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density function. So the resulting 1000 locations will be concentrated primarily at the high-
est probability locations. This biasing is desirable, but only to a point.

We also wish to ensure that some less likely locations are tracked, as otherwise, if the
robot does indeed receive unlikely sensor measurements, it will fail to localize. This ran-
domization of the sampling process can be performed by adding additional samples from a
flat distribution, for example. Further enhancements of these randomized methods enable
the number of statistical samples to be varied on the fly, based, for instance, on the ongoing
localization confidence of the system. This further reduces the number of samples required
on average while guaranteeing that a large number of samples will be used when necessary
[68].

These sampling techniques have resulted in robots that function indistinguishably as
compared to their full belief state set ancestors, yet use computationally a fraction of the
resources. Of course, such sampling has a penalty: completeness. The probabilistically
complete nature of Markov localization is violated by these sampling approaches because
the robot is failing to update all the nonzero probability locations, and thus there is a danger
that the robot, due to an unlikely but correct sensor reading, could become truly lost. Of
course, recovery from a lost state is feasible just as with all Markov localization techniques.

5.6.3   Kalman filter localization
The Markov localization model can represent any probability density function over robot
position. This approach is very general but, due to its generality, inefficient. Consider
instead the key demands on a robot localization system. One can argue that it is not the
exact replication of a probability density curve but the sensor fusion problem that is key to
robust localization. Robots usually include a large number of heterogeneous sensors, each
providing clues as to robot position and, critically, each suffering from its own failure
modes. Optimal localization should take into account the information provided by all of
these sensors. In this section we describe a powerful technique for achieving this sensor
fusion, called the Kalman filter. This mechanism is in fact more efficient than Markov
localization because of key simplifications when representing the probability density func-
tion of the robot’s belief state and even its individual sensor readings, as described below.
But the benefit of this simplification is a resulting optimal recursive data-processing algo-
rithm. It incorporates all information, regardless of precision, to estimate the current value
of the variable of interest (i.e., the robot’s position). A general introduction to Kalman fil-
ters can be found in [106] and a more detailed treatment is presented in [3].

Figure 5.25 depicts the general scheme of Kalman filter estimation, where a system has
a control signal and system error sources as inputs. A measuring device enables measuring
some system states with errors. The Kalman filter is a mathematical mechanism for produc-
ing an optimal estimate of the system state based on the knowledge of the system and the
measuring device, the description of the system noise and measurement errors and the
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uncertainty in the dynamics models. Thus the Kalman filter fuses sensor signals and system
knowledge in an optimal way. Optimality depends on the criteria chosen to evaluate the
performance and on the assumptions. Within the Kalman filter theory the system is
assumed to be linear and white with Gaussian noise. As we have discussed earlier, the
assumption of Gaussian error is invalid for our mobile robot applications but, nevertheless,
the results are extremely useful. In other engineering disciplines, the Gaussian error
assumption has in some cases been shown to be quite accurate [106]. 

We begin with a section that introduces Kalman filter theory, then we present an appli-
cation of that theory to the problem of mobile robot localization (5.6.3.2). Finally, section
5.6.3.2 presents a case study of a mobile robot that navigates indoor spaces by virtue of
Kalman filter localization.

5.6.3.1   Introduction to Kalman filter theory
The basic Kalman filter method allows multiple measurements to be incorporated opti-
mally into a single estimate of state. In demonstrating this, first we make the simplifying
assumption that the state does not change (e.g., the robot does not move) between the acqui-
sition of the first and second measurement. After presenting this static case, we can intro-
duce dynamic prediction readily.

System

Figure 5.25
Typical Kalman filter application [106].
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Static estimation. Suppose that our robot has two sensors, an ultrasonic range sensor and
a laser rangefinding sensor. The laser rangefinder provides far richer and more accurate
data for localization, but it will suffer from failure modes that differ from that of the sonar
ranger. For instance, a glass wall will be transparent to the laser but, when measured head-
on, the sonar will provide an accurate reading. Thus we wish to combine the information
provided by the two sensors, recognizing that such sensor fusion, when done in a principled
way, can only result in information gain.

The Kalman filter enables such fusion extremely efficiently, as long as we are willing to
approximate the error characteristics of these sensors with unimodal, zero-mean, Gaussian
noise. Specifically, assume we have taken two measurements, one with the sonar sensor at
time k and one with the laser rangefinder at time . Based on each measurement indi-
vidually we can estimate the robot’s position. Such an estimate derived from the sonar is

 and the estimate of position based on the laser is . As a simplified way of character-
izing the error associated with each of these estimates, we presume a (unimodal) Gaussian
probability density curve and thereby associate one variance with each measurement: 
and . The two dashed probability densities in figure 5.26 depict two such measurements.
In summary, this yields two robot position estimates:

 with variance  (5.28)

 with variance .  (5.29)

The question is, how do we fuse (combine) these data to get the best estimate  for the
robot position? We are assuming that there was no robot motion between time  and time

, and therefore we can directly apply the same weighted least-squares technique of
equation (5.26) in section 4.3.1.1. Thus we write

 (5.30)

with  being the weight of measurement . To find the minimum error we set the deriv-
ative of  equal to zero.

 (5.31)
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 (5.32)

 (5.33)

If we take as the weight 

 (5.34)

then the value of  in terms of two measurements can be defined as follows:

 (5.35)

   ;    (5.36)

Note that from equation (5.36) we can see that the resulting variance  is less than all
the variances  of the individual measurements. Thus the uncertainty of the position esti-
mate has been decreased by combining the two measurements. The solid probability den-
sity curve represents the result of the Kalman filter in figure 5.26, depicting this result. Even
poor measurements, such as are provided by the sonar, will only increase the precision of
an estimate. This is a result that we expect based on information theory.

Equation (5.35) can be rewritten as
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or, in the final form that is used in Kalman filter implementation,

 (5.38)

where

  ;     ;    (5.39)

Equation (5.38) tells us, that the best estimate  of the state  at time  is
equal to the best prediction of the value  before the new measurement  is taken, plus
a correction term of an optimal weighting value times the difference between  and the
best prediction  at time . The updated variance of the state  is given using
equation (5.36)

 (5.40)

Figure 5.26
Fusing probability density of two estimates [106].
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The new, fused estimate of robot position provided by the Kalman filter is again subject
to a Gaussian probability density curve. Its mean and variance are simply functions of the
inputs’ means and variances. Thus the Kalman filter provides both a compact, simplified
representation of uncertainty and an extremely efficient technique for combining heteroge-
neous estimates to yield a new estimate for our robot’s position.

Dynamic estimation. Next, consider a robot that moves between successive sensor mea-
surements. Suppose that the motion of the robot between times and  is described
by the velocity u and the noise w which represents the uncertainty of the actual velocity:

 (5.41)

If we now start at time , knowing the variance  of the robot position at this time and
knowing the variance  of the motion, we obtain for the time  just when the measure-
ment is taken,

 (5.42)

 (5.43)

where

;

 and  are the time in seconds at  and  respectively.

Thus  is the optimal prediction of the robot’s position just as the measurement is
taken at time . It describes the growth of position error until a new measurement is
taken (figure 5.27).

We can now rewrite equations (5.38) and (5.39) using equations (5.42) and (5.43).

 (5.44)
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The optimal estimate at time  is given by the last estimate at  and the estimate of
the robot motion including the estimated movement errors. 

By extending the above equations to the vector case and allowing time-varying param-
eters in the system and a description of noise, we can derive the Kalman filter localization
algorithm.

5.6.3.2   Application to mobile robots: Kalman filter localization
The Kalman filter is an optimal and efficient sensor fusion technique. Application of the
Kalman filter to localization requires posing the robot localization problem as a sensor
fusion problem. Recall that the basic probabilistic update of robot belief state can be seg-
mented into two phases, perception update and action update, as specified by equations
(5.21) and (5.22). 

The key difference between the Kalman filter approach and our earlier Markov localiza-
tion approach lies in the perception update process. In Markov localization, the entire per-
ception, that is, the robot’s set of instantaneous sensor measurements, is used to update each
possible robot position in the belief state individually using the Bayes formula. In some
cases, the perception is abstract, having been produced by a feature extraction mechanism,
as in Dervish. In other cases, as with Rhino, the perception consists of raw sensor readings.

By contrast, perception update using a Kalman filter is a multistep process. The robot’s
total sensory input is treated not as a monolithic whole but as a set of extracted features that

Figure 5.27
Propagation of probability density of a moving robot [106].
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