5 Mobile Robot Localization

5.1 Introduction

Navigation is one of the most challenging competences required of a mobile robot. Success
in navigation requires success at the four building blocks of navigation: perception, the
robot must interpret its sensors to extract meaningful data; localization, the robot must
determine its position in the environment (figure 5.1); cognition, the robot must decide how
to act to achieve its goals; and motion control, the robot must modulate its motor outputs to
achieve the desired trajectory.

Of these four components (figure 5.2), localization has received the greatest research
attention in the past decade and, as a result, significant advances have been made on this
front. In this chapter, we explore the successful localization methodologies of recent years.
First, section 5.2 describes how sensor and effector uncertainty is responsible for the diffi-
culties of localization. Then, section 5.3 describes two extreme approaches to dealing with
the challenge of robot localization: avoiding localization altogether, and performing
explicit map-based localization. The remainder of the chapter discusses the question of rep-
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Figure 5.1
Where am 1?
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Figure 5.2
General schematic for mobile robot localization.

resentation, then presents case studies of successful localization systems using a variety of
representations and techniques to achieve mobile robot localization competence.

5.2 The Challenge of Localization: Noise and Aliasing

If one could attach an accurate GPS (global positioning system) sensor to a mobile robot,
much of the localization problem would be obviated. The GPS would inform the robot of
its exact position, indoors and outdoors, so that the answer to the question, “Where am 1?7,
would always be immediately available. Unfortunately, such a sensor is not currently prac-
tical. The existing GPS network provides accuracy to within several meters, which is unac-
ceptable for localizing human-scale mobile robots as well as miniature mobile robots such
as desk robots and the body-navigating nanorobots of the future. Furthermore, GPS tech-
nologies cannot function indoors or in obstructed areas and are thus limited in their work-
space.

But, looking beyond the limitations of GPS, localization implies more than knowing
one’s absolute position in the Earth’s reference frame. Consider a robot that is interacting
with humans. This robot may need to identify its absolute position, but its relative position
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with respect to target humans is equally important. Its localization task can include identi-
fying humans using its sensor array, then computing its relative position to the humans.
Furthermore, during the cognition step a robot will select a strategy for achieving its goals.
If it intends to reach a particular location, then localization may not be enough. The robot
may need to acquire or build an environmental model, a map, that aids it in planning a path
to the goal. Once again, localization means more than simply determining an absolute pose
in space; it means building a map, then identifying the robot’s position relative to that map.

Clearly, the robot’s sensors and effectors play an integral role in all the above forms of
localization. It is because of the inaccuracy and incompleteness of these sensors and effec-
tors that localization poses difficult challenges. This section identifies important aspects of
this sensor and effector suboptimality.

5.2.1 Sensor noise

Sensors are the fundamental robot input for the process of perception, and therefore the
degree to which sensors can discriminate the world state is critical. Sensor noise induces a
limitation on the consistency of sensor readings in the same environmental state and, there-
fore, on the number of useful bits available from each sensor reading. Often, the source of
sensor noise problems is that some environmental features are not captured by the robot’s
representation and are thus overlooked.

For example, a vision system used for indoor navigation in an office building may use
the color values detected by its color CCD camera. When the sun is hidden by clouds, the
illumination of the building’s interior changes because of the windows throughout the
building. As a result, hue values are not constant. The color CCD appears noisy from the
robot’s perspective as if subject to random error, and the hue values obtained from the CCD
camera will be unusable, unless the robot is able to note the position of the sun and clouds
in its representation.

Ilumination dependence is only one example of the apparent noise in a vision-based
sensor system. Picture jitter, signal gain, blooming, and blurring are all additional sources
of noise, potentially reducing the useful content of a color video image.

Consider the noise level (i.e., apparent random error) of ultrasonic range-measuring sen-
sors (e.g., sonars) as discussed in section 4.1.2.3. When a sonar transducer emits sound
toward a relatively smooth and angled surface, much of the signal will coherently reflect
away, failing to generate a return echo. Depending on the material characteristics, a small
amount of energy may return nonetheless. When this level is close to the gain threshold of
the sonar sensor, then the sonar will, at times, succeed and, at other times, fail to detect the
object. From the robot’s perspective, a virtually unchanged environmental state will result
in two different possible sonar readings: one short and one long.

The poor signal-to-noise ratio of a sonar sensor is further confounded by interference
between multiple sonar emitters. Often, research robots have between twelve and forty-



184 Chapter 5

eight sonars on a single platform. In acoustically reflective environments, multipath inter-
ference is possible between the sonar emissions of one transducer and the echo detection
circuitry of another transducer. The result can be dramatically large errors (i.e., underesti-
mation) in ranging values due to a set of coincidental angles. Such errors occur rarely, less
than 1% of the time, and are virtually random from the robot’s perspective.

In conclusion, sensor noise reduces the useful information content of sensor readings.
Clearly, the solution is to take multiple readings into account, employing temporal fusion
or multisensor fusion to increase the overall information content of the robot’s inputs.

5.2.2 Sensor aliasing

A second shortcoming of mobile robot sensors causes them to yield little information con-
tent, further exacerbating the problem of perception and, thus, localization. The problem,
known as sensor aliasing, is a phenomenon that humans rarely encounter. The human sen-
sory system, particularly the visual system, tends to receive unique inputs in each unique
local state. In other words, every different place looks different. The power of this unique
mapping is only apparent when one considers situations where this fails to hold. Consider
moving through an unfamiliar building that is completely dark. When the visual system
sees only black, one’s localization system quickly degrades. Another useful example is that
of a human-sized maze made from tall hedges. Such mazes have been created for centuries,
and humans find them extremely difficult to solve without landmarks or clues because,
without visual uniqueness, human localization competence degrades rapidly.

In robots, the nonuniqueness of sensor readings, or sensor aliasing, is the norm and not
the exception. Consider a narrow-beam rangefinder such as an ultrasonic or infrared
rangefinder. This sensor provides range information in a single direction without any addi-
tional data regarding material composition such as color, texture, and hardness. Even for a
robot with several such sensors in an array, there are a variety of environmental states that
would trigger the same sensor values across the array. Formally, there is a many-to-one
mapping from environmental states to the robot’s perceptual inputs. Thus, the robot’s per-
cepts cannot distinguish from among these many states. A classic problem with sonar-
based robots involves distinguishing between humans and inanimate objects in an indoor
setting. When facing an apparent obstacle in front of itself, should the robot say “Excuse
me” because the obstacle may be a moving human, or should the robot plan a path around
the object because it may be a cardboard box? With sonar alone, these states are aliased and
differentiation is impossible.

The problem posed to navigation because of sensor aliasing is that, even with noise-free
sensors, the amount of information is generally insufficient to identify the robot’s position
from a single-percept reading. Thus techniques must be employed by the robot programmer
that base the robot’s localization on a series of readings and, thus, sufficient information to
recover the robot’s position over time.





