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Abstract— In recent years, a growing number of research
groups have targeted the development and deployment of
networks using low-cost chemical sensors for monitoring air
quality. Due to economical reasoning, most of these systems
make use of some sort of mobility to increase spatial
coverage. The effect of mobility on measurement quality has,
however, been largely neglected. The long response time of the
chemical sensors typically used for this type of application, in
conjunction with platform mobility, leads to significant signal
distortion. While this problem can be addressed through signal
deconvolution techniques, their effectiveness is limited by the
typical poor Signal-to-Noise Ratio (SNR) of the measured
signal. In this paper, we study the possibility of enhancing
the measurement quality of chemical sensors through the use
of active sampling (or sniffing). We propose different sniffer
designs, employing both fans and pumps as actuators. Using
a rigorous experimental framework, inside a wind tunnel, we
study the ability of active samplers to increase measurement
SNR, and thus indirectly to improve sensor dynamic response.
We obtain a significant and consistent improvement in SNR for
one of our pump-based sniffer designs. Finally, we validate the
robustness of this signal enhancement in real-world conditions
through an outdoor car-based experiment.

I. INTRODUCTION

Air pollution represents a major concern for human health,
affecting both life expectancy and quality of life [1], and
being singled out as the current number one environmental
health risk by the World Health Organization [2].

The established method for long term air quality monitoring
is the use of large static stations, grouped into national
networks. These stations are equipped with highly accurate,
but very expensive measurement equipment (e.g., absorption
spectrophotometers, mass spectrometers, etc.). The high cost
of these stations means that they form very sparse networks
(e.g., the Swiss National Air Pollution Monitoring Network -
NABEL - uses a total of 16 stations for the whole country).
This implies a very low spatial resolution of measurements,
which limits the ability of capturing the spatial heterogeneity
of the air pollution field.

Spatial heterogeneity of air pollution fields is particularly
large in urban environments because of factors such as the
locality of emission sources (e.g., industries, traffic patterns)
and the specific urban landscape (e.g., topography, street
canyons, green areas, etc.).
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A. Mobile Air Quality Sensing

Over the last decade, the field of Wireless Sensor Networks
(WSNs) has seen a growing interest in the development and
deployment of networks that employ small low-cost sensors
for air quality monitoring. Since the cost of covering a whole
city with a purely static WSN would still be impractically
high, the number of projects that do not consider mobility is
relatively small [3], [4], most projects considering either a mix
of static and mobile nodes, or exclusively mobile deployments.
Most urban mobility sources have been considered, including
pedestrians [5]–[8], cyclists [9], [10], private vehicles [11],
and public transportation [12]–[14]. Our work is part of the
OpenSense II project, which falls into the latter mobility
category by using buses in the city of Lausanne, and trams
in Zurich. Nevertheless, the results presented in this paper
are general and not limited to this type of mobility.

The main advantage of using mobility stems from the
possibility of extending spatial coverage for a given number
of sensor nodes. Nonetheless, the inherent dynamic nature
of mobile coverage represents a significant challenge for
attaining spatio-temporally complete high-resolution air
pollution maps. This issue can be addressed through statistical
modeling techniques, as suggested by Hasenfratz et al. [15], Li
et al. [16], or Marjovi et al. [14]. However, all of these works
have considered solely Particulate Matter (PM) measurements,
and to the best of our knowledge, no similar results have been
published for gaseous pollutants using mobile measurement
data.

The reason is that the current commercially available
chemical sensors for measuring gas-phase pollutants suffer
from a number of issues that need to be addressed before
applying the aforementioned modeling methods. These
include temporal drift, due to sensor aging, cross-sensitivities
to other chemical components or environmental parameters
(e.g., temperature, humidity, pressure, etc.) [17], [18], low
SNR at ambient concentration levels, and slow response
times, which, in the context of mobility, leads to significant
measurement distortion.

The problems of sensor drift and cross-sensitivity can be
addressed through on-line calibration methods, and, although
still an open problem, a significant body of work has been
building up on this topic in recent years [19]–[23]. The
issue of signal distortion due to the interplay of slow sensor
response and high platform mobility has, however, received
little attention.

In previous work [24], we showed that this is a
significant problem and proposed mitigating it through
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Fig. 1. Classification of sampling systems based on how the sensor is
exposed to air. See text for descriptions of each class. Closed passive systems
do not exist, as a sensor would be isolated from external air in such a setup.

signal deconvolution and the use of an active air sampling
system (i.e. a sniffer). When reconstructing the signal
through deconvolution, we were able to obtain consistent
improvements in both feature localization accuracy (i.e. the
ability to assign correctly the position of discrete features
in the field), and Root Mean Square Error (RMSE), relative
to the estimated ground-truth. The performance of the basic
sniffer we considered was, however, very limited in terms of
SNR enhancement.

The work presented in this paper comes to complement
that through a sustained effort to obtain a sniffer design
that would provide a consistent and robust enhancement of
the raw measurement signal. Since the main limiting factor
for the deconvolution technique we considered was due to
falling SNR with increased sensing platform speed, a careful
consideration of the sampler design is well motivated.

B. Active Sampling

According to the schematic representation in Fig. 1, air
sampling systems can be broadly classified as either open
passive, open active, or closed active systems.

Open passive systems rely only on existing background
air flows for transporting the gas molecules to the sensitive
surface of the sensor, and, due to their simplicity, are the
cheapest and currently most widely spread type of samplers
in mobile WSN applications [6]–[9], [11].

Open active systems, also called sniffers, use an actuator
like a fan or a pump to draw and flush air around the
sensor for improving its response. Measurement systems
that can be classified in this class have been previously used
in a limited number of mobile WSN projects [12], [15],
[25], but no work on the analysis of their design or their
effectiveness has been published to date. The design of sniffers
has been studied more in the field of robotic olfaction, with
published work including both fan-based [26] and pump-based
systems [27], [28]. However, these designs were developed
for indoor applications, where background flows are very
limited compared to outdoor conditions.

Finally, closed active systems, also known as closed
chamber systems, are the most complex air sampling systems.
They have a typical three-phase measurement cycle. Firstly,
an air sample is pumped into a chamber containing the
sensors. Secondly, the pump is turned off while the sensor
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Fig. 2. Top view of experimental setup inside wind tunnel (not to scale).

Fig. 3. One of our sensor nodes anchored to the roof of a Lausanne bus. The
gas sampling system used in this paper is a sub-module of this real-world
platform.

is allowed the time to reach a stable reading. Finally, the
air sample is flushed out of the chamber while allowing the
sensor to recover its baseline, typically using an additional
source of clean air. While this type of system has the unique
advantage of permitting absolute concentration measurements,
its complexity and inherent low-sampling rate make it less
attractive for mobile monitoring applications.

C. Our Contribution

In this paper, we study the opportunity of using open
active samplers for enhancing the quality of chemical sensor
measurements in mobile applications. We consider both fan-
and pump-based designs and study their ability to improve
the measured signal in terms of SNR.

We use a rigorous wind tunnel experimental framework for
the performance evaluation of the considered design options.
For the best performing sniffer, we go a step forward and
investigate if its performance is maintained when moving
outside of the wind tunnel, in a real-world comparative
experiment using an electric car as mobility source.

II. EXPERIMENTAL SETUP

We conducted most of our experiments in a controlled
environment - a boundary layer wind tunnel. The only
exception was one comparative outdoor experiment using
an electric car, which is described in detail in Section V.

The experimental setup is similar to the one we used in [24]
and is represented schematically in Fig. 2. The gas sampling
system we used is a sub-module of the mobile air quality
sensing system we developed and deployed on 10 buses in
the city of Lausanne within the OpenSense and OpenSense II
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Fig. 4. Closed (left) and exploded (right) views of the gas sampler box. In
its standard form it is an open passive sampler.
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Fig. 5. Sensor node traversing the smoke plume inside our wind tunnel.

projects (see Fig. 3 and Fig. 4). Due to its selectivity, we
continued to focus only on the City Technology A3CO carbon
monoxide electrochemical sensor [29].

The experiments were performed in a 19.5× 4× 1.95 m3

test section of our wind tunnel. We anchored the sensor box
to the tunnel’s traversing system, a 3-axis cartesian robot,
with the sensors facing down, as they are also in our bus
deployment. We generated a chemical plume by using the
Pea Soup Wind Tunnel Air Flow Tracer SGS-90 [30] smoke
machine mounted at a height of 45 cm from the floor.

Differently from [24], as ground truth we used the fast
response 200B miniPID measurement system [31], a photo-
ionization detector, which we attached in close vicinity
of our electrochemical sensor. Both the miniPID and the
electrochemical sensor are sensitive to the plume generated
by the smoke machine. A snapshot of our experimental setup,
including the positioning of the miniPID, is shown in Fig. 5.

III. ACTIVE SAMPLER DESIGNS

In this section, we present the active sampler designs we
considered in our experiments. An open active sampler (or
open sniffer) is an air sampling system that uses an actuator
to enhance the air flow around a chemical sensor, with the
goal of improving its response when compared to a purely
passive system. The actuator can be either a fan or a pump,
and in this work we consider both cases.

We guided our design effort by using Computational Fluid
Dynamics (CFD) simulations, in order to understand the
impact of our different design choices on the air flow, before
moving to experimental trials. With this approach, we first

Fig. 6. Sensor box without (left) and with (right) aerodynamic profile.
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Fig. 7. Lateral flow (left) and normal flow (right) fan-based sniffers.

considered how the air flow around the sensor box could be
enhanced through a purely passive solution: modifying the
aerodynamic profile of the node enclosure. As can be seen in
Fig. 6, adding an elliptical profile to the front of the sensor
box reduces significantly the thickness of the boundary layer
around the sensor box. The choice of this particular profile
shape was influenced by the elliptical conical noses used
in sub-sonic flying platforms. All experiments presented in
this paper were done using a configuration that includes this
aerodynamic profile.

A. Fan-based sniffer designs

The fan-based sniffers we considered employ axial fans to
produce air flow. Axial fans force the air to move parallel to
their rotating shaft and are capable to move large volumes of
air. However, their performance can be significantly influenced
by the background flow conditions.

We considered two types of fan-based sniffers (see Fig. 7):
• A lateral flow sniffer has the design we previously used

in [24], with a fan mounted at the end of an enclosure
which pulls the air over the sensor, and contains a wedge
to direct flow towards the sensor.

• A normal flow sniffer design represents an axial fan
mounted with its shaft perpendicular to the sensing
surface through a supporting structure. In this case the
air is pushed directly towards the sensor.

Multiple axial fans were tested on these designs with flow
rates ranging from 3.74 m3/h to 33 m3/h.

B. Pump-based sniffer designs

For the pump-based designs we used the 0.22 m3/h
diaphragm pump (Sensidyne AP240DEEE Model 60 [32]).
This type of device is a positive displacement pump, having
the advantage of ensuring an almost constant air flow, being
less susceptible to environment conditions. Nonetheless, the
volume of air that diaphragm pumps can move is small relative
to their size.
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Fig. 8. Leveled-inlet (left) and raised-inlet (right) pump-based sniffers. In
both cases the air is pulled through a narrow channel towards the sensor
surface and is then evacuated through the pump out through an small opening
at the back of the sensor box.

Fig. 9. A clearance of 3 cm from the box surface ensures that the inlet
escapes the boundary layer (in blue above). The simulation in this figure
was performed for a background air flow of 1 m/s.

In this case also, we considered two design options for our
active sampler (see Fig. 8):

• A leveled-inlet sniffer is a basic pump-based design
similar to the one used by Lochmatter et al. in [28], and
has the inlet opening in close proximity of the sensor
box surface.

• A raised-inlet sniffer is a modification of the above
design, in which the inlet is extended and raised outside
of the boundary layer formed around the sensor box.

In order to choose the distance from the box surface, that
the inlet needs to be raised to, we used CFD simulations and
the definition of the boundary layer thickness, as being the
level at which the air velocity is equal to 99% of the free
flow velocity (see Fig. 9). We, thus, found that a clearance
of 3 cm from the sensor box surface is sufficient to place the
inlet outside of the boundary layer.

IV. RESULTS

We are interested in enhancing the measured signal
from a SNR perspective, and thus indirectly providing
better conditions for compensating the slow sensor dynamic
response through appropriate signal processing techniques.

We use the common definition of the SNR as the ratio
between the power of the a signal and the power of the
background noise. In our scenario, the separation between
noise and signal is done based on the assumption that the
signal is null outside of the smoke plume (i.e. a direct
measurement of sensor noise).

In order to estimate the sensor rise time, we use Matlab’s
System Identification Toolbox to determine the parameters
of a time-delayed over-damped second-order linear sensor
model with a transfer function in the frequency domain of

Fig. 10. Partial view of system identification data-set. A complete set uses
10 experiments.

Fig. 11. Comparison of sampler system performance at a height of 49 cm
(left), and 51 cm (right).

the form:
H(s) = e−tds

K

(s+ c0)(s+ c1)
(1)

where K is a constant parameter of the model, and c0 and c1
are its two poles. The time-delay (td) is a refinement of the
sensor model we used in [24], which provides a better fit to
the experimental data. In the identification process we use the
miniPID data as input and the electrochemical sensor data as
system output. Fig. 10 shows an example of an identification
input-output data-set pair, and the identified model output.

We performed sets of ten experiments for each sampler
system configuration, traversing speed, and wind speed
we considered. Throughout all our experiments both the
electrochemical sensor and the miniPID were sampled at
10 Hz. We performed movements at constant speed on the
Y-axis in increments starting from 5 cm/s and up to 30 cm/s.
However, due to the narrow width of the plume (approx.
20 cm), most of the experiments were performed at the lower
end of this range.

Other parameters that we systematically varied are the wind
speed, from 0.97 m/s up to 2.62 m/s, and the level on the
Z-axis of the traversing system. We performed in total more
than eight hundred single experiments. The results presented
in this section are the most significant we obtained.

Fig. 11 presents the performance in terms of SNR obtained
with our sampling systems for different coordinates on the
Z-axis of the traversing system. The traversing speed for these
experiments was 5 cm/s, and the wind speed was 0.97 m/s.
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Fig. 12. The SNR of the normal flow fan-based system designs drops with
the increase of the nominal fan flow. These experiments were performed at
a height of 51cm.

Fig. 13. The performance of the raised-inlet pump-based sniffer is robust
to large variations of the wind speed. These experiments were performed at
the same level as the smoke machine (i.e. 45 cm from the floor).

As can be seen, the pump-based sniffers perform better than
the fan-based sniffers. The leveled-inlet sniffer performed
at least as well as the passive sampler, if not better, while
the raised-inlet sniffer was consistently the best of all the
sampling systems considered, irrespective of the considered
traversing height.

The fan-based sniffers, however, illustrate an inconsistent
performance - outperforming the open passive sampler for
a certain traversing height, but performing worse than it for
another. It should be noted that the presented results for the
fan-based sniffers consider only the configuration with the
best performing actuator, which for both types of sniffers
was the small 3.74 m3/h Delta AFB02512HH [33]. This was
the least powerful fan considered in our study.

In fact, for the normal-flow sniffer design, we were able
to observe a monotonously decreasing relationship between
the performance of the sniffer and the nominal airflow of the
fans we considered (see Fig. 12). This is probably due to a
mix between re-circulation of air around the fan-supporting
platform, and the destructive effect of the fan on the plume
structure, which we could actually observe visually.

In order to further test the robustness of the SNR
enhancement by the raised-inlet pump sniffer, we performed
experiments in which we incrementally varied the wind speed
inside the channel, and compared the performance of the open
passive and active samplers. The results in Fig. 13 show that,
while there is a general decrease in the SNR with increasing
wind speeds (due to the narrowing of the smoke plume), the
raised-inlet pump-based sniffer consistently outperforms the
open passive sampler.

While we were able to have an effect on the SNR with
our different sampler designs, it is worth noting that there
was no observable effect on the sensor dynamics, with the
estimated values for the rise time being clustered around

Active sampler Passive sampler

Fig. 14. Electrical car used for our outdoor experiment.

Fig. 15. The results of the real-world experiment confirms the benefit of
using the active sampler for enhancing the SNR.

the value of 29.2 seconds, with a standard deviation of 2.9
seconds, in line with the manufacturer’s specifications (i.e.
less than 40 seconds).

V. OUTDOOR EXPERIMENTAL VALIDATION

After concluding that the raised-inlet pump-based sniffer
provided the best performance in our controlled experiments,
we decided to test it in an uncontrolled outdoors experiment.
To this end, we equipped an electric car (see Fig. 14) with two
gas sensor boxes with similar SNR characteristics evaluated
inside the wind tunnel.

One of the two sensor boxes was equipped with a raised-
inlet pump-based sniffer, while the other one was left as a
passive sampler. The measurements were geo-tagged and
recorded using the localization module and data-logger
developed for the Lausanne deployment of the OpenSense
and OpenSense II projects (i.e. the same type of system we
use on buses).

We performed an experiment of more than one hour, driving
from the outskirts of the EPFL campus to the center of
Lausanne where we performed ten loops in an area with
regular traffic, and then returned to EPFL. The results of this
experiment are shown in Fig. 15. As can be seen from this
graph, the two measured signals are very well correlated, but
the peaks of the sensor box using our sniffer are generally
higher in amplitude. The SNR values calculated for the two
data-sets confirm a very robust enhancement of the raw
measurement signal provided by the active sampler.
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VI. CONCLUSIONS

We investigated the potential of active samplers to enhance
the quality of chemical sensor readings in mobile applications
for air quality monitoring. We performed rigorous repeatable
experiments in a controlled environment, a wind tunnel, to
study the benefit of using sniffers for this type of application.

We considered both fan- and pump-based sniffer designs
and found that the latter are generally better suited as a
sniffing actuator. In particular, one of our proposed pump-
based designs, which places the inlet opening outside of
the boundary layer formed around the sensor box, delivered
consistently superior results in SNR enhancement compared
to the baseline passive sampler. This result was confirmed also
outside the controlled environment of the wind tunnel, through
a real-world vehicle-based experiment that we conducted
using two sensor boxes in parallel.

We conclude that mobile sensing systems for air quality
monitoring can indeed benefit in terms of SNR enhancement
from the use of well-designed active samplers. Although in
this work we focused solely on enhancing the raw measure-
ment signal, the use of active sampling is complementary
to the deconvolution method we presented in [24], as an
increase in SNR will improve signal reconstruction.
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