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We will not present a detailed derivation here but will use equation (4.60) to solve an
example problem in section 4.3.1.1.

4.3 Feature Extraction

An autonomous mobile robot must be able to determine its relationship to the environment
by making measurements with its sensors and then using those measured signals. A wide
variety of sensing technologies are available, as shown in the previous section. But every
sensor we have presented is imperfect: measurements always have error and, therefore,
uncertainty associated with them. Therefore, sensor inputs must be used in a way that
enables the robot to interact with its environment successfully in spite of measurement
uncertainty.

There are two strategies for using uncertain sensor input to guide the robot’s behavior.
One strategy is to use each sensor measurement as a raw and individual value. Such raw
sensor values could, for example, be tied directly to robot behavior, whereby the robot’s
actions are a function of its sensor inputs. Alternatively, the raw sensor values could be
used to update an intermediate model, with the robot’s actions being triggered as a function
of this model rather than the individual sensor measurements.

The second strategy is to extract information from one or more sensor readings first,
generating a higher-level percept that can then be used to inform the robot’s model and per-
haps the robot’s actions directly. We call this process feature extraction, and it is this next,
optional step in the perceptual interpretation pipeline (figure 4.34) that we will now discuss.

In practical terms, mobile robots do not necessarily use feature extraction and scene
interpretation for every activity. Instead, robots will interpret sensors to varying degrees
depending on each specific functionality. For example, in order to guarantee emergency
stops in the face of immediate obstacles, the robot may make direct use of raw forward-
facing range readings to stop its drive motors. For local obstacle avoidance, raw ranging
sensor strikes may be combined in an occupancy grid model, enabling smooth avoidance
of obstacles meters away. For map-building and precise navigation, the range sensor values
and even vision sensor measurements may pass through the complete perceptual pipeline,
being subjected to feature extraction followed by scene interpretation to minimize the
impact of individual sensor uncertainty on the robustness of the robot’s mapmaking and
navigation skills. The pattern that thus emerges is that, as one moves into more sophisti-
cated, long-term perceptual tasks, the feature extraction and scene interpretation aspects of
the perceptual pipeline become essential. 

Feature definition. Features are recognizable structures of elements in the environment.
They usually can be extracted from measurements and mathematically described. Good
features are always perceivable and easily detectable from the environment. We distinguish
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between low-level features (geometric primitives) like lines, circles, or polygons, and high-
level features (objects) such as edges, doors, tables, or a trash can. At one extreme, raw
sensor data provide a large volume of data, but with low distinctiveness of each individual
quantum of data. Making use of raw data has the potential advantage that every bit of infor-
mation is fully used, and thus there is a high conservation of information. Low-level fea-
tures are abstractions of raw data, and as such provide a lower volume of data while
increasing the distinctiveness of each feature. The hope, when one incorporates low-level
features, is that the features are filtering out poor or useless data, but of course it is also
likely that some valid information will be lost as a result of the feature extraction process.
High-level features provide maximum abstraction from the raw data, thereby reducing the
volume of data as much as possible while providing highly distinctive resulting features.
Once again, the abstraction process has the risk of filtering away important information,
potentially lowering data utilization.

Although features must have some spatial locality, their geometric extent can range
widely. For example, a corner feature inhabits a specific coordinate location in the geomet-
ric world. In contrast, a visual “fingerprint” identifying a specific room in an office building
applies to the entire room, but has a location that is spatially limited to the one particular
room.

In mobile robotics, features play an especially important role in the creation of environ-
mental models. They enable more compact and robust descriptions of the environment,
helping a mobile robot during both map-building and localization. When designing a
mobile robot, a critical decision revolves around choosing the appropriate features for the
robot to use. A number of factors are essential to this decision:

Target environment. For geometric features to be useful, the target geometries must be
readily detected in the actual environment. For example, line features are extremely useful
in office building environments due to the abundance of straight wall segments, while the
same features are virtually useless when navigating Mars.

Figure 4.34
The perceptual pipeline: from sensor readings to knowledge models.
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Available sensors. Obviously, the specific sensors and sensor uncertainty of the robot
impacts the appropriateness of various features. Armed with a laser rangefinder, a robot is
well qualified to use geometrically detailed features such as corner features owing to the
high-quality angular and depth resolution of the laser scanner. In contrast, a sonar-equipped
robot may not have the appropriate tools for corner feature extraction.

Computational power. Vision-based feature extraction can effect a significant computa-
tional cost, particularly in robots where the vision sensor processing is performed by one
of the robot’s main processors. 

Environment representation. Feature extraction is an important step toward scene inter-
pretation, and by this token the features extracted must provide information that is conso-
nant with the representation used for the environmental model. For example, nongeometric
vision-based features are of little value in purely geometric environmental models but can
be of great value in topological models of the environment. Figure 4.35 shows the applica-
tion of two different representations to the task of modeling an office building hallway.
Each approach has advantages and disadvantages, but extraction of line and corner features
has much more relevance to the representation on the left. Refer to chapter 5, section 5.5
for a close look at map representations and their relative trade-offs.

Figure 4.35
Environment representation and modeling: (a) feature based (continuous metric); (b) occupancy grid
(discrete metric). Courtesy of Sjur Vestli.
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In the following two sections, we present specific feature extraction techniques based on
the two most popular sensing modalities of mobile robotics: range sensing and visual
appearance-based sensing.

4.3.1   Feature extraction based on range data (laser, ultrasonic, vision-based ranging)
Most of today’s features extracted from ranging sensors are geometric primitives such as
line segments or circles. The main reason for this is that for most other geometric primitives
the parametric description of the features becomes too complex and no closed-form solu-
tion exists. Here we describe line extraction in detail, demonstrating how the uncertainty
models presented above can be applied to the problem of combining multiple sensor mea-
surements. Afterward, we briefly present another very successful feature of indoor mobile
robots, the corner feature, and demonstrate how these features can be combined in a single
representation.

4.3.1.1   Line extraction
Geometric feature extraction is usually the process of comparing and matching measured
sensor data against a predefined description, or template, of the expect feature. Usually, the
system is overdetermined in that the number of sensor measurements exceeds the number
of feature parameters to be estimated. Since the sensor measurements all have some error,
there is no perfectly consistent solution and, instead, the problem is one of optimization.
One can, for example, extract the feature that minimizes the discrepancy with all sensor
measurements used (e.g,. least-squares estimation).

In this section we present an optimization-based solution to the problem of extracting a
line feature from a set of uncertain sensor measurements. For greater detail than is pre-
sented below, refer to [14, pp. 15 and 221].

Probabilistic line extraction from uncertain range sensor data. Our goal is to extract a
line feature based on a set of sensor measurements as shown in figure 4.36. There is uncer-
tainty associated with each of the noisy range sensor measurements, and so there is no
single line that passes through the set. Instead, we wish to select the best possible match,
given some optimization criterion.

More formally, suppose  ranging measurement points in polar coordinates
 are produced by the robot’s sensors. We know that there is uncertainty asso-

ciated with each measurement, and so we can model each measurement using two random
variables . In this analysis we assume that uncertainty with respect to the
actual value of  and  is independent. Based on equation (4.56) we can state this for-
mally:

 =  (4.62)
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