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5.2.3 Effector noise

The challenges of localization do not lie with sensor technologies alone. Just as robot sen-
sors are noisy, limiting the information content of the signal, so robot effectors are also
noisy. In particular, a single action taken by a mobile robot may have several different pos-
sible results, even though from the robot’s point of view the initial state before the action
was taken is well known.

In short, mobile robot effectors introduce uncertainty about future state. Therefore the
simple act of moving tends to increase the uncertainty of a mobile robot. There are, of
course, exceptions. Using cognition, the motion can be carefully planned so as to minimize
this effect, and indeed sometimes to actually result in more certainty. Furthermore, when
the robot’s actions are taken in concert with careful interpretation of sensory feedback, it
can compensate for the uncertainty introduced by noisy actions using the information pro-
vided by the sensors.

First, however, it is important to understand the precise nature of the effector noise that
impacts mobile robots. It is important to note that, from the robot’s point of view, this error
in motion is viewed as an error in odometry, or the robot’s inability to estimate its own posi-
tion over time using knowledge of its kinematics and dynamics. The true source of error
generally lies in an incomplete model of the environment. For instance, the robot does not
model the fact that the floor may be sloped, the wheels may slip, and a human may push
the robot. All of these unmodeled sources of error result in inaccuracy between the physical
motion of the robot, the intended motion of the robot, and the proprioceptive sensor esti-
mates of motion.

In odometry (wheel sensors only) and dead reckoning (also heading sensors) the posi-
tion update is based on proprioceptive sensors. The movement of the robot, sensed with
wheel encoders or heading sensors or both, is integrated to compute position. Because the
sensor measurement errors are integrated, the position error accumulates over time. Thus
the position has to be updated from time to time by other localization mechanisms. Other-
wise the robot is not able to maintain a meaningful position estimate in the long run.

In the following we concentrate on odometry based on the wheel sensor readings of a
differential-drive robot only (see also [4, 57, 58]). Using additional heading sensors (e.g.,
gyroscope) can help to reduce the cumulative errors, but the main problems remain the
same.

There are many sources of odometric error, from environmental factors to resolution:

* Limited resolution during integration (time increments, measurement resolution, etc.);

* Misalignment of the wheels (deterministic);

+ Uncertainty in the wheel diameter and in particular unequal wheel diameter (determin-
istic);

* Variation in the contact point of the wheel;
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* Unequal floor contact (slipping, nonplanar surface, etc.).

Some of the errors might be deterministic (systematic), thus they can be eliminated by
proper calibration of the system. However, there are still a number of nondeterministic
(random) errors which remain, leading to uncertainties in position estimation over time.
From a geometric point of view one can classify the errors into three types:

1. Range error: integrated path length (distance) of the robot’s movement
— sum of the wheel movements

2. Turn error: similar to range error, but for turns
— difference of the wheel motions

3. Drift error: difference in the error of the wheels leads to an error in the robot’s angular
orientation

Over long periods of time, turn and drift errors far outweigh range errors, since their con-
tribution to the overall position error is nonlinear. Consider a robot whose position is ini-
tially perfectly well-known, moving forward in a straight line along the x -axis. The error
in the y -position introduced by a move of d meters will have a component of dsinA@,
which can be quite large as the angular error A® grows. Over time, as a mobile robot moves
about the environment, the rotational error between its internal reference frame and its orig-
inal reference frame grows quickly. As the robot moves away from the origin of these ref-
erence frames, the resulting linear error in position grows quite large. It is instructive to
establish an error model for odometric accuracy and see how the errors propagate over
time.

5.2.4 An error model for odometric position estimation
Generally the pose (position) of a robot is represented by the vector

(5.1)
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For a differential-drive robot the position can be estimated starting from a known posi-
tion by integrating the movement (summing the incremental travel distances). For a dis-
crete system with a fixed sampling interval At the incremental travel distances
(Ax;Ay;AB) are

Ax = Ascos(8+A8/2) (5.2)
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Figure 5.3
Movement of a differential-drive robot.
Ay = Assin(0+ A672) (5.3)
6 = As,—As; 54
ASV + Asl
As = ——— (5.5)
2
where
(Ax;Ay;AB) = path traveled in the last sampling interval,
As,;As, = traveled distances for the right and left wheel respectively;
b = distance between the two wheels of differential-drive robot.
Thus we get the updated position p':
X' Ascos(6+ AB/2) x Ascos(06+ AB8/2)
p'= Y| =pt|Assin(0+A0/2)| = |y|+ |Assin(6+ A0/2) (5.6)
o' AB ) AB

By using the relation for (As;A8) of equations (5.4) and (5.5) we further obtain the
basic equation for odometric position update (for differential drive robots):
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As, + Aslcos (9 N Asr_ASI)

2 2b
x As. + A As —As
P = f(x,0,0,As, As) = |y| + ”Tsfsm(mrz—b’) (5.7)
0
Asr—As,
b

As we discussed earlier, odometric position updates can give only a very rough estimate
of the actual position. Owing to integration errors of the uncertainties of p and the motion
errors during the incremental motion (As,;As;) the position error based on odometry inte-
gration grows with time.

In the next step we will establish an error model for the integrated position p' to obtain
the covariance matrix ¥, of the odometric position estimate. To do so, we assume that at
the starting point the initial covariance matrix X, is known. For the motion increment
(As,;As;) we assume the following covariance matrix X, :

k|As| 0

2, = covar(As,, As)) =
: me 0 k|As)

(5.8)

where As, and As,; are the distances traveled by each wheel, and %, , k; are error con-
stants representing the nondeterministic parameters of the motor drive and the wheel-floor
interaction. As you can see, in equation (5.8) we made the following assumptions:

« The two errors of the individually driven wheels are independent’;

* The variance of the errors (left and right wheels) are proportional to the absolute value
of the traveled distances (As,;As;) .

These assumptions, while not perfect, are suitable and will thus be used for the further
development of the error model. The motion errors are due to imprecise movement because
of deformation of wheel, slippage, unequal floor, errors in encoders, and so on. The values
for the error constants &, and k; depend on the robot and the environment and should be
experimentally established by performing and analyzing representative movements.

If we assume that p and A,; = (As,;As,;) are uncorrelated and the derivation of f[equa-
tion (5.7)] is reasonably approximated by the first-order Taylor expansion (linearization),
we conclude, using the error propagation law (see section 4.2.2),

5. If there is more knowledge regarding the actual robot kinematics, the correlation terms of the
covariance matrix could also be used.
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S, = V%, V4V, 3V, f (5.9)

The covariance matrix X, is, of course, always given by the X, of the previous step,
and can thus be calculated after specifying an initial value (e.g., 0).
Using equation (5.7) we can develop the two Jacobians, F,, = V ,f and F, = Va rf :

 Tarar 3 1 0 —Assin(0+A8/2)
Fy = Vpf=V,(f) = of o o) = 01 Ascos(6+A6/2) (5.10)
dx dy 90

cos(e + A_zQ) G.1D)

The details for arriving at equation (5.11) are

F, =V, = |9 9| - . 5.12
A a.S |:8As,, 0As,; 612
_aAS ( AG) As . ( AG) 0AB OAs ( AG) As . ( Ae)aAe_
0+22 )+ 25 sin(0+ =2 229 925 5[+ 22| + 2 sin[0 + == |220
oas U2 )T T 2 By aas, T 2 )T M 2 faas,
JdAs . AB\ | As ABYJAD JAs . ABY | As A6)0AB
J9As Sm((” 2 )+7°°S(e+ 2 )BAsr aA_slsm(e+ 2 )+ 2 cos(e+ 2 )8Asl
0AO 0A6
JdAs 0As
L r l -
(5.13)
and with
As, + As,; As,—As,;
As = ———1 . g = (5.14)

2 ’ b
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Figure 5.4

Growth of the pose uncertainty for straight-line movement: Note that the uncertainty in y grows much
faster than in the direction of movement. This results from the integration of the uncertainty about the
robot’s orientation. The ellipses drawn around the robot positions represent the uncertainties in the
x,y direction (e.g. 36 ). The uncertainty of the orientation 6 is not represented in the picture although
its effect can be indirectly observed.

JdAs 1 dAs 1~ JdAB _

1 e 1
dAs, b > oAs, b (5-13)

dAs, 2 ° 0As, 2

we obtain equation (5.11).

Figures 5.4 and 5.5 show typical examples of how the position errors grow with time.
The results have been computed using the error model presented above.

Once the error model has been established, the error parameters must be specified. One
can compensate for deterministic errors properly calibrating the robot. However the error
parameters specifying the nondeterministic errors can only be quantified by statistical
(repetitive) measurements. A detailed discussion of odometric errors and a method for cal-
ibration and quantification of deterministic and nondeterministic errors can be found in [5].
A method for on-the-fly odometry error estimation is presented in [105].
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Figure 5.5

Growth of the pose uncertainty for circular movement (» = const): Again, the uncertainty perpendic-
ular to the movement grows much faster than that in the direction of movement. Note that the main
axis of the uncertainty ellipse does not remain perpendicular to the direction of movement.

5.3 To Localize or Not to Localize: Localization-Based Navigation versus
Programmed Solutions

Figure 5.6 depicts a standard indoor environment that a mobile robot navigates. Suppose
that the mobile robot in question must deliver messages between two specific rooms in this
environment: rooms 4 and B. In creating a navigation system, it is clear that the mobile
robot will need sensors and a motion control system. Sensors are absolutely required to
avoid hitting moving obstacles such as humans, and some motion control system is required
so that the robot can deliberately move.

It is less evident, however, whether or not this mobile robot will require a localization
system. Localization may seem mandatory in order to successfully navigate between the
two rooms. It is through localizing on a map, after all, that the robot can hope to recover its
position and detect when it has arrived at the goal location. It is true that, at the least, the
robot must have a way of detecting the goal location. However, explicit localization with
reference to a map is not the only strategy that qualifies as a goal detector.

An alternative, espoused by the behavior-based community, suggests that, since sensors
and effectors are noisy and information-limited, one should avoid creating a geometric map
for localization. Instead, this community suggests designing sets of behaviors that together
result in the desired robot motion. Fundamentally, this approach avoids explicit reasoning
about localization and position, and thus generally avoids explicit path planning as well.





