Notably the localization of odor sources would allow for very interesting robotic applications, such as search and rescue operations, safety and control operations on airports or industrial plants, and humanitarian demining [19] [4] [15] [7]. Many of these applications are time-critical, i. e. odor sources should be found as fast as possible. But as the structure of plumes in the air is intermittent in both time and space [20], tracking plumes is a challenging problem.

In recent work [14], we have shown through experiments with real robots that the *surge-spiral* algorithm [5] [6] [2] [3] is faster and more reliable than *casting* [11] [10] [21] [13] [12] [1] [9] in laminar wind flow. This result was insofar surprising, as the *casting* algorithm got much more attention by the research community up to date.

In this paper, we introduce a third algorithm (referred to as the *surge-cast* algorithm) which belongs to the same category of odor source localization algorithms as the two previous algorithms (*surge-spiral* and *casting*). All three algorithms are combinations of strategies used by silkworm moths, and therefore bio-inspired. Silkworm moths use the following plume tracking behaviors [17] [18]:

- **Upwind surge:** straight upwind movement as long as the moth is in the plume;

- **Casting:** counter-turning (zig-zagging) to reacquire the plume right after losing track of it;
- **Spiraling¹:** an irregular, spiral-like movement to reacquire the plume if casting did not succeed.

While the *casting* algorithm is directly derived by the second behavior, the *surge-spiral* algorithm is a combination of the first and the third behavior. The new *surge-cast* algorithm is a combination of upwind surge and casting, which is exactly the behavior of a moth that does not lose the plume completely. To our knowledge, such an algorithm has never been tested on real robots before.

We carried out systematic experiments with a real robot in a wind tunnel under laminar flow conditions, with the goal to compare these algorithms in terms of plume tracking performance. In this paper, we present and discuss these results.

Note that we only consider plume tracking (i. e. following the plume towards the source) and intentionally omit plume finding (i. e. randomized or systematic search until the plume is found) and source declaration (i. e. declaring that the source is in close vicinity). This allows us to make assertions about the plume tracking performances of the algorithms.

The remainder of this paper is structured as follows. In Section 2 we formally present the three algorithms discussed in this paper. The experimental setup and the robotic platform are introduced in Section 3. Finally, we discuss the results in Section 4 and conclude in Section 5.

2 Algorithms

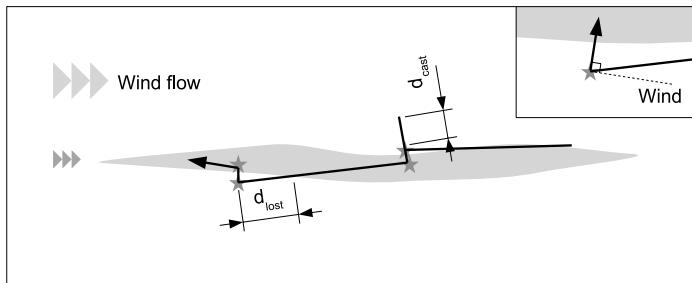
All three algorithms discussed in this paper are bio-inspired and a combination of upwind surge, casting, and spiraling [17]. The algorithms use only binary odor information, that is, they either *perceive the odor* or *do not perceive any odor*, but ignore different concentrations levels. Commonly, the measured concentration is thresholded to obtain this binary value, but more elaborate processing could be used as well.

Finally, all three algorithms need a wind sensor to measure the wind direction. As molecules are mainly transported by advection, this piece of information is very valuable, and – as we will show later – as important as the odor sensor. The wind speed is ignored.

Since we are only interested in the plume tracking behavior, the robot starts in the plume, and declares failure if it gets too far away from it. This allows us to rule out arena geometry effects, which could greatly influence the results (e. g., high variance introduced by randomized search techniques).

Similarly, source declaration is done by a supervisor (ideal source declaration) and therefore does not affect the results.² Experiments are considered successful if the robot has come in physical vicinity of the source.

¹ In [17] referred to as “irregular turning”.


² On the real robots, this is done using IR sensors detecting a specific colored patch on the floor. See Section 3 for further details on the setup.

2.1 The Surge-Cast Algorithm

The new algorithm we introduce here is a combination of upwind surge and cross-wind casting. It is similar to the surge-spiral algorithm (see below), with the spiral being replaced by cross-wind movement.

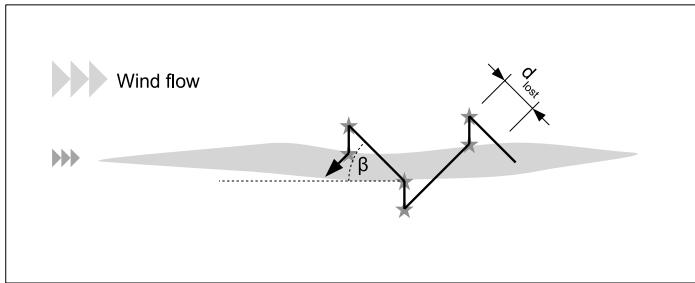
A robot in the plume moves straight upwind until it loses the plume for a distance d_{lost} . It then tries to reacquire the plume by moving cross-wind for a set distance (d_{cast}), first on one side and then on the other. To maximize the chances of hitting the plume in the first cross-wind movement, the robot measures the wind direction to estimate from which side it left the plume.

The wind direction is measured when the robot switches from upwind surge to casting and when it switches back to upwind surge, as indicated in Figure 1.

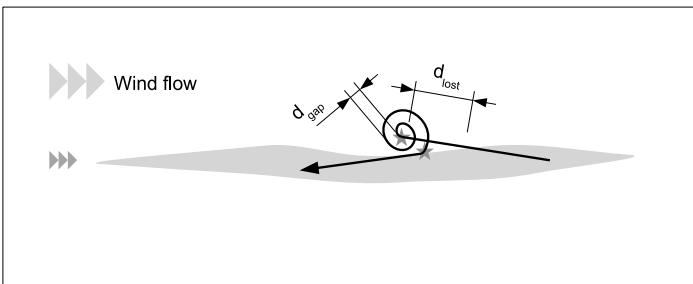
Fig. 1. Sketch of the surge-cast algorithm. The stars indicate where the wind direction is measured.

2.2 The Casting Algorithm

The casting algorithm is very similar the one described by Li et al. [11]. As shown in Figure 2, a robot in the plume moves upwind with an angle β until it is out of the plume for a certain distance, denoted d_{lost} . Once the plume is lost, the robot turns and moves crosswind until it hits an odor packet, and then moves upwind with angle β again.


The wind direction is measured each time the robot switches to plume reacquisition, and when it encounters the plume again.

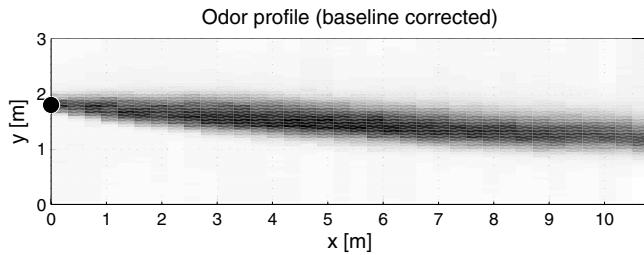
2.3 Surge-Spiral


The surge-spiral algorithm is similar to Hayes' algorithm presented in [5], except that here we focus exclusively on its use for plume tracking. Hence, we have a single spiral gap parameter.

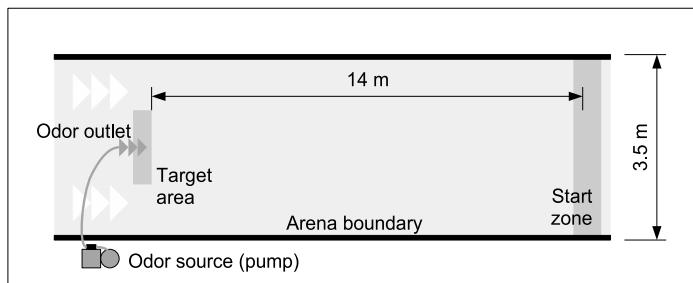
A robot in the plume moves straight upwind until it loses the plume for a distance d_{lost} . It then tries to reacquire the plume by moving along an Archimedes spiral with gap size d_{gap} . Unlike [5], we start our spiral in upwind direction, as drawn in Figure 3.

The wind direction is measured when the robot switches from upwind surge to spiraling, and when it switches back to upwind surge.

Fig. 2. Sketch of the casting algorithm. The stars indicate where the wind direction is measured.


Fig. 3. Sketch of the surge-spiral algorithm. The star indicates where the wind direction is measured.

3 Real Robot Experiments


3.1 Experimental Setup

The experiments were carried out in a 16 m long and 4 m wide wind tunnel. The setup was exactly the same as described in our previous paper [14], except that the arena was enlarged to approximately 15 m by 3.5 m. In the following paragraph, we briefly repeat the most important figures.

The wind field in the wind tunnel was laminar at roughly 1 m/s speed. The ethanol odor plume was therefore a straight line (see Figure 4), and the concentration peaks were slightly decreasing as the plume moves downwind. A constant amount of ethanol vapor was released by means of a pump. To reduce the turbulence created by the odor source, the pump was placed outside of the arena and connected with a tube to the source outlet. Nevertheless, the outlet created some turbulence right downwind the source, which sometimes disturbed the laminar wind flow in that area. The starting area was 14 meters downwind from the outlet, as depicted in Figure 5.

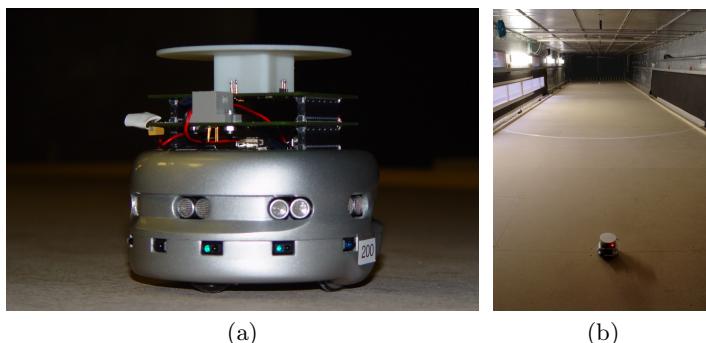

Fig. 4. Odor profile in the arena. Each measurement point is an average over about 20 seconds. The grid has a resolution of 30 cm in x-direction, and 5 cm in y-direction. The odor was measured at the height of the robot's odor sensor board using the traversing system of the wind tunnel.

Fig. 5. Schematic drawing of our arena (not to scale)

3.2 Robotic Platform

The robot used in the experiments was a Khepera III robot (K-Team SA, Switzerland) equipped with an odor sensor and a wind sensor board, as depicted in Figure 6 (a).

Fig. 6. (a) The Khepera III robot with the wind sensor and the odor sensor board. (b) Upwind view of the wind tunnel, with the robot in front and the odor source in the back.

The odor sensor was a MiCS-5521 volatile organic compound (VOC) sensor, which has a very fast response time (≈ 0.1 s). This sensor reacts to a wide range of organic compounds in the air, with a sensitivity to ethanol comparable to that of a human's nose (≈ 10 ppm). To take advantage of the sensors low response time, air was taken in and released with a small pump.

The wind sensor board was based on 4 thermistors placed around a star-shape obstacle. Once calibrated, a probabilistic model allowed the robot to infer the wind direction with an accuracy of roughly 10° .

3.3 Experiments

We ran 20 experiments for each of the following configurations:

	Algorithm	Parameter
A	Casting	$\beta = 10^\circ$
B	Casting	$\beta = 20^\circ$
C	Casting	$\beta = 30^\circ$
D	Surge-spiral	$d_{\text{gap}} = 0.58$ m
E	Surge-cast	$d_{\text{cast}} = 0.72$ m
F	Surge-cast	$d_{\text{cast}} = 0.43$ m
G	Surge-cast	$d_{\text{cast}} = 0.14$ m

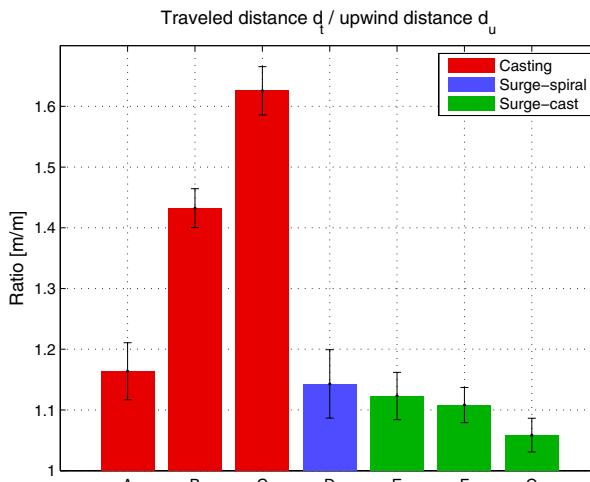
The forward speed of the robot (on straight lines) was approximately 10.6 cm/s and the plume lost distance was set to $d_{\text{lost}} = 40$ cm for all experiments. The plume threshold was determined before each run by measuring the response of the sensor to fresh air in the wind tunnel.

In each run, the robot was released in the odor at a position about 14.5 m downwind from the target area, and the corresponding algorithm was launched. If the robot reached the target area around the odor outlet (determined with the floor sensors), the run was considered successful. During the run, the trajectory (using odometry) and the odor concentration were recorded. Distance and upwind distance were derived from the trajectory, and the duration of each run was measured on a host computer.

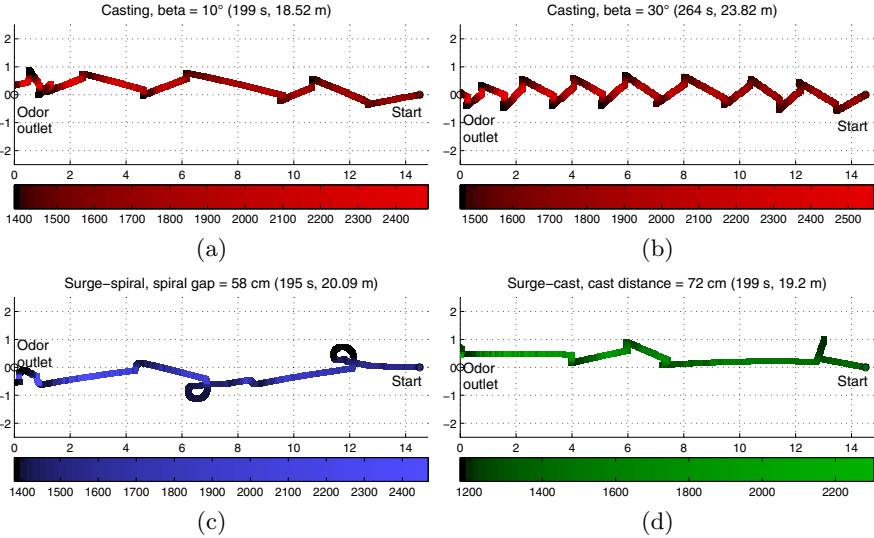
4 Results and Discussion

Table 1 shows the mean values of the data recorded during the experiments. Besides the success ratio, the most interesting of these values is the ratio between the traveled distance (d_t) and the upwind distance (d_u), which is plotted in Figure 7. This value indicates what distance the robot had to drive in order to come 1 m closer to the source, and is therefore bigger or equal to 1. Furthermore, a selection of runs of all three algorithms is plotted in Figure 8.

The surprisingly good result of configuration A should be taken with a grain of salt, since the wheel diameter difference produced some bending of the trajectory


Table 1. Mean values (except for the success ratio) of all configurations. The distance overhead is the traveled distance divided by the upwind distance ($\frac{d_t}{d_u}$).

Configuration	A	B	C	D	E	F	G
Success ratio	0.9	1	0.85	1	0.86364	0.9	0.4
Distance overhead [m/m]	1.1638	1.4323	1.6256	1.1429	1.1211	1.102	1.0585
Traveled distance [m]	17.08	21.08	23.90	16.65	16.36	16.08	15.33
Time to target [s]	179.9	231.2	263.3	161.2	165.4	162.1	152.0
Ratio in plume	78.8 %	63.3 %	58.1 %	82.0 %	83.4 %	84.7 %	86.9 %
Upwind speed [m/s]	0.083	0.064	0.056	0.091	0.089	0.090	0.096
Mean robot speed [m/s]	0.096	0.091	0.091	0.103	0.099	0.099	0.101


(see Figure 8) which worked in favor of the algorithm. Without this effect, one would expect the success rate of this configuration to be very low [14].

At first glance, it is clear that the surge-cast algorithm introduced here outperforms casting and is at least as good as the surge-spiral algorithm. The overlapping confidence intervals do not allow us to make a statistical judgment about the configurations D, E and F, but simple theoretical considerations allow us to say that surge-cast has the potential to find the source in shorter distance.

The current implementation of surge-cast is less robust than surge-spiral. This is mainly the case for configuration G, in which the cross-wind distance is clearly too small. However, one should bear in mind that the algorithm gives up after unsuccessful cross-wind movement, instead of switching to spiraling (as moths do) or increasing the cross-wind distance.

Fig. 7. Traveled distance d_t / upwind distance d_u (mean with 95 % confidence interval for normal data). Only successful runs were included in the analysis. Lower values are better.

Fig. 8. Sample trajectories with odor concentration shading. The bars below the plots indicate the translation from shading to concentration (measured in arbitrary units). Note that straight trajectories are bent because of a tiny difference (0.08 mm) in wheel diameter between the left and the right wheel. The plume threshold was set to 100 units above the baseline concentration value indicated on the left side of the colored bar. (a, b) Successful runs of the casting algorithm. (c) Successful, but unlucky run of the surge-spiral algorithm. (d) Successful, but unlucky run of the surge-cast algorithm.

5 Conclusion

As our experimental results reveal, odor source localization algorithms based on upwind surge (surge-cast or surge-spiral) are significantly faster than pure casting — at least in laminar wind flow. This is not surprising from a theoretical perspective, as the robot makes large advancements towards the source during upwind surge. Silkworm moths [17] and other animals use casting primarily for plume reacquisition rather than for plume tracking. (Casting as plume tracking is used by ants following a pheromone trail on the ground [17]. However, ants just need to sway their head left and right to scan the pheromone on the ground — the back part of the body goes almost straight.)

Among the plume reacquisition strategies, casting seems to be slightly faster, but less robust than spiraling. Even though the combination of casting and spiraling that moths are using [17] has not been tested in this paper, the available results suggest that this is a very efficient and robust strategy.

In future work, we will test the algorithms in turbulent flow and/or meandering plume conditions. In addition, we will introduce obstacles along the arena, both to generate turbulence and to hinder the robot from moving along a straight line up to the source.

Acknowledgments

This work was supported by the National Competence Center in Research on Mobile Information and Communication Systems NCCR-MICS, a center supported by the Swiss NSF under grant number 5005-67322.

References

1. Balkovsky, E., Shraiman, B.I.: Olfactory search at high reynolds number. *PNAS* 99(20), 12589–12593 (2002)
2. Berlanger, J.H., Willis, M.A.: Adaptive control of odor-guided locomotion: behavioral flexibility as an antidote to environmental unpredictability. *Adaptive Behavior* 4(3-4), 217–253 (1996)
3. Ferri, G., Caselli, E., Mattoli, V., Mondini, A., Mazzolai, B., Dario, P.: A biologically-inspired algorithm implemented on a new highly flexible multi-agent platform for gas source localization. In: *Proceedings of the IEEE RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB 2006)*. IEEE RAS-EMBS (February 2006)
4. Gage, D.W.: Many-robot MCM search systems. In: *Proceedings of the Autonomous Vehicles in Mine Countermeasures Symposium*, pp. 9.56–9.64 (April 1995)
5. Hayes, A.T., Martinoli, A., Goodman, R.M.: Distributed odor source localization. *IEEE Sensors Journal* 2(3), 260–271 (2002)
6. Hayes, A.T., Martinoli, A., Goodman, R.M.: Swarm robotic odor localization: Off-line optimization and validation with real robots. *Robotica* 21, 427–441 (2003)
7. Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J.: Plume-tracking robots: A new application of chemical sensors. *Biological Bulletin* (200), 222–226 (2001)
8. Jatmiko, W., Sekiyama, K., Fukuda, T.: A pso-based mobile robot for odor source localization in dynamic advection-diffusion with obstacles environment. *IEEE Computational Intelligence Magazine*, 37–51 (May 2007)
9. Justus, K.A., Cardé, R.T.: Flight behaviour of males of two moths, *cadra cautella* and *pectinophora gossypiella*, in homogeneous clouds of pheromone. *Physiological Entomology* 27(1), 67–75 (2002)
10. Kuenen, L.P.S., Rowe, H.C.: Cowpea weevil flights to a point source of female sex pheromone: analyses of flight tracks at three wind speeds. *Physiological Entomology* 31(2), 103 (2006)
11. Li, W., Farrell, J.A., Cardé, R.T.: Tracking of fluid-advedted odor plumes: Strategies inspired by insect orientation to pheromone. *Adaptive Behavior* 9(3-4), 143–170 (2001)
12. Li, W., Farrell, J.A., Pang, S., Arrieta, R.M.: Moth-inspired chemical plume tracing on an autonomous underwater vehicle. *IEEE Transactions on Robotics* 22(2), 292–307 (2006)
13. Lilienthal, A.J., Reiman, D., Zell, A.: Gas source tracing with a mobile robot using an adapted moth strategy. In: *Autonome Mobile Systeme (AMS)*, Stuttgart, Germany, December 2003. *Fachgespräch*, vol. 18, pp. 150–160. GDI (2003)
14. Lochmatter, T., Raemy, X., Matthey, L., Indra, S., Martinoli, A.: A comparison of casting and spiraling algorithms for odor source localization in laminar flow. In: *Proceedings of the 2008 IEEE International Conference on Robotics and Automation (ICRA 2008)*, pp. 1138–1143. IEEE, Los Alamitos (2008)

15. Long, M., Gage, A., Murphy, R., Valavanis, K.: Application of the distributed field robot architecture to a simulated demining task. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 3193–3200. IEEE, Los Alamitos (2005)
16. Marques, L., Nunes, U., de Almeida, A.T.: Particle swarm-based olfactory guided search. *Autonomous Robots* 20(3), 277–287 (2006)
17. Andrew Russell, R.: Odour Detection by Mobile Robots. World Scientific Series in Robotics and Intelligent Systems, vol. 22. World Scientific Publishing Company, Singapore (1999)
18. Ryohei, K., Naoko, S., Tatsuaki, S.: Self-generated zigzag turning of bombyx mori males during pheromone-mediated upwind walking. *Zoological science* 9(3), 515–527 (1992)
19. Settles, G.S.: Sniffers: Fluid-dynamic sampling for olfactory trace detection in nature and homeland security—the 2004 freeman scholar lecture. *Journal of Fluids Engineering, Transactions of the ASME* 127, 189–218 (2005)
20. Vergassola, M., Villermaux, E., Shraiman, B.I.: ‘Infotaxis’ as a strategy for searching without gradients. *Nature* 445, 406–409 (2007)
21. Webb, B., Harrison, R.R., Willis, M.A.: Sensorimotor control of navigation in arthropod and artificial systems. *Arthropod Structure and Development* 33, 301–329 (2004)