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Abstract— Finding the source of gaseous compounds released
in the air with robots finds several applications in various
critical situations, such as search and rescue. While the
distribution of gas in the air is inherently a 3D phenomenon,
most of the previous works have downgraded the problem into
2D search, using only ground robots. In this paper, we have
designed a bio-inspired 3D algorithm involving cross-wind Lévy
Walk, spiralling and upwind surge. The algorithm has been
validated using high-fidelity simulations, and evaluated in a
wind tunnel which represents a realistic controlled environment,
under different conditions in terms of wind speed, source release
rates and odor threshold. Studying success rate and execution
time, the results show that the proposed method outperforms
its 2D counterpart and is robust to the various setup conditions,
especially to the source release rate and the odor threshold.

I. INTRODUCTION

With the advances in robotics, embedded systems, and
chemical sensors research in the last two decades, odor
sniffing robots and sensor nodes have become an active
research area. Finding sources of chemical compounds
released in the air using mobile robots finds several
applications in various critical situations such as security,
safety, domestic, and medical domains. Canonical examples
are represented by emergency scenarios such as oil spills or
wild fires as well as more subtle search problems such as
the localization of landmines in a humanitarian demining
operation or the identification of dangerous leaks inside
tunnels, mines, or production plants.

The main challenges in Odor Source Localization (OSL)
are related to the intermittent structure of odor dispersion
in the air [1]. Understanding how odor molecules disperse
through an environment under naturally turbulent flow is
the key to design and development of efficient olfactory
search strategies. In outdoor or ventilated indoor environments,
the dispersion of odor molecules is dominated by flow
turbulence. Odor molecules move downwind due to mean
flow velocity, forming an odor plume, while their net 3D
motion is almost random, due to small-scale turbulence curls.
As the flow carries patches of odor away from the source,
the average concentration within a patch decreases and the
average time between successive patches increases [1]. Due
to the turbulent structure (over large scales) of the air flow,
the plume has an irregular packet-like structure, whereby
high and low concentrations are close in both time and
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space. The turbulent behavior of airflow, lack of smooth odor
concentration gradients, patchiness of odor concentration, and
meandering and time-variant characteristics of odor plumes
imply that in real world conditions, classical search algorithms
based on concentration gradient do not efficiently work. The
inherent 3D structure of the plume also adds up to the
complexity of the problem, requiring algorithms and systems
capable of 3D planning and motion.

The OSL problem in robotics consists of three sub-
problems (phases) [2], [3], although these actions might
not be necessarily performed consecutively; (i) Odor plume
acquisition refers to searching or sampling the environment
in order to find an initial cue of the plume (i.e. a first odor
patch). (ii) Plume tracking is the phase in which the sensing
nodes attempt to remain in the plume while approaching
the source. This phase typically requires self-locomotion
capabilities and it is therefore carried out by robotic nodes.
(iii) Source declaration is the decision process of localizing
an odor source with a certain degree of confidence in its
close vicinity. The later sub-problem is usually formulated
as a separate problem, and the literature on that subject is
far coarser than on plume tracking. Therefore, in this paper
we focus on the first two phases (i.e. odor plume finding and
tracking).

The solution for OSL starts with finding the odor plume
(AKA plume acquisition). This sub-task is usually completed
using coverage algorithms, as the task is to explore the
environment until the plume is found without having any cues.
Systematic casting, zigzagging, Lévy Walk and Correlated
Random-walk are among typical solutions in this case. For
instance, using the wind direction information Pasternak et al.
[4] designed a bio-inspired algorithm called Lévy Taxis which
performs a random walk biased by the local wind direction.
While all previous works have simplified this search problem
to a 2D plane, in this paper we tackle the problem in 3D.

The second sub-task, i.e. odor plume tracking, has been
the main focus of most of the studies in robotics. Unlike the
first phase, there is a large variety of strategies. In a wide
perspective, we divide the previous works into four general
categories, that often overlap, to classify odor plume tracking
algorithms [5]: gradient-based algorithms, probabilistic and
map-based, formation-based and bio-inspired algorithms.

Gradient-based algorithms try to reach to the source by
climbing the concentration gradient using multiples samples
taken at different positions in the environment. Due to
the patchiness of odor plumes, a robot performing these
algorithms may eventually reach the source, only if it
moves slowly enough to measure the long-term average
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concentration level at each sampling point. Therefore, this
type of algorithms, while being the most intuitive, needs
relatively a lot of time and sampling to find the source.
From a different point of view, probabilistic and map-
based algorithms model the source location as a probability
distribution function which is derived from the observations
made by the agent in the environment [5]. After each new
observation, the probability distribution modeling the source
location is updated using recursive Bayesian estimation. This
process continues until the probability distribution of the
source reduces to a Dirac function. Infotaxis [6], Hidden
Markov Models [7] and Kernel methods [8], are the main
examples of this category. Although these techniques are
very promising with a great potential in terms of research,
they suffer from high computational costs and the need of
accurate localization information for the sampling points.
Formation-based algorithms are designed for multi-robot
systems such that they can sample the odor concentration
in different positions at the same time. The robots share
their observations (i.e. odor concentration and wind direction)
with other members of the group and determine their relative
pose. The topology of the formation is adapted based on the
observations and the whole group moves eventually towards
the source [9]. Recently a 3D formation-based system has
also been presented [10]. In general, these methods have low
computational and memory requirements, while need at least
two robots and a mean of inter-robot relative positioning.

The ability to localize odor sources is crucial to many
living species and plays an important role throughout the
evolution process. Hence, OSL strategies used by animals
are supposedly highly optimized, and constitute the most
studied class of algorithm which tries to take inspiration from
living organisms such as moth, bacteria, dung beetle, etc.
[11]. In [12] and [13] Lochmatter presented a novel moth-
inspired algorithm called Surge-Cast, tested along with two
other algorithms of the same class, namely Casting and Surge-
Spiral, with one wheeled robot. In our previous work [14], we
adapted a Lévy Taxis algorithm to the plume tracking phase,
by adjusting the key parameters of the algorithm during the
run, using the odor concentration gradient sensed by the robot
in the environment. The resulting method turned out to be
more robust to a larger variety of environmental conditions
when compared to typical bio-inspired algorithms such as
Casting, Surge Cast, Surge Spiral. In general, bio-inspired
algorithms usually define the behavior of the agent, using a
finite state machine and are based on both chemotaxis and
anemotaxis. They have the advantages of requiring small
memory and computational resources for the agent and not
requiring accurate localization. Moreover, they do not rely
on any a priori information about the environment or its
atmospheric conditions to operate, which makes them efficient
for unknown areas.

Although most of the previous works are based on wheeled
robots in 2D, recently there has been some attention towards
3D plume tracking. In 2006, Russell developed a robot with
a sensor head capable of vertical movements in a limited
range [15]. He used a simple algorithm based on zigzag path

of the dung beetles to track the plume in 3D. Moth-inspired
algorithms have also been adapted to 3D recently by Gao
et al. [16] in simplified simulations, based on traditional 2D
techniques. Having multiple sensors on the sides of the robot
and measuring the local 3D gradient of odor concentrations,
they have added a pitch angle to the heading of the robot. This
modification is done only in the phase of upwind surge but
not in the phase of plume retrieval. In another work, Edwards
et al. [17] proposed a 3D moth-inspired algorithm that uses
the plume edge (or the plume center-line in the modified
version) to modify the timing of the crosswind movements.
This algorithm was tested in a small realistic environment,
using an ion source. Most of these algorithms are designed
and tested in highly simplified environments.

The contribution of this work is the development of a
3D bio-inspired algorithm and its evaluation in a realistic
environment, as well as the assessment of a 2D baseline
method of the same category, in challenging conditions. To
the best of our knowledge, none of the previous works has
proposed a complete 3D bio-inspired algorithm that addresses
plume acquisition and tracking in realistic environmental
conditions. In the following sections of this paper, we
present our proposed method in detail, then we explain the
implementation and evaluation setups, along with the results
and discussions.

II. PROPOSED METHOD

The method that we propose in this paper covers the two
first phases of the OSL problem, i.e. plume acquisition and
plume tracking. In addition, in order to rigorously set the
critical parameter of the algorithm, we perform an initial
calibration phase before letting the robot start the actual
process.

A. Plume acquisition: Lévy Walk on a crosswind plane

In the plume acquisition phase, the goal being to find the
odor plume, the gas sensor of the robot has not detected any
odor patch yet. Therefore, the robot needs to randomly or
systematically scan the environment to find the first indication.

For this purpose, we chose Lévy Walk as a search algorithm,
since it has been shown that the probability of returning to the
previous position with Lévy Walk is smaller compared with
other random walk mechanisms [18]. Lévy walk is performed
by many living beings (e.g., Drosophilia [19] and honey bees
[20]) for foraging, and has the advantage of allowing the
searcher to maximize the number of visited targets, versus
the traveled distance [20].

As we are addressing the problem of OSL in 3D, searching
the entire space for the plume seems very time consuming,
as the agent does not have any a priori information about
the plume. On the other hand, performing a search on a 2D
plane perpendicular to the wind direction allows the agent to
find the plume in a quicker and more efficient way.

In this work, the wind orientation is not measured but
assumed to be laminar and aligned with the X-axis. Therefore,
as the crosswind plane would be Y-Z, the global process of
the first phase of our algorithm is as follows: the agent starts
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the search from a random position and moves only on the
crosswind plane Y-Z according to the governing law of Lévy
Walk, in order to encounter the plume. At each step, the
robot moves to a point determined by a move length (M)
(AKA step length) calculated based on a fixed probability
distribution presented in Eq. (1), as well as a uniformly
distributed random turning angle T,, € [0, 27].

1
M; = Lypin.r17# (eY]

with M, the move length, » a random variable uniformly
distributed r € [0, 1], L4, the minimum move length, and
(Lévy-index) the move length’s key parameter (1 < p < 3).
In this work, in order to maximize the exploration of the
area, we set 4 to its maximal value 3 and chose a relatively
long L, of 50 cm.

Thus, for a robot located at (zo, Yo, 20) that needs to take
a step, once M; and T, are calculated, the target position to
move towards will be as presented in Eq. (2).

Tr = Xo
y=yo+ M . sin(Ta) (2)
z=2z0+ M; . cos(Tg)

Bio-inspired algorithms usually use an odor concentration
threshold Oy, beyond which they consider the agent being
in the plume and out otherwise. Even though it is a crucial
parameter of the algorithm, in the literature, this value is
usually set empirically and kept fixed for multiple runs,
during which the shape and other characteristics of the
plume might change. In order to systematically determine
the appropriate value for each run, we have developed a
mathematical approach based on the Advective-Diffusive
Equations (ADE) presented in [14]. Using a data set of
samples taken before each run along the crosswind section
of the experimental environment, the cumulative distribution
function is established. Then a constant probability threshold
P, is chosen based on the distribution of the data. The
concentration value which corresponds to the probability
threshold P,;, on the cumulative distribution function is
therefore set as odor concentration threshold Oyy,.

B. Plume tracking: up-wind surge and 3D spiralling

Once the plume is encountered, the plume tracking phase
begins. We design two alternating behaviors to address this
phase; “upwind surge” and “spiralling on the 3rd dimension”.
The details of the two behaviors are explained in the
following.

In nature, although the behavior of different species (e.g.,
crab, lobster, moth, salmon) are not exactly the same, they
all seem to pursue the upstream path while in contact with
the plume [21]. This behavior is used in many bio-inspired
robotic OSL works as well (e.g., [16], [15]). Therefore in
this work also, the robot goes upwind with a constant speed
once in contact with the plume.

However, if the robot loses the plume, either due to the
plume’s conic shape or patchiness, or an error in the wind
direction estimation, it needs to search the environment in
order to reacquire the plume once again. This search should
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Fig. 1. Trajectories of different behaviors: (a) and (b) 3D spiralling, (c)
2D spiralling, (d) 2D Surge-Cast.

not necessarily be a random walk as the first phase, since the
robot is most probably very close to the plume and thus a
local search would be more efficient to find the plume back.

For re-finding the plume, in similar works (e.g., [15], [16]),
different bio-inspired behaviors have been developed. One of
the behaviors that has always shown outstanding performance
in terms of success rate in 2D scenarios, is the spiralling
movement [5], [22]. Therefore, we take advantage of this
particular algorithm and upgrade it to 3D (which is closer
to the reality in nature). This behavior is inspired by the
spiralling movement of moths while searching for an odor
plume [23], [24].

Moths’ behavior being in 3D, the spiralling movement
is performed on a crosswind plane where the chance of
plume reacquisition is the highest. Thus in this work, we
implemented the spiralling movement on the crosswind Y-
Z plane. Ultimately, all 3 dimensions are covered by the
combination of the upwind surge (along X-axis) and the
spiralling (on Y-Z plane). Therefore, in this local search, the
coordinates of a target position for a step are expressed in

Eq.(3).

T =z
Y =1Yc+ Sq.t. cos(2mt) 3)
z=2c+ 8q . t. sin(2wt)

with (z¢, ye, 2c) the position where the robot loses the plume
and thus needs to search the surroundings, s, the spiral drift
which determines the distance between the laps of the spiral
movement, and ¢ the iteration of the local search. As shown
by the Eq. (3), the movement on the X-axis stops until the
plume is retrieved.

Even though mimicking the natural models is the most
common idea in bio-inspired robotics, this behavior of moths
has never been previously implemented in 3D for OSL.

C. Source identification

In the source identification phase, the robot has to identify
the source and declare success. In this work, as we focused
on the two first phases of the problem, we consider the source
localized if the robots reaches an area of 20 x 20 x 20 c¢m?®
around the source while still being in the plume (see Fig. 2).
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Fig. 2. Margin of the source area in simulation

This identification, however, could have been done more
rigorously using existing algorithms such as [25] which is an
idea for a future work.

III. PERFORMANCE EVALUATION

In the present section, we explain the evaluation
methodology of the algorithmic performances.

A. Baseline 2D method

Despite the similarity, the projection of the 3D method
in 2D would not be the Surge-Spiral, but the Surge-Cast
algorithm [5] which performs a local search on the crosswind
dimension (see Fig. 1). Therefore we chose the Surge-Cast
algorithm [13] as reference in terms of performances. We have
adapted this algorithm to the procedure of our 3D proposed
method in order to have a fair comparison.

Assuming that the X-axis is towards the down-wind
direction, the strategy of this reference method would be the
following: after establishing the odor concentration threshold
Oy, at the fixed altitude, the robot moves to a random
position on the Y-axis, at the beginning of the experimental
environment. At this point, it performs Lévy Walk on the Y-
axis (crosswind) in order to find the plume, while maintaining
constant its position on the X and Z axes.

Once the plume is retrieved, the robot moves upwind (i.e.
towards the X-axis), while remaing in the plume. As soon as
the plume is lost, the robot moves crosswind for a distance
of D5t (here 43 cm based on [5]). If the plume is found
during this movement, the upwind surge is resumed, otherwise
the robot performs another crosswind surge, in the opposite
direction, for a distance of 2 X D¢ (see Fig. 1d). This
local search continues by exploring more either sides each
time, until the plume is reacquired.

B. Essential parameters of the setup

The performances of our method and the reference
algorithm have been verified in different setups involving
different parameters. In the present section, we describe the
parameters that we varied as well as their potential impact
on the experiment and simulation results. The chosen values
for each parameter correspond to the ones of a realistic
and challenging environment. Table I provides a list of these
parameters and their values. The description of each parameter
is provided thereafter.

1) Odor source release rate: The release rate of the source
has a significant impact on the algorithms performance, since
it shapes the structure of the plume. The higher the release
rate of the source for a given wind speed, the richer the

TABLE I
SETUP PARAMETERS USED IN THE EXPERIMENTS AND SIMULATIONS

Setup | Wind speed | Source rate | Odor threshold
A 0.2 m/s low 70%
B 0.2 m/s low 90%
C 0.2 m/s high 70%
D 0.2 m/s high 90%
E 0.9 m/s low 70%
F 0.9 m/s low 90%
G 0.9 m/s high 70%
H 0.9 m/s high 90%

plume, and thus the easier the task of the robot to track it to
the source. Theoretically, the structure of the averaged plume
depends on the ratio between the wind speed and the source
release rate. However, in this work, we found it interesting to
verify the impacts of both parameters separately in realistic
experiments.

In this paper we conducted the simulations and experiments
while setting the odor source release rate to two different
(low and high) values. Further details are provided in Section
II-E.3.

2) Wind speed: In a strong air flow the plume becomes
very narrow. In this case, the first phase of the problem, i.e.
plume acquisition, becomes as difficult as the size of the
environment to be searched. However, once the plume is
found, tracking it towards the source is supposedly easier
than the case of a wide plume. As opposed to this case, when
the wind speed is low, the plume gets wider, which can be
found very easily, but does not give the robot a strong clue
to follow in order to reach the source. Therefore, the robot
might lose the plume multiple times and thus lose a lot of
time, which may lead to a failure. As the time penalty caused
by multiple local searches is most likely higher than that of a
long plume acquisition phase, we expect a better performance
for our algorithms in the case of a stronger wind and high
source release rate.

In this paper, we verify the impact of this parameter on
the algorithms, while keeping the direction of the laminar
air flow fixed in the experiments and simulations. We set its
speed to 0.2 and 0.9 m/s, in order to have both narrow and
wide plumes.

3) Odor threshold: While the two previous parameters
depend on the environment of the experiment and directly
affect the structure of the plume, the odor threshold determines
how the robot captures the plume. In other words, the odor
threshold is the value beyond which the robot is considered
being inside the plume, and outside otherwise. Therefore, if
this value is chosen too high, the plume seen by the robot is
very narrow and patchy. On the other hand, a very low value
yields a misleading large plume seen by the robot.

As the shape of the plume might vary from one run to
another in the same setup, we decided to determine the
odor threshold in a way that respects the fairness between
runs, as explained in Section II-A. The probability threshold
P, is however a design choice and can be set to different
values impacting the performance of the algorithm on various
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environmental conditions.

In the simulations and experiments of this paper we set
Py;, empirically to 0.7 and 0.9. These values mean that
we consider the robot inside the plume if it reads an odor
concentration higher than respectively 70 or 90% of the
preliminary calibration phase. However, the absolute threshold
value Oy, corresponding to the odor concentration might
change between the runs of a single setup.

4) Initial position of the robots with respect to the source:
The position where the robot starts the operation has a high
impact on the performance of the algorithms. In order to be
fair between the runs of both algorithms, we chose to place the
robot on a random initial position on the crosswind section,
and 10 m far from the source in the X-axis (downwind
direction). As the 2D algorithm needs to be restrained on a
fixed altitude, we have chosen to set it at a certain altitude z
of 10 cm below the one of the source (in this paper placed
at 50 cm from ground).

C. Metrics

The performances of both algorithms have been evaluated
using two metrics: success rate and execution time.

A run is considered successful if the robot reaches the
source area while being inside the plume, within the time
window of 12 minutes. This time out is an arbitrary value that
is twice longer than most of usual successful runs. Therefore,
for each setup, the number of successful runs over the total
number of runs is called success rate s, as expressed in
Eq. (4).

_ ##success

o= #runs @

The other metric would simply be the time spent by the
robot in the experiment. It is calculated from the moment
when it starts the search from its initial position, until it
declares success by reaching the source. As the robot travels
with a constant speed of 50 mm/s, and no turnings are
required in the movements, it is fair to simply consider the
time instead of the traveled distance. This metric is not taken
into account for failed runs.

D. Simulations

Before evaluating the proposed method in real-world
experiments, we have developed and tested the algorithm
in simulation.

1) Webots environment: We used Webots [26] which is a
high-fidelity submicroscopic robotic simulation software. An
odor dispersion simulator plugin [27] has also been developed
which allows a realistic simulation of wind and odor plume,
based on the filament-based atmospheric dispersion model
proposed in [28], as well as using olfaction and anemometry
sensors on robots. Using these tools, we have been able to
simulate a realistic odor plume in a large environment of
20 x 4 x 2 m?3 (see Fig. 3).

2) Simulated robot: By removing the gravity in the
experiment, we were able to use a simulated Khepera robot,
equipped with an olfactory sensor, as an aerial robot. The
behavior of the agent was implemented as explained in the
previous section.

O
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Fig. 3. Simulation setup; the blue hexagons represent the odor patches, the
robot is in left and the source in the right side.

Fig. 4. Trajectory of the proposed 3D algorithm in simulation

3) Simulation results: An example trajectory of the agent
is shown in Fig. 4. For every setup exposed in Tab. I, the
method has been run 20 times and the results are summarized
in Fig. 5. As expected, the performance of the algorithm is
outstanding even in complex environmental conditions such as
the setup A. In the lower wind-speed the general performance
in terms of success rate is not affected, however in terms of
execution time, setups with lower wind-speeds took about
100 s more for a given threshold P;; and source release rate.
This is due to the time the robot has to spend on local search
when it loses the plume. The two other parameters, i.e. source
release rate and odor threshold, did not have a significant
impact on the performance. This implies that the algorithm
is robust to these parameters.

E. Realistic Experiments

1) Wind tunnel setup: In order to evaluate the performance
of the algorithms in a repeatable fashion, our real-world
experiments are carried out in a wind tunnel of volume
18 x 4 x 1.9 m?, which provides a controllable laminar
wind flow.

Execution Time of the 3D method in simulation

seconds
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Fig. 5. Performances of the proposed 3D algorithm in simulation in different
setups
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Fig. 6. Wind tunnel equipped with a 3-axis traversing system, the Khepera
IV robot and an odor source

2) Robot: Our wind tunnel is also equipped with a
controllable 3-axis traversing system, on which we mounted a
wheeled Khepera IV robot equipped with an olfaction sensor
MiCS-5521 CO/VOC [29] (see Fig. 6). The system composed
by the traversing system and the Khepera robot represents an
emulated aerial robot, able to move in 3 axes. Thus, given a
position p(z,y, z), the aerial robot moves towards p with a
constant speed. A similar system has been used in [10].

3) Emulated odor source: The odor source used in this
work is an stationary electric pumping device vaporizing
liquid acetone. While the exact amount of released gas in
ppm is not controllable with this device, a percentage of the
pump power can be set in order to adjust the release rate. For
this work, we have carried out experiments with 8% (low)
and 18% (high) . In both cases, human nose is not able to
detect the acetone smell in the environment.

4) Robot Trajectories: Fig. 7 shows two sample trajectories
performed by the 2D and 3D algorithms, respectively. Both
trajectories start with a crosswind search, on Y-Z plane for
the 3D algorithm and on Y-axis for the 2D method. In the
rest of the trajectories, upwind surge and local search are
performed sequentially. It should be noted that the movement
of the traversing system is limited to its working area
borders, therefore some trajectories, such as the spiralling, are
truncated at the margins of this area. The blue cross shows
the position of the source and the wind is oriented towards
-X.

5) Experimental results: Fig. 8 summarizes the results of

the 2D baseline method for sets of 5 runs for each setup.

The group of results corresponding to conditions with high
speed wind have better performance in terms of success rate
and spent time. The 2D algorithm does not yield satisfactory
results in case of a low-speed wind, and is less efficient is
general.

Since the plume gets wider (in cross-wind plane) as it
travels far from the source, the robot can sense the plume at
the beginning of the experiment even if it is located in a lower
altitude with respect to the source. However, by tracking the
plume towards the upwind direction and getting closer to the
source where the plume is narrower, it becomes harder to
sense the plume and thus the robot has to perform multiple

Fig. 7. Trajectory of two successful runs of both algorithms (2D on top
and 3D on bottom) in the wind tunnel, with the wind speed of 0.9 m/s
towards -X, source release rate of 18% and Py, of 0.7. The blue cross
shows the position of the source.

local searches in the process. This is why a 2D algorithm
results in not a reliable performance, even in case the source
is located only 10 ¢m higher than the operation plane of the
robot.

We have also evaluated the presented method 10 times for
each setup described in Table I, and the results are shown in
Fig. 9.

The 3D method shows, as expected, outstanding
performance in case of high-speed wind and high release rate,
since the amount of information transmitted from the source
to the robot is sufficient to guide it correctly. Even in low
wind speed, the 3D method’s performance are satisfactory
compared to the 2D baseline algorithm.

It is also interesting to note that, in the setup F (i.e. wind
speed = 0.9 m/s, source rate = low and P;, = 90%), even
though the source release rate is not high, the higher odor
threshold, compared to the case E, has compensated for the
environmental conditions and the 3D algorithm remained
totally successful. However, this did not happen for the
cases B and D, where the wind speed was very low. This
proves that the wind speed is more significant than the other
two parameters and thus the proposed method, while being
generally successful in different environmental conditions, is
sensitive to the cases where the wind speed is too low.

IV. CONCLUSION

We proposed a bio-inspired 3D algorithm which involves
cross-wind Lévy Walk, upwind surge and crosswind spiralling
for the problem of odor source localization. The algorithm was
validated in simulation and evaluated in a realistic controlled
environment under different environmental conditions. Since
the algorithm is inspired from nature, it needs very little
a priori data and computational resources. The comparison
between the 3D method and its 2D counterpart shows that
unless the source is located on the ground, an aerial vehicle
and a 3D algorithm are needed to robustly find the source.
Studying three main parameters, the experiments showed
that the wind speed is more significant than the other two
parameters and thus the proposed method, while being
generally successful in different environmental conditions, is
sensitive to the cases that the wind speed is too low.
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Fig. 8. Performances of Surge-Cast algorithm in real-world experiments in
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